Review Article

纳米颗粒介导的基因治疗:对抗中枢神经系统疾病的先驱性武器

卷 30, 期 3, 2023

发表于: 14 March, 2022

页: [304 - 315] 页: 12

弟呕挨: 10.2174/0929867329666220105122318

价格: $65

摘要

中枢神经系统(CNS)疾病对人口,尤其是老年人造成了巨大的社会经济负担。这些疾病的主要症状是由遗传基因突变或损伤、环境因素和疾病相关事件引起的遗传和表观遗传变化引起的神经退行性变、神经炎症和认知功能障碍。目前对中枢神经系统疾病的临床治疗,如阿尔茨海默病、帕金森病、中风和脑肿瘤,有明显的副作用,在很大程度上无法阻止临床进展。因此,基因治疗在这些疾病的治疗中展现了一种新的范式,从抑制内源性基因到表达外源性基因。病毒载体和非病毒载体都常用于基因治疗。病毒载体非常有效,但伴随严重的副作用,如免疫原性和致癌性,以及较差的靶细胞特异性。因此,非病毒载体,主要是纳米治疗药物,如纳米颗粒(NPs),在基因治疗中成为一种现实的方法,可以获得更高的疗效。NPs为药物治疗提供了一种新的途径,可以将药物或基因传递到它们的选择性细胞或组织,从而为目标组织提供集中和持续的药物传递,最大限度地减少全身毒性和副作用。本文将重点介绍NPs在介导基因治疗中枢神经系统疾病中的作用。此外,还将总结NPs在基因治疗中的挑战和前景。

关键词: 基因疗法,纳米颗粒,帕金森病,阿尔茨海默病,中风,脑瘤。

[1]
Ingusci, S.; Verlengia, G.; Soukupova, M.; Zucchini, S.; Simonato, M. Gene therapy tools for brain diseases. Front. Pharmacol., 2019, 10(724), 724.
[http://dx.doi.org/10.3389/fphar.2019.00724] [PMID: 31312139]
[2]
Choong, C-J.; Baba, K.; Mochizuki, H. Gene therapy for neurological disorders. Exp. Opin. Biol. Therap., 2016, 16(2), 143-159.
[3]
Kang, Y.J.; Cutler, E.G.; Cho, H. Therapeutic nanoplatforms and delivery strategies for neurological disorders. Nano Converg., 2018, 5(1), 35.
[http://dx.doi.org/10.1186/s40580-018-0168-8] [PMID: 30499047]
[4]
Pena, S.A.; Iyengar, R.; Esraghi, R.S.; Bencie, N. Gene therapy for neurological disorders: Challenges and recent advancements. J. Drug Targt., 2020, 28(2), 111-128.
[5]
Matar, R.; Soleimani, M.; Merheb, M. Human gene therapy- the future of health care. Hmadan Med. J., 2015, 8, 101-110.
[http://dx.doi.org/10.7707/hmj.304]
[6]
Soleimani, M.; Al Zaabi, A.M.; Merheb, M.; Matar, R. Nanoparticles in gene therapy. Int. J. Integr. Biol., 2016, 17(1), 1-16.
[7]
P’erez-Martınez, F.C.; Carrion, B.; Cena, V. The use of nanoparticles for gene therapy in the nervous system. J. Alzh. Dis., 2012, 31(4), 697-710.
[8]
Jayant, R.D.; Sosa, D.; Kaushik, A.; Atluri, V.; Vashist, A. Current status of non-viral gene therapy for CNS disorders. Exp. Opin. Drug Del., 2016, 13(10), 1433-1445.
[9]
Huang, R.; Ke, W.; Han, L.; Liu, Y.; Shao, K.; Jiang, C.; Pei, Y. Lactoferrin-modified nanoparticles could mediate efficient gene delivery to the brain in vivo. Brain Res. Bull., 2010, 81(6), 600-604.
[http://dx.doi.org/10.1016/j.brainresbull.2009.12.008] [PMID: 20026388]
[10]
Lin, G.; Li, L.; Panwar, N.; Wang, J.; Tjin, S.C.; Wang, X.; Yong, K. Non-viral gene therapy using multifunctional nanoparticles: Status, challenges, and opportunities. Coord. Chem. Rev., 2018, 374, 133-152.
[http://dx.doi.org/10.1016/j.ccr.2018.07.001]
[11]
Wang, D.; Gao, G. State-of-the-art human gene therapy: Part I. Gene delivery technologies. Discov. Med., 2014, 18(97), 67-77.
[PMID: 25091489]
[12]
Naldini, L. Ex vivo gene transfer and correction for cell-based therapies. Nat. Rev. Genet., 2011, 12(5), 301-315.
[http://dx.doi.org/10.1038/nrg2985] [PMID: 21445084]
[13]
Zhong, Y.; Meng, F.; Deng, C.; Zhong, Z. Ligand-directed active tumor-targeting polymeric nanoparticles for cancer chemotherapy. Biomacromolecules, 2014, 15(6), 1955-1969.
[14]
Annu, S.R.; Rehman, S.; Md, S.; Baboota, S.; Ali, J. Analyzing Nanotherapeutics-based approach for the management of psychotic disorders. J. Pharm. Sci., 2019, 108(12), 3757-3768.
[http://dx.doi.org/10.1016/j.xphs.2019.08.027] [PMID: 31499066]
[15]
Rehman, S.; Nabi, B.; Pottoo, F.H.; Baboota, S.; Ali, J. Nanoparticle based gene therapy approach: A pioneering rebellion in the management of psychiatric disorders. Curr. Gene Ther., 2020, 20(3), 164-173.
[http://dx.doi.org/10.2174/1566523220666200607185903] [PMID: 32515310]
[16]
Faraji, A.H.; Wipf, P. Nanoparticles in cellular drug delivery. Bioorg. Med. Chem., 2009, 17(8), 2950-2962.
[http://dx.doi.org/10.1016/j.bmc.2009.02.043] [PMID: 19299149]
[17]
Yang, H. Nanoparticle-mediated brain-specific drug delivery, imaging, and diagnosis. Pharm. Res., 2010, 27(9), 1759-1771.
[http://dx.doi.org/10.1007/s11095-010-0141-7] [PMID: 20593303]
[18]
Ke, W.; Shao, K.; Huang, R.; Han, L.; Liu, Y. Gene delivery targeted to the brain using an Angiopep-conjugated polyethyleneglycol modified polyamidoamine dendrimer. Biomaterials, 2009, 30(36), 6976-6985.
[19]
Montensinos, R.N. Liposomal drug delivery to the central nervous system. In: Book Chapter Liposomes, Liposomes Eds.; Catala, A., Ed.; Intech Open, 2017.
[20]
Newland, B.; Dowd, E.; Pandit, A. Biomaterial approaches to gene therapies for neurodegenerative disorders of the CNS. Biomater. Sci., 2013, 1(6), 556-576.
[http://dx.doi.org/10.1039/c3bm60030k] [PMID: 32481832]
[21]
Annu, S.A. Nanocarriers for the delivery of combination drugs (Liposomal nanocarriers for delivery of combination drugs) In: Micro & Nano Technology Books; Baboota, S.; Ali, J., Eds.; 47-83.Elsevier, 2021; pp.
[22]
Mead, B.P.; Mastorakos, P.; Suk, J.S.; Klibanov, A.L.; Hanes, J.; Price, R.J. Targeted gene transfer to the brain via the delivery of brain-penetrating DNA nanoparticles with focused ultrasound. J. Control. Release, 2016, 223, 109-117.
[http://dx.doi.org/10.1016/j.jconrel.2015.12.034] [PMID: 26732553]
[23]
Mastorakos, P.; Song, E.; Zhang, C.; Berry, S.; Park, H.W.; Kim, Y.E.; Park, J.S.; Lee, S.; Suk, J.S.; Hanes, J. Biodegradable DNA Nanoparticles that provide widespread gene delivery in the brain. Small, 2016, 12(5), 678-685.
[http://dx.doi.org/10.1002/smll.201502554] [PMID: 26680637]
[24]
Li, R.; Li, Y.; Mu, M.; Yang, B.; Chen, X.; Lee, W.Y.W.; Ke, Y.; Yung, W.H.; Tang, B.Z.; Bian, L. Multifunctional nanoprobe for the delivery of therapeutic siRNA and real-time molecular imaging of Parkinson’s disease biomarkers. ACS Appl. Mater. Interfaces, 2021, 13(10), 11609-11620.
[http://dx.doi.org/10.1021/acsami.0c22112] [PMID: 33683858]
[25]
Niu, S.; Zhang, L-K.; Zhang, L.; Zhuang, S.; Zhan, X.; Chen, W.Y.; Du, S.; Yin, L.; You, R.; Li, C.H.; Guan, Y.Q. Inhibition by multifunctional magnetic nanoparticles loaded with alpha-synuclein RNAi plasmid in a Parkinson’s disease model. Theranostics, 2017, 7(2), 344-356.
[http://dx.doi.org/10.7150/thno.16562] [PMID: 28042339]
[26]
Xue, Y.; Wang, N.; Zeng, Z.; Huang, J.; Xaing, Z.; Guan, Y-Q. Neuroprotective effect of chitosan nanoparticle gene delivery system grafted with acteoside (ACT) in Parkinson’s disease models. J. Mater. Sci. Technol., 2020, 43, 197-207.
[http://dx.doi.org/10.1016/j.jmst.2019.10.013]
[27]
Abid Sheikh, M.; Malik, Y.S.; Xing, Z.; Guo, Z. Polylysine-modified polyethylenimine (PEI-PLL) mediated VEGF gene delivery protects dopaminergic neurons in cell culture and in rat models of Parkinson’s Disease (PD). Acta Biomater., 2016, 54, 58-68.
[PMID: 28025049]
[28]
Gan, L.; Li, Z.; Lv, Q.; Huang, W. Rabies virus glycoprotein (RVG29)-linked microRNA-124-loaded polymeric nanoparticles inhibit neuroinflammation in a Parkinson’s disease model. Int. J. Pharm., 2019, 567, 118449.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118449] [PMID: 31226473]
[29]
Long, L.; Cai, X.; Guo, R.; Wang, P. Treatment of Parkinson’s disease in rats by Nrf2 transfection using MRI-guided focused ultrasound delivery of nanomicrobubbles. Biochem. Biophys. Res. Commun., 2017, 482(1), 75-80.
[PMID: 27810365]
[30]
Liu, Y-Y.; Yang, X-Y.; Li, Z.; Liu, Z-L.; Cheng, D.; Wang, Y.; Wen, X.J.; Hu, J.Y.; Liu, J.; Wang, L.M.; Wang, H.J. Characterization of polyethylene glycol-polyethyleneimine as a vector for alpha-synuclein siRNA delivery to PC12 cells for Parkinson’s disease. CNS Neurosci. Ther., 2014, 20(1), 76-85.
[http://dx.doi.org/10.1111/cns.12176] [PMID: 24279586]
[31]
Saraiva, C.; Ferreira, L.; Bernardino, L. Traceable microRNA-124 loaded nanoparticles as a new promising therapeutic tool for Parkinson’s disease. Neurogenesis (Austin), 2016, 3(1), e1256855.
[http://dx.doi.org/10.1080/23262133.2016.1256855] [PMID: 28405588]
[32]
Aly, A.E.E.; Harmon, B.T.; Padegimas, L.; Sesenoglu-Laird, O. Intranasal delivery of pGDNF DNA nanoparticles provides neuroprotection in the rat 6-Hydroxydopamine model of Parkinson’s disease. Mol. Neurobiol., 2018, 56(1), 688-701.
[PMID: 29779176]
[33]
Helmschrodt, C; Hobel, S; Schöniger, S; Bauer, A Polyethylenimine nanoparticle-mediated siRNA delivery to reduce a-Synuclein expression in a model of Parkinson’s disease. Mol. Therp. Nucleic Acid, 2017, 9, 57-68.
[http://dx.doi.org/10.1016/j.omtn.2017.08.013]
[34]
Chung, T-H.; Hsu, S.C.; Wu, S-H.; Hsiao, J-K.; Lin, C.P.; Yao, M.; Huang, D.M. Dextran-coated iron oxide nanoparticle-improved therapeutic effects of human mesenchymal stem cells in a mouse model of Parkinson’s disease. Nanoscale, 2018, 10(6), 2998-3007.
[http://dx.doi.org/10.1039/C7NR06976F] [PMID: 29372743]
[35]
Stepanichev, M. Gene editing and Alzheimer’s disease: Is there light at the end of the tunnel? Front Genome Ed., 2020, 2, 4.
[36]
Lamyaa, M.K.; Nada, A.; Ibrahim, S.; Ayesha, F. Nanoparticle therapy is a promising approach in the management and prevention of many diseases: Does it help in curing Alzheimer disease. J. Nanotech., 2020, 2020, 8147080.
[37]
UC San Diego Health. First-in-human clinical trial to assess gene therapy for Alzheimer’s disease. Available from: ucsd.edu
[38]
Liu, Y.; An, S.; Li, J.; Kuang, Y.; He, X.; Guo, Y.; Ma, H.; Zhang, Y.; Ji, B.; Jiang, C. Brain-targeted co-delivery of therapeutic gene and peptide by multifunctional nanoparticles in Alzheimer’s disease mice. Biomaterials, 2016, 80, 33-45.
[http://dx.doi.org/10.1016/j.biomaterials.2015.11.060] [PMID: 26706474]
[39]
Lopez-Barbosa, N.; Garcia, J.G.; Cifuentes, J.; Castro, L.M.; Vargas, F.; Ostos, C.; Cardona-Gomez, G.P.; Hernandez, A.M.; Cruz, J.C. Multifunctional magnetite nanoparticles to enable delivery of siRNA for the potential treatment of Alzheimer’s. Drug Deliv., 2020, 27(1), 864-875.
[http://dx.doi.org/10.1080/10717544.2020.1775724] [PMID: 32515999]
[40]
Dos Santos Rodrigues, B.; Kanekiyo, T.; Singh, J. ApoE-2 brain-targeted gene therapy through transferrin and penetratin tagged liposomal nanoparticles. Pharm. Res., 2019, 36(11), 161.
[http://dx.doi.org/10.1007/s11095-019-2691-7] [PMID: 31529284]
[41]
Rassu, G; Soddu, E; Posadino, AM; Pintus, G Nose- to-brain delivery of BACE1 siRNA loaded in solid lipid nanoparticles for Alzheimer's therapy. Coll. Surf. B Biointerf., 2017, 152, 296-301.
[http://dx.doi.org/10.1016/j.colsurfb.2017.01.031]
[42]
Wang, P.; Zheng, X.; Guo, Q.; Yang, P.; Pang, X.; Qian, K.; Lu, W.; Zhang, Q.; Jiang, X. Systemic delivery of BACE1 siRNA through neuron-targeted nanocomplexes for treatment of Alzheimer’s disease. J. Control. Release, 2018, 279, 220-233.
[http://dx.doi.org/10.1016/j.jconrel.2018.04.034] [PMID: 29679667]
[43]
Li, R.; Huang, Y.; Chen, L.; Zhou, H.; Zhang, M. Targeted delivery of Intranasally administered nanoparticles-mediated neuroprotective peptide NR2B9c to brain and neuron for treatment of ischemic stroke. Nanomedicine, 2019, 18, 380-390.
[44]
Ma, J.; Zhang, S.; Liu, J.; Liu, F.; Du, F.; Li, M.; Chen, A.T.; Bao, Y.; Suh, H.W.; Avery, J.; Deng, G.; Zhou, Y.; Wu, P.; Sheth, K.; Wang, H.; Zhou, J. Targeted drug delivery to stroke via chemotactic recruitment of nanoparticles coated with membrane of engineered neural stem cells. Small, 2019, 15(35), e1902011.
[http://dx.doi.org/10.1002/smll.201902011] [PMID: 31290245]
[45]
Oh, J.; Lee, J.; Piao, C.; Jeong, J.H.; Lee, M. A self-assembled DNA-nanoparticle with a targeting peptide for hypoxia-inducible gene therapy of ischemic stroke. Biomater. Sci., 2019, 7(5), 2174-2190.
[http://dx.doi.org/10.1039/C8BM01621F] [PMID: 30900719]
[46]
Kuang, Y.; An, S.; Guo, Y.; Huang, S.; Shao, K.; Liu, Y.; Li, J.; Ma, H.; Jiang, C. T7 peptide-functionalized nanoparticles utilizing RNA interference for glioma dual targeting. Int. J. Pharm., 2013, 454(1), 11-20.
[http://dx.doi.org/10.1016/j.ijpharm.2013.07.019] [PMID: 23867728]
[47]
Fan, C-H.; Cheng, Y-H.; Ting, C-Y.; Ho, Y.J.; Hsu, P.H.; Liu, H.L.; Yeh, C.K. Ultrasound/magnetic targeting with SPIO-DOX-Microbubble complex for image-guided drug delivery in brain tumors. Theranostics, 2016, 6(10), 1542-1556.
[http://dx.doi.org/10.7150/thno.15297] [PMID: 27446489]
[48]
Yang, Q.; Zhou, Y.; Chen, J.; Huang, N.; Wang, Z.; Cheng, Y. gene therapy for drug-resistant glioblastoma via lipid-polymer hybrid nanoparticles combined with focused ultrasound. Int. J. Nanomedicine, 2021, 16, 185-199.
[http://dx.doi.org/10.2147/IJN.S286221] [PMID: 33447034]
[49]
Li, J.; Gu, B.; Meng, Q.; Yan, Z.; Gao, H.; Chen, X.; Yang, X.; Lu, W. The use of myristic acid as a ligand of polyethylenimine/DNA nanoparticles for targeted gene therapy of glioblastoma. Nanotechnology, 2011, 22(43), 435101.
[http://dx.doi.org/10.1088/0957-4484/22/43/435101] [PMID: 21955528]
[50]
Mangraviti, A.; Tzeng, S.Y.; Kozielski, K.L.; Wang, Y.; Jin, Y.; Gullotti, D.; Pedone, M.; Buaron, N.; Liu, A.; Wilson, D.R.; Hansen, S.K.; Rodriguez, F.J.; Gao, G.D.; DiMeco, F.; Brem, H.; Olivi, A.; Tyler, B.; Green, J.J. Polymeric nanoparticles for nonviral gene therapy extend brain tumor survival in vivo. ACS Nano, 2015, 9(2), 1236-1249.
[http://dx.doi.org/10.1021/nn504905q] [PMID: 25643235]
[51]
Wang, K.; Kievit, F.M.; Jeon, M.; Silber, J.R.; Ellenbogen, R.G.; Zhang, M. Nanoparticle-mediated target delivery of TRAIL as gene therapy for glioblastoma. Adv. Healthc. Mater., 2015, 4(17), 2719-2726.
[http://dx.doi.org/10.1002/adhm.201500563] [PMID: 26498165]
[52]
Chen, W.; Hu, Y.; Ju, D. Gene therapy for neurodegenerative disorders: Advances, insights and prospects. Acta Pharm. Sin. B, 2020, 10(8), 1347-1359.
[http://dx.doi.org/10.1016/j.apsb.2020.01.015] [PMID: 32963936]
[53]
Barnabas, W. Drug targeting strategies into the brain for treating neurological diseases. J. Neurosci. Methods, 2019, 311, 133-146.
[http://dx.doi.org/10.1016/j.jneumeth.2018.10.015] [PMID: 30336221]
[54]
Dos Santos Rodrigues, B.; Lakkadwala, S.; Kanekiyo, T.; Singh, J. Development and screening of brain-targeted lipid-based nanoparticles with enhanced cell penetration and gene delivery properties. Int. J. Nanomedicine, 2019, 14, 6497-6517.
[http://dx.doi.org/10.2147/IJN.S215941] [PMID: 31616141]
[55]
Pardo, J.; Morel, G.R.; Astiz, M.; Schwerdt, J.I.; León, M.L.; Rodríguez, S.S.; Hereñú, C.B.; Goya, R.G. Gene therapy and cell reprogramming for the aging brain: Achievements and promise. Curr. Gene Ther., 2014, 14(1), 24-34.
[http://dx.doi.org/10.2174/1566523214666140120121733] [PMID: 24450294]
[56]
Sternson, S.M.; Roth, B.L. Chemogenetic tools to interrogate brain functions. Annu. Rev. Neurosci., 2014, 37, 387-407.
[http://dx.doi.org/10.1146/annurev-neuro-071013-014048] [PMID: 25002280]
[57]
Langiu, M.; Dadparvar, M.; Kreuter, J.; Ruonala, M.O. Human serum albumin-based nanoparticle-mediated in vitro gene delivery. PLoS One, 2014, 9(9), e107603.
[http://dx.doi.org/10.1371/journal.pone.0107603] [PMID: 25229502]
[58]
Erel-Akbaba, G.; Carvalho, L.A.; Tian, T.; Zinter, M.; Akbaba, H.; Obeid, P.J.; Chiocca, E.A.; Weissleder, R.; Kantarci, A.G.; Tannous, B.A. Radiation-induced targeted nanoparticle-based gene delivery for brain tumor therapy. ACS Nano, 2019, 13(4), 4028-4040.
[http://dx.doi.org/10.1021/acsnano.8b08177] [PMID: 30916923]
[59]
Mastorakos, P.; Zhang, C.; Berry, S.; Oh, Y.; Lee, S.; Eberhart, C.G.; Woodworth, G.F.; Suk, J.S.; Hanes, J. Highly PEGylated DNA nanoparticles provide uniform and widespread gene transfer in the brain. Adv. Healthc. Mater., 2015, 4(7), 1023-1033.
[http://dx.doi.org/10.1002/adhm.201400800] [PMID: 25761435]
[60]
Mendell, J.R.; Al-Zaidy, S.; Shell, R.; Arnold, W.D.; Rodino-Klapac, L.R.; Prior, T.W.; Lowes, L.; Alfano, L.; Berry, K.; Church, K.; Kissel, J.T.; Nagendran, S.; L’Italien, J.; Sproule, D.M.; Wells, C.; Cardenas, J.A.; Heitzer, M.D.; Kaspar, A.; Corcoran, S.; Braun, L.; Likhite, S.; Miranda, C.; Meyer, K.; Foust, K.D.; Burghes, A.H.M.; Kaspar, B.K. Single-dose gene-replacement therapy for spinal muscular atrophy. N. Engl. J. Med., 2017, 377(18), 1713-1722.
[http://dx.doi.org/10.1056/NEJMoa1706198] [PMID: 29091557]
[61]
Adams, D.; Gonzalez-Duarte, A.; O’Riordan, W.D.; Yang, C.C.; Ueda, M.; Kristen, A.V.; Tournev, I.; Schmidt, H.H.; Coelho, T.; Berk, J.L.; Lin, K.P.; Vita, G.; Attarian, S.; Planté-Bordeneuve, V.; Mezei, M.M.; Campistol, J.M.; Buades, J.; Brannagan, T.H., III; Kim, B.J.; Oh, J.; Parman, Y.; Sekijima, Y.; Hawkins, P.N.; Solomon, S.D.; Polydefkis, M.; Dyck, P.J.; Gandhi, P.J.; Goyal, S.; Chen, J.; Strahs, A.L.; Nochur, S.V.; Sweetser, M.T.; Garg, P.P.; Vaishnaw, A.K.; Gollob, J.A.; Suhr, O.B. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N. Engl. J. Med., 2018, 379(1), 11-21.
[http://dx.doi.org/10.1056/NEJMoa1716153] [PMID: 29972753]
[62]
Pardridge, W.M. Blood-brain barrier and delivery of protein and gene therapeutics to brain. Front. Aging Neurosci., 2020, 11, 373.
[http://dx.doi.org/10.3389/fnagi.2019.00373] [PMID: 31998120]
[63]
Liang, X.; Liu, L.; Wei, Y-Q.; Gao, G.; Wei, X. Toxicity and efficacy of nanoparticle-mediated gene therapy in clinical study. Hum. Gene Ther., 2018, 29(11), 1227-1234.
[64]
Patil, S.; Gao, Y-G.; Lin, X.; Li, Y.; Dang, K.; Tian, Y.; Zhang, W.J.; Jiang, S.F.; Qadir, A.; Qian, A.R. The development of functional non-viral vectors for gene delivery. Int. J. Mol. Sci., 2019, 20(21), 5491-5498.
[http://dx.doi.org/10.3390/ijms20215491] [PMID: 31690044]
[65]
Verma, P.; Srivastava, A.; Srikanth, C.V.; Bajaj, A. Nanoparticle-mediated gene therapeutic strategies for mitigating the inflammatory bowel disease. Biomater. Sci., 2021, 9, 1481-1502.
[66]
Vago, R.; Collico, V.; Zuppone, S.; Prosperi, D.; Colombo, M. Nanoparticle-mediated delivery of suicide genes in cancer therapy. Pharmacol. Res., 2016, 111, 619-641.
[http://dx.doi.org/10.1016/j.phrs.2016.07.007] [PMID: 27436147]
[67]
Wang, Y.; Huang, L. Composite nanoparticles for gene delivery. Adv. Genet., 2014, 88, 111-137.
[http://dx.doi.org/10.1016/B978-0-12-800148-6.00005-5] [PMID: 25409605]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy