Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Review Article

Recent Advancement and Novel Application of Organocatalyzed Aldol Condensation Reactions: A Comprehensive Review

Author(s): Ajay Kumar Verma*, Braj Nandan Kishor and Om Prakash

Volume 19, Issue 6, 2022

Published on: 25 March, 2022

Page: [779 - 795] Pages: 17

DOI: 10.2174/1570193X19666220104093837

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Aldol reactions play an important role in the development of organic synthesis- owing to their critical importance for the conjugation of carbon-carbon bonds while concurrently, one or two chiral centers are reported. In the modern scenario, the Aldol condensation reaction has arisen as perhaps the most significant reaction for the formation of novel medicinal agents, revealing promising pharmacological activities.

Objective: The purpose of this study is to present newer synthetic approaches through Aldol condensation reaction for the synthesis of diverse scaffolds to explore the numerous remarkable biological activities.

Methods: Aldol condensation concerns the nucleophilic addition reaction of a ketone enolate to an aldehyde to form aldol or β- hydroxy ketone. Occasionally, the aldol addition product losing water molecule yields an α, β-unsaturated ketone.

Results: Results showed that peptides of amino acids are utilized as chiral catalysts. As of now, the arrangement of catalysts is intensely one-sided towards proline.

Conclusion: The present study thus provides useful insight concerning the promising coherent way for the synthesis of prolinamide analogue of proline, through a direct asymmetric aldol condensation reaction. Thus, the current study summarizes various Aldol condensation reactions for the synthesis of novel agents as well as their promising pharmacological importance.

Keywords: Aldol condensation, alkoxide, organic synthesis, anti-microbial, proline, prolinamide.

« Previous
Graphical Abstract
[1]
Wang, L.; Tang, R.; Yang, H. Design, synthesis and catalytic property of L-proline derivatives as organocatalysts for direct aldol reaction. J. Korean Chem. Soc., 2013, 57(5), 591-598.
[http://dx.doi.org/10.5012/jkcs.2013.57.5.591]
[2]
Hajos, Z.G.; Parrish, D.R. Asymmetric synthesis of bicyclic intermediates of natural product chemistry. J. Org. Chem., 1974, 39(12), 1615-1621.
[http://dx.doi.org/10.1021/jo00925a003]
[3]
Lee, J.Y.; You, Y. S.; Kang, S.H. Asymmetric synthesis of allcarbon quaternary stereocenters via desymmetrization of 2,2- disubstituted 1,3-propanediols. 2011, 133(6), 1772-1774.
[4]
Bhanushali, M.; Zhao, C-G. Developing novel organocatalyzed aldol reactions for the enantioselective synthesis of biologically active molecules. Synthesis, 2011, 2011(12), 1815-1830.
[http://dx.doi.org/10.1055/s-0030-1260029] [PMID: 21918584]
[5]
Palomo, C.; Oiarbide, M.; García, J.M. Current progress in the asymmetric aldol addition reaction. Chem. Soc. Rev., 2004, 33(2), 65-75.
[http://dx.doi.org/10.1039/B202901D] [PMID: 14767502]
[6]
Dalko, P.I.; Moisan, L. In the golden age of organocatalysis. Angew. Chem. Int. Ed., 2004, 43(39), 5138-5175.
[http://dx.doi.org/10.1002/anie.200400650] [PMID: 15455437]
[7]
List, B.; Lerner, R.A.; Barbas, C.F. Proline-catalyzed direct asymmetric aldol reactions. J. Am. Chem. Soc., 2000, 122(10), 2395-2396.
[http://dx.doi.org/10.1021/ja994280y]
[8]
List, B. Proline-catalyzed asymmetric reactions. Tetrahedron, 2002, 58, 5573-5590.
[http://dx.doi.org/10.1016/S0040-4020(02)00516-1]
[9]
Chimni, S.S.; Mahajan, D. Small organic molecule catalyzed enantioselective direct aldol reaction in water. Tetrahedron Asymmetry, 2006, 17(14), 2108-2119.
[http://dx.doi.org/10.1016/j.tetasy.2006.07.016]
[10]
Thayumanavan, R.; Tanaka, F.; Barbas, C.F. III Direct organocatalytic asymmetric aldol reactions of α-amino aldehydes: Expedient syntheses of highly enantiomerically enriched anti-β-hydroxy-α-amino acids. Org. Lett., 2004, 6(20), 3541-3544.
[http://dx.doi.org/10.1021/ol0485417] [PMID: 15387543]
[11]
Lindström, U.M. Stereoselective organic reactions in water. Chem. Rev., 2002, 102(8), 2751-2772.
[http://dx.doi.org/10.1021/cr010122p] [PMID: 12175267]
[12]
Tang, Z.; Jiang, F.; Cui, X.; Gong, L-Z.; Mi, A-Q.; Jiang, Y.Z.; Wu, Y.D. Enantioselective direct aldol reactions catalyzed by L-prolinamide derivatives. Proc. Natl. Acad. Sci. USA, 2004, 101(16), 5755-5760.
[http://dx.doi.org/10.1073/pnas.0307176101] [PMID: 15079057]
[13]
Han, S.Y.; Kim, Y.A. Recent development of peptide coupling reagents in organic synthesis. Tetrahedron, 2004, 60(11), 2447-2467.
[http://dx.doi.org/10.1016/j.tet.2004.01.020]
[14]
Chen, J.R.; Lu, H.H.; Li, X.Y.; Cheng, L.; Wan, J.; Xiao, W.J. Readily tunable and bifunctional L-prolinamide derivatives: Design and application in the direct enantioselective Aldol reactions. Org. Lett., 2005, 7(20), 4543-4545.
[http://dx.doi.org/10.1021/ol0520323] [PMID: 16178579]
[15]
Yoshikawa, N.; Shibasaki, M. Catalytic asymmetric synthesis of β-hydroxy-α-amino acid esters by direct aldol reaction of glycinate Schiff bases. Tetrahedron, 2002, 58(41), 8289-8298.
[http://dx.doi.org/10.1016/S0040-4020(02)00979-1]
[16]
Laïb, T.; Chastanet, J.; Zhu, J. Diastereoselective Synthesis of γ-Hydroxy-β-amino Alcohols and (2S,3S)-β-Hydroxyleucine from Chiral d-(N,N-Dibenzylamino)serine (TBDMS). Aldehyde. J. Org. Chem., 1998, 63(5), 1709-1713.
[http://dx.doi.org/10.1021/jo971468w]
[17]
Takemura, T.; Hojo, H.; Nakahara, Y.; Ishimizu, T.; Hase, S. Application of Fmoc-amino acid carrying an unmasked carbohydrate to the synthesis of the epidermal growth factor-like domain of bovine blood coagulation factor IX. Org. Biomol. Chem., 2004, 2(1), 133-136.
[http://dx.doi.org/10.1039/b312413d] [PMID: 14737672]
[18]
Bahmanyar, S.; Houk, K.N. Transition states of amine-catalyzed aldol reactions involving enamine intermediates: Theoretical studies of mechanism, reactivity, and stereoselectivity. J. Am. Chem. Soc., 2001, 123(45), 11273-11283.
[http://dx.doi.org/10.1021/ja011403h] [PMID: 11697970]
[19]
Mestres, R.A. green look at the aldol reaction. Green Chem., 2004, 6(12), 583.
[http://dx.doi.org/10.1039/b409143b]
[20]
Cobb, A.J.; Shaw, D.M.; Longbottom, D.A.; Gold, J.B.; Ley, S.V. Organocatalysis with proline derivatives: Improved catalysts for the asymmetric Mannich, nitro-Michael and aldol reactions. Org. Biomol. Chem., 2005, 3(1), 84-96.
[http://dx.doi.org/10.1039/b414742a] [PMID: 15602602]
[21]
List, B.; Martínez, A.; Zumbansen, K.; Döhring, A.; Van, G.M. Improved conditions for the proline-catalyzed aldol reaction of acetone with aliphatic aldehydes. Synlett, 2014, 25(07), 932-934.
[http://dx.doi.org/10.1055/s-0033-1340919]
[22]
Pan, Q.; Zou, B.; Wang, Y.; Ma, D. Diastereoselective aldol reaction of N,N-dibenzyl-α-amino aldehydes with ketones catalyzed by proline. Org. Lett., 2004, 6(6), 1009-1012.
[http://dx.doi.org/10.1021/ol049927k] [PMID: 15012087]
[23]
Hartikka, A.; Arvidsson, P.I. Rational design of asymmetric organocatalysts––increased reactivity and solvent scope with a tetrazolic acid. Tetrahedron Asymmetry, 2004, 15(12), 1831-1834.
[http://dx.doi.org/10.1016/j.tetasy.2004.04.029]
[24]
Jarvo, E. R.; Miller, S. J. J. T., Amino acids and peptides as asymmetric organocatalysts. 2002, 58 (13), 2481-2495.
[25]
Makino, K.; Goto, T.; Hiroki, Y.; Hamada, Y. Stereoselective synthesis of anti-β-hydroxy-α-amino acids through dynamic kinetic resolution. Angew. Chem. Int. Ed., 2004, 43(7), 882-884.
[http://dx.doi.org/10.1002/anie.200353072] [PMID: 14767965]
[26]
Mathew, S.P.; Iwamura, H.; Blackmond, D.G. Amplification of enantiomeric excess in a proline-mediated reaction. Angew. Chem. Int. Ed., 2004, 43(25), 3317-3321.
[http://dx.doi.org/10.1002/anie.200453997] [PMID: 15213963]
[27]
Northrup, A.B.; Mangion, I.K.; Hettche, F.; MacMillan, D.W. Enantioselective organocatalytic direct aldol reactions of alpha-oxyaldehydes: Step one in a two-step synthesis of carbohydrates. Angew. Chem. Int. Ed., 2004, 43(16), 2152-2154.
[http://dx.doi.org/10.1002/anie.200453716] [PMID: 15083470]
[28]
Mase, N.; Tanaka, F.; Barbas, C.F., III Synthesis of beta-hydroxyaldehydes with stereogenic quaternary carbon centers by direct organocatalytic asymmetric aldol reactions. Angew. Chem. Int. Ed., 2004, 43(18), 2420-2423.
[http://dx.doi.org/10.1002/anie.200353546] [PMID: 15114579]
[29]
Laieb, T.; Chastanet, J.; Zhu, J. J. J. O. O. C., Diastereoselective Synthesis of gamma-Hydroxy-beta-Amino Alcohols and (2S, 3S)- beta-Hydroxyleucine from Chiral D-(N, N-Dibenzylamino) serine (TBDMS) Aldehyde. 1998, 63 (ARTICLE), 1709-1713.
[http://dx.doi.org/10.3390/molecules15031291] [PMID: 20335981]
[30]
Panek, J.S.; Masse, C.E. An improved synthesis of (4 S, 5 S)-2-phenyl-4-(methoxycarbonyl)-5-isopropyloxazoline from (S)-phenylglycinol. J. Org. Chem., 1998, 63(7), 2382-2384.
[http://dx.doi.org/10.1021/jo972013+]
[31]
Notz, W.; List, B. Catalytic asymmetric synthesis of anti-1, 2-diols. J. Am. Chem. Soc., 2000, 122(30), 7386-7387.
[http://dx.doi.org/10.1021/ja001460v]
[32]
Kumaragurubaran, N.; Juhl, K.; Zhuang, W.; Bøgevig, A.; Jørgensen, K.A. Direct L-proline-catalyzed asymmetric α-amination of ketones. J. Am. Chem. Soc., 2002, 124(22), 6254-6255.
[http://dx.doi.org/10.1021/ja026412k] [PMID: 12033850]
[33]
Paras, N.A.; MacMillan, D.W. The enantioselective organocatalytic 1,4-addition of electron-rich benzenes to α,β-unsaturated aldehydes. J. Am. Chem. Soc., 2002, 124(27), 7894-7895.
[http://dx.doi.org/10.1021/ja025981p] [PMID: 12095321]
[34]
Okino, T.; Hoashi, Y.; Takemoto, Y. Enantioselective Michael reaction of malonates to nitroolefins catalyzed by bifunctional organocatalysts. J. Am. Chem. Soc., 2003, 125(42), 12672-12673.
[http://dx.doi.org/10.1021/ja036972z] [PMID: 14558791]
[35]
Doherty, S.; Knight, J.G.; McRae, A.; Harrington, R.W.; Clegg, W. Oxazoline-substituted prolinamide-based organocatalysts for the direct intermolecular aldol reaction between cyclohexanone and aromatic aldehydes. Eur. J. Org. Chem., 2008, 2008(10), 1759-1766.
[http://dx.doi.org/10.1002/ejoc.200700922]
[36]
Fu, Y.Q.; Li, Z.C.; Ding, L.N.; Tao, J.C.; Zhang, S.H.; Tang, M.S. Direct asymmetric aldol reaction catalyzed by simple prolinamide phenols. Tetrahedron Asymmetry, 2006, 17(24), 3351-3357.
[http://dx.doi.org/10.1016/j.tetasy.2006.12.008]
[37]
Bellis, E.; Kokotos, G. 4-Substituted prolines as organocatalysts for aldol reactions. Tetrahedron, 2005, 61(36), 8669-8676.
[http://dx.doi.org/10.1016/j.tet.2005.06.113]
[38]
Cordova, A. Direct catalytic asymmetric cross-aldol reactions in ionic liquid media. Tetrahedron Lett., 2004, 45(20), 3949-3952.
[http://dx.doi.org/10.1016/j.tetlet.2004.03.080]
[39]
Watanabe, S.; Córdova, A.; Tanaka, F.; Barbas, C.F. III One-pot asymmetric synthesis of β-cyanohydroxymethyl α-amino acid derivatives: Formation of three contiguous stereogenic centers. Org. Lett., 2002, 4(25), 4519-4522.
[http://dx.doi.org/10.1021/ol027048x] [PMID: 12465927]
[40]
Trost, B.M.; Ito, H.; Silcoff, E.R. Asymmetric Aldol reaction via a dinuclear zinc catalyst: α-hydroxyketones as donors. J. Am. Chem. Soc., 2001, 123(14), 3367-3368.
[http://dx.doi.org/10.1021/ja003871h] [PMID: 11457073]
[41]
Ooi, T.; Kameda, M.; Taniguchi, M.; Maruoka, K. Development of highly diastereo- and enantioselective direct asymmetric aldol reaction of a glycinate Schiff base with aldehydes catalyzed by chiral quaternary ammonium salts. J. Am. Chem. Soc., 2004, 126(31), 9685-9694.
[http://dx.doi.org/10.1021/ja048865q] [PMID: 15291572]
[42]
Yoshikawa, N.; Yamada, Y.M.; Das, J.; Sasai, H.; Shibasaki, M. Direct catalytic asymmetric aldol reaction. J. Am. Chem. Soc., 1999, 121(17), 4168-4178.
[http://dx.doi.org/10.1021/ja990031y] [PMID: 11456913]
[43]
Sakthivel, K.; Notz, W.; Bui, T.; Barbas, C.F., III Amino acid catalyzed direct asymmetric aldol reactions: A bioorganic approach to catalytic asymmetric carbon-carbon bond-forming reactions. J. Am. Chem. Soc., 2001, 123(22), 5260-5267.
[http://dx.doi.org/10.1021/ja010037z] [PMID: 11457388]
[44]
Trost, B.M.; Ito, H. A direct catalytic enantioselective aldol reaction via a novel catalyst design. J. Am. Chem. Soc., 2000, 122(48), 12003-12004.
[http://dx.doi.org/10.1021/ja003033n]
[45]
Hayashi, Y.; Sumiya, T.; Takahashi, J.; Gotoh, H.; Urushima, T.; Shoji, M. Highly diastereo- and enantioselective direct aldol reactions in water. Angew. Chem. Int. Ed., 2006, 45(6), 958-961.
[http://dx.doi.org/10.1002/anie.200502488] [PMID: 16385603]
[46]
Pihko, P.M.; Laurikainen, K.M.; Usano, A.; Nyberg, A.I.; Kaavi, J.A. Effect of additives on the proline-catalyzed ketone–aldehyde aldol reactions. Tetrahedron, 2006, 62(2-3), 317-328.
[http://dx.doi.org/10.1016/j.tet.2005.09.070]
[47]
Wang, C.; Jiang, Y.; Zhang, X.X.; Huang, Y.; Li, B.G.; Zhang, G.l. Rationally designed organocatalyst for direct asymmetric aldol reaction in the presence of water. Tetrahedron Lett., 2007, 48(24), 4281-4285.
[http://dx.doi.org/10.1016/j.tetlet.2007.04.037]
[48]
Chen, J.R.; Li, X.Y.; Xing, X.N.; Xiao, W.J. Sterically and electronically tunable and bifunctional organocatalysts: Design and application in asymmetric aldol reaction of cyclic ketones with aldehydes. J. Org. Chem., 2006, 71(21), 8198-8202.
[http://dx.doi.org/10.1021/jo0615089] [PMID: 17025312]
[49]
Luo, S.; Xu, H.; Li, J.; Zhang, L.; Cheng, J.P. A simple primary-tertiary diamine-Brønsted acid catalyst for asymmetric direct aldol reactions of linear aliphatic ketones. J. Am. Chem. Soc., 2007, 129(11), 3074-3075.
[http://dx.doi.org/10.1021/ja069372j] [PMID: 17323952]
[50]
Mase, N.; Nakai, Y.; Ohara, N.; Yoda, H.; Takabe, K.; Tanaka, F.; Barbas, C.F., III Organocatalytic direct asymmetric aldol reactions in water. J. Am. Chem. Soc., 2006, 128(3), 734-735.
[http://dx.doi.org/10.1021/ja0573312] [PMID: 16417359]
[51]
Ramasastry, S.S.; Albertshofer, K.; Utsumi, N.; Barbas, C.F., III Water-compatible organocatalysts for direct asymmetric syn-aldol reactions of dihydroxyacetone and aldehydes. Org. Lett., 2008, 10(8), 1621-1624.
[http://dx.doi.org/10.1021/ol8002833] [PMID: 18351769]
[52]
Maya, V.; Raj, M.; Singh, V.K. Highly enantioselective organocatalytic direct aldol reaction in an aqueous medium. Org. Lett., 2007, 9(13), 2593-2595.
[http://dx.doi.org/10.1021/ol071013l] [PMID: 17518481]
[53]
Wu, Y.; Zhang, Y.; Yu, M.; Zhao, G.; Wang, S. Highly efficient and reusable dendritic catalysts derived from N-prolylsulfonamide for the asymmetric direct aldol reaction in water. Org. Lett., 2006, 8(20), 4417-4420.
[http://dx.doi.org/10.1021/ol061418q] [PMID: 16986914]
[54]
Tang, Z.; Yang, Z.H.; Cun, L.F.; Gong, L.Z.; Mi, A.Q.; Jiang, Y.Z. Small peptides catalyze highly enantioselective direct aldol reactions of aldehydes with hydroxyacetone: Unprecedented regiocontrol in aqueous media. Org. Lett., 2004, 6(13), 2285-2287.
[http://dx.doi.org/10.1021/ol049141m] [PMID: 15200341]
[55]
Guillena, G.; del Carmen Hita, M.; Najera, C. High acceleration of the direct aldol reaction cocatalyzed by BINAM-prolinamides and benzoic acid in aqueous media. Tetrahedron Asymmetry, 2006, 17(10), 1493-1497.
[http://dx.doi.org/10.1016/j.tetasy.2006.05.026]
[56]
Hayashi, Y.; Aratake, S.; Okano, T.; Takahashi, J.; Sumiya, T.; Shoji, M. Combined proline-surfactant organocatalyst for the highly diastereo- and enantioselective aqueous direct cross-aldol reaction of aldehydes. Angew. Chem. Int. Ed., 2006, 45(33), 5527-5529.
[http://dx.doi.org/10.1002/anie.200601156] [PMID: 16856197]
[57]
Hernández, J.G.; Juaristi, E. Asymmetric aldol reaction organocatalyzed by (S)-proline-containing dipeptides: Improved stereoinduction under solvent-free conditions. J. Org. Chem., 2011, 76(5), 1464-1467.
[http://dx.doi.org/10.1021/jo1022469] [PMID: 21250720]
[58]
Zhao, Q.; Lam, Y.H.; Kheirabadi, M.; Xu, C.; Houk, K.N.; Schafmeister, C.E. Hydrophobic substituent effects on proline catalysis of aldol reactions in water. J. Org. Chem., 2012, 77(10), 4784-4792.
[http://dx.doi.org/10.1021/jo300569c] [PMID: 22500641]
[59]
Nájera, C.; Guillena, G.; Moles, F. Aqueous Enantioselective Aldol Reaction of Methyl- and Phenylglyoxal Organocatalyzed by N-Tosyl-(S a)-binam-l-prolinamide. Synlett, 2015, 26(05), 656-660.
[http://dx.doi.org/10.1055/s-0034-1379969]
[60]
Kumar, T.P.; Shekhar, R.C.; Sunder, K.S.; Vadaparthi, R. Myrtanyl-prolinamide: A new chiral organocatalyst for stereoselective aldol reactions. Tetrahedron Asymmetry, 2015, 26(10-11), 543-547.
[http://dx.doi.org/10.1016/j.tetasy.2015.03.009]
[61]
Tafida, U.I.; Uzairu, A.; Abechi, S.E. Mechanism and rate constant of proline-catalysed asymmetric aldol reaction of acetone and p-nitrobenzaldehyde in solution medium: Density-functional theory computation. J. Adv. Res., 2018, 12, 11-19.
[http://dx.doi.org/10.1016/j.jare.2018.03.002] [PMID: 30013799]
[62]
Carmo, L.F.d.; Silva, S.C.; Machado, M.V.; Prata, P.S.; Wisniewski Júnior, A.; Vidal, D.M.; Villar, J.A.F.P. The Role of L-Proline and Co-Catalysts in the Enantioselectivity of OXA-Michael-Henry Reactions. J. Braz. Chem. Soc., 2019, 30, 893-903.
[63]
Dibello, E.; Gamenara, D.; Seoane, G. Organocatalysis in the synthesis of natural products: Recent developments in Aldol and Mannich reactions, and 1, 4-conjugated additions. Curr. Organocatal., 2015, 2(2), 124-149.
[http://dx.doi.org/10.2174/2213337202666150516001331]
[64]
Kasralikar, H.M.; Jadhavar, S.C.; Bhusare, S.R. Highly asymmetric aldol reaction of cyclohexanone and aromatic aldehydes catalyzed by bifunctional cyclohexane derived thiourea organocatalyst. Asian J. Green Chem., 2019, 3(2), 201-215.
[65]
Hirose, M.; Fujiwara, S.; Ishigami, T.; Suga, K.; Okamoto, Y.; Umakoshi, H. Liposome membranes assist the L-proline-catalyzed aldol reaction of acetone and p-nitrobenzaldehyde in water. Chem. Lett., 2018, 47(7), 931-934.
[http://dx.doi.org/10.1246/cl.180180]
[66]
Eyckens, D.J.; Brozinski, H.L.; Delaney, J.P.; Servinis, L.; Naghashian, S.; Henderson, L.C. Ion-Tagged Prolinamide Organocatalysts for the Direct Aldol Reaction On-Water. Catal. Lett., 2016, 146(1), 212-219.
[http://dx.doi.org/10.1007/s10562-015-1630-4]
[67]
Thingom, B.; Moirangthem, S.D.; Laitonjam, W.S. Cadmium-proline catalyzed direct asymmetric Michael and Aldol reactions in water., 2013.
[68]
Obregón-Zúñiga, A.; Milán, M.; Juaristi, E. Improving the catalytic performance of (S)-proline as organocatalyst in asymmetric aldol reactions in the presence of solvate ionic liquids: Involvement of a supramolecular aggregate. Org. Lett., 2017, 19(5), 1108-1111.
[http://dx.doi.org/10.1021/acs.orglett.7b00129] [PMID: 28199118]
[69]
Gut, B.; Mlynarski, J. Tertiary amine promoted asymmetric aldol reaction of aldehydes. Eur. J. Org. Chem., 2015, 2015(23), 5075-5078.
[http://dx.doi.org/10.1002/ejoc.201500519]
[70]
Subramanian, M.; Vanangamudi, G.; Thirunarayanan, G. Hydroxyapatite catalyzed aldol condensation: Synthesis, spectral linearity, antimicrobial and insect antifeedant activities of some 2,5-dimethyl-3-furyl chalcones. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2013, 110, 116-123.
[http://dx.doi.org/10.1016/j.saa.2013.03.023] [PMID: 23562741]
[71]
Mala, V.; Sathiyamoorthi, K.; Sakthinathan, S. P.; Kamalakkannan, D.; Suresh, R.; Vanangamudi, G.; Thirunarayanan, G. Solvent-free synthesis, spectral correlations and antimicrobial activities of some 3,4-dimethoxy chalcones. Q Sci. Connect., 2013, 2013.
[72]
Arulkumaran, R.; Vijayakumar, S.; Sundararajan, R.; Sakthinathan, S.P.; Kamalakkannan, D.; Suresh, R.; Ranganathan, K.; Vanangamudi, G.; Thirunarayanan, G. Thionylchloride catalyzed aldol condensation: Synthesis, spectral correlation and antibacterial activities of some 3,5-dichloro-2-hydroxyphenyl chalcones. Int. Lett. Chem. Phy.Astro., 2013, 4, 17-38.
[http://dx.doi.org/10.18052/www.scipress.com/ILCPA.4.17]
[73]
Cueto, J.; Faba, L.; Díaz, E.; Ordóñez, S. Optimization of the process conditions for minimizing the deactivation in the furfural-cyclopentanone aldol condensation in a continuous reactor. Appl. Catal. B, 2020, 263118341
[http://dx.doi.org/10.1016/j.apcatb.2019.118341]
[74]
Li, L.; Hong, P.; Kiss, A.A.; Tian, H.; Wang, X.; Qiu, T. Unraveling the reaction route and kinetics of 3-methyl-3-penten-2-one synthesis for synthetic ketone fragrances. J. Chem. Technol. Biotechnol., 2020, 96(1), 48-63.
[http://dx.doi.org/10.1002/jctb.6543]
[75]
Shylesh, S.; Bettinson, L.A.; Aljahri, A.; Head-Gordon, M.; Bell, A.T. Experimental and computational studies of carbon–carbon bond formation via ketonization and aldol condensation over site-isolated zirconium catalysts. ACS Catal., 2020, 10(8), 4566-4579.
[http://dx.doi.org/10.1021/acscatal.9b05176]
[76]
Wang, G.; Cai, G. Steric hindrance effect and kinetic investigation for ionic liquid catalyzed synthesis of 4-hydroxy-2-butanone via aldol reaction. Chem. Eng. Sci., 2021, 229116089
[http://dx.doi.org/10.1016/j.ces.2020.116089]
[77]
Yan, T.; Yao, S.; Dai, W.; Wu, G.; Guan, N.; Li, L. Self-aldol condensation of aldehydes over Lewis acidic rare-earth cations stabilized by zeolites. Chin. J. Catal., 2021, 42(4), 595-605.
[http://dx.doi.org/10.1016/S1872-2067(20)63675-0]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy