Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Recent Advances of Nanotechnology in the Diagnosis and Therapy of Triple- Negative Breast Cancer (TNBC)

Author(s): Abhishek Kanugo*, Rupesh K. Gautam* and Mohammad Amjad Kamal

Volume 23, Issue 13, 2022

Published on: 11 April, 2022

Page: [1581 - 1595] Pages: 15

DOI: 10.2174/1389201023666211230113658

Price: $65

Abstract

Background: The development of advanced treatment of triple-negative breast cancer (TNBC) is the utmost need of an era. TNBC is recognized as the most aggressive, metastatic cancer and the leading cause of mortality in females worldwide. The lack of expression of triple receptors namely, estrogen, progesterone, and human epidermal receptor 2 defined TNBC.

Objective: The current review introduced the novel biomarkers such as miRNA and family, PD1, EGFR, VEGF, TILs, P53, AR and PI3K, etc. contributed significantly to the prognosis and diagnosis of TNBC. Once diagnosed, the advanced utilization approaches are available for TNBC because of the limitations of chemotherapy. Novel approaches include lipid-based (liposomes, SLN, NLC, and SNEDDS), polymer-based (micelle, nanoparticles, dendrimers, and quantum dots), advanced nanocarriers such as (exosomes, antibody and peptide-drug conjugates), and carbonbased nanocarriers (Carbon nanotubes, and graphene oxide). Lipid-based delivery is used for excellent carriers for hydrophobic drugs, biocompatibility, and lesser systemic toxicities than chemotherapeutic agents. Polymer-based approaches are preferred over lipids for providing longer circulation time, nanosize, high loading efficiency, high linking, avoiding the expulsion of drugs, targeted action, diagnostic and biosensing abilities. Advanced approaches like exosomes, conjugated moieties are preferred over polymeric for possessing potency, high penetrability, biomarkers, and avoiding the toxicity of tissues. Carbon-based gained wide applicability for their unique properties like a versatile carrier, prognostic, diagnostic, sensing, photodynamic, and photothermal characteristics.

Conclusion: The survival rate can be increased by utilizing several kinds of biomarkers. The advanced approaches can also be significantly useful in the prognosis and theranostic of triplenegative breast cancer. One of the biggest successes in treating with nanotechnology-based approaches is the marked reduction of systemic toxicity with high therapeutic effectiveness compared with chemotherapy, surgery, etc. The requirements such as prompt diagnosis, longer circulation time, high efficiency, and high potency can be fulfilled with these nanocarriers

Keywords: TNBC, biomarkers, liposomes, polymeric micelle, nanoparticles, carbon nanotubes, photodynamic.

Graphical Abstract
[1]
Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2021. CA Cancer J. Clin., 2021, 71(1), 7-33.
[http://dx.doi.org/10.3322/caac.21654] [PMID: 33433946]
[2]
Perou, C.M.; Sørlie, T.; Eisen, M.B.; van de Rijn, M.; Jeffrey, S.S.; Rees, C.A.; Pollack, J.R.; Ross, D.T.; Johnsen, H.; Akslen, L.A.; Fluge, O.; Pergamenschikov, A.; Williams, C.; Zhu, S.X.; Lønning, P.E.; Børresen-Dale, A.L.; Brown, P.O.; Botstein, D. Molecular portraits of human breast tumours. Nature, 2000, 406(6797), 747-752.
[http://dx.doi.org/10.1038/35021093] [PMID: 10963602]
[3]
Hwang, S.Y.; Park, S.; Kwon, Y. Recent therapeutic trends and promising targets in triple negative breast cancer. Pharmacol. Ther., 2019, 199, 30-57.
[http://dx.doi.org/10.1016/j.pharmthera.2019.02.006] [PMID: 30825473]
[4]
Dent, R.; Hanna, W.M.; Trudeau, M.; Rawlinson, E.; Sun, P.; Narod, S.A. Pattern of metastatic spread in triple-negative breast cancer. Breast Cancer Res. Treat., 2009, 115(2), 423-428.
[http://dx.doi.org/10.1007/s10549-008-0086-2] [PMID: 18543098]
[5]
Anders, C.K.; Abramson, V.; Tan, T.; Dent, R. The evolution of triple-negative breast cancer: From biology to novel therapeutics. Am. Soc. Clin. Oncol. Educ. Book, 2016, 35(36), 34-42.
[http://dx.doi.org/10.1200/EDBK_159135] [PMID: 27249684]
[6]
Burstein, M.D.; Tsimelzon, A.; Poage, G.M.; Covington, K.R.; Contreras, A.; Fuqua, S.A.W.; Savage, M.I.; Osborne, C.K.; Hilsenbeck, S.G.; Chang, J.C.; Mills, G.B.; Lau, C.C.; Brown, P.H. Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast cancer. Clin. Cancer Res., 2015, 21(7), 1688-1698.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-0432] [PMID: 25208879]
[7]
Denkert, C.; Liedtke, C.; Tutt, A.; von Minckwitz, G. Molecular alterations in triple-negative breast cancer-the road to new treatment strategies. The Lancet, 2017, 2430-2442.
[http://dx.doi.org/10.1016/S0140-6736(16)32454-0]
[8]
Liu, Y.R.; Jiang, Y.Z.; Xu, X.E.; Yu, K.D.; Jin, X.; Hu, X.; Zuo, W.J.; Hao, S.; Wu, J.; Liu, G.Y.; Di, G.H.; Li, D.Q.; He, X.H.; Hu, W.G.; Shao, Z.M. Comprehensive transcriptome analysis identifies novel molecular subtypes and subtype-specific RNAs of triple-negative breast cancer. Breast Cancer Res., 2016, 18(1), 33.
[http://dx.doi.org/10.1186/s13058-016-0690-8] [PMID: 26975198]
[9]
Yin, L.; Duan, J.J.; Bian, X.W.; Yu, S.C. Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res., 2020, 1-13. [Ahead of Print
[http://dx.doi.org/10.1186/s13058-020-01296-5]
[10]
Chaudhary, L.N. Early stage triple negative breast cancer: Management and future directions. Seminars Oncol., 2020, 201-208.
[http://dx.doi.org/10.1053/j.seminoncol.2020.05.006]
[11]
Balko, J.M.; Cook, R.S.; Vaught, D.B.; Kuba, M.G.; Miller, T.W.; Bhola, N.E.; Sanders, M.E.; Granja-Ingram, N.M.; Smith, J.J.; Meszoely, I.M.; Salter, J.; Dowsett, M.; Stemke-Hale, K.; González-Angulo, A.M.; Mills, G.B.; Pinto, J.A.; Gómez, H.L.; Arteaga, C.L. Profiling of residual breast cancers after neoadjuvant chemotherapy identifies DUSP4 deficiency as a mechanism of drug resistance. Nat. Med., 2012, 18(7), 1052-1059.
[http://dx.doi.org/10.1038/nm.2795] [PMID: 22683778]
[12]
Yates, L.R.; Gerstung, M.; Knappskog, S.; Desmedt, C.; Gundem, G.; Van Loo, P.; Aas, T.; Alexandrov, L.B.; Larsimont, D.; Davies, H.; Li, Y.; Ju, Y.S.; Ramakrishna, M.; Haugland, H.K.; Lilleng, P.K.; Nik-Zainal, S.; McLaren, S.; Butler, A.; Martin, S.; Glodzik, D.; Menzies, A.; Raine, K.; Hinton, J.; Jones, D.; Mudie, L.J.; Jiang, B.; Vincent, D.; Greene-Colozzi, A.; Adnet, P.Y.; Fatima, A.; Maetens, M.; Ignatiadis, M.; Stratton, M.R.; Sotiriou, C.; Richardson, A.L.; Lønning, P.E.; Wedge, D.C.; Campbell, P.J. Subclonal diversification of primary breast cancer revealed by multiregion sequencing. Nat. Med., 2015, 21(7), 751-759.
[http://dx.doi.org/10.1038/nm.3886] [PMID: 26099045]
[13]
Teles, R.H.G.; Moralles, H.F.; Cominetti, M.R. Global trends in nanomedicine research on triple negative breast cancer: A bibliometric analysis. Int. J. Nanomedicine, 2018, 13, 2321-2336.
[http://dx.doi.org/10.2147/IJN.S164355] [PMID: 29713164]
[14]
Feng, Q.; Hu, Q.; Liu, Y.; Yang, T.; Yin, Z. Diagnosis of triple negative breast cancer based on radiomics signatures extracted from preoperative contrast-enhanced chest computed tomography. BMC Cancer, 2020, 20(1), 579.
[http://dx.doi.org/10.1186/s12885-020-07053-3] [PMID: 32571245]
[15]
Dass, S.A.; Tan, K.L.; Rajan, R.S.; Mokhtar, N.F.; Adzmi, E.R.M.; Rahman, W.F.W.A.; Din, T.A.D.A.A.T.; Balakrishnan, V. Triple negative breast cancer: A review of present and future diagnostic modalities. Med., 2021, 57, 62.
[http://dx.doi.org/10.3390/medicina57010062]
[16]
Ranjan, P.; Parihar, A.; Jain, S.; Kumar, N.; Dhand, C.; Murali, S.; Mishra, D.; Sanghi, S.K.; Chaurasia, J.P.; Srivastava, A.K.; Khan, R. Biosensor-based diagnostic approaches for various cellular biomarkers of breast cancer: A comprehensive review. Anal. Biochem., 2020, 610, 113996.
[http://dx.doi.org/10.1016/j.ab.2020.113996] [PMID: 33080213]
[17]
Sukumar, J.; Gast, K.; Quiroga, D.; Lustberg, M.; Williams, N. Triple-negative breast cancer: Promising prognostic biomarkers currently in development. 2021, 21, (2), 135-148.
[http://dx.doi.org/10.1080/14737140.2021.1840984]
[18]
Tian, T.; Zhao, Y.; Zheng, J.; Jin, S.; Liu, Z.; Wang, T. Circular RNA: A potential diagnostic, prognostic, and therapeutic biomarker for human triple-negative breast cancer. Mol. Ther. Nucleic Acids, 2021, 26, 63-80.
[http://dx.doi.org/10.1016/j.omtn.2021.06.017] [PMID: 34513294]
[19]
Jiang, W.; Xing, X.L.; Zhang, C.; Yi, L.; Xu, W.; Ou, J.; Zhu, N. MET and FASN as prognostic biomarkers of triple negative breast cancer: A systematic evidence landscape of clinical study. Front. Oncol., 2021, 11, 604801.
[http://dx.doi.org/10.3389/fonc.2021.604801] [PMID: 34123778]
[20]
Ou, X.; Gao, G.; Bazhabayi, M.; Zhang, K.; Liu, F.; Xiao, X. MALAT1 and BACH1 are prognostic biomarkers for triple-negative breast cancer. J. Cancer Res. Ther., 2019, 15(7), 1597-1602.
[http://dx.doi.org/10.4103/jcrt.JCRT_282_19] [PMID: 31939443]
[21]
O’Conor, C. J.; Chen, T.; González, I.; Cao, D.; Peng, Y. Cancer stem cells in triple-negative breast cancer: a potential target and prognostic marker. 2018, 12(7), 813-820.
[http://dx.doi.org/10.2217/bmm-2017-0398]
[22]
Al-Jussani, G.N.; Dabbagh, T.Z.; Al-Rimawi, D.; Sughayer, M.A. Expression of PD-L1 using SP142 CDx in triple negative breast cancer. Ann. Diagn. Pathol., 2021, 51, 151703.
[http://dx.doi.org/10.1016/j.anndiagpath.2021.151703] [PMID: 33454500]
[23]
Cocco, S.; Piezzo, M.; Calabrese, A.; Cianniello, D.; Caputo, R.; Lauro, V. Di; Fusco, G.; Gioia, G.; Di; Licenziato, M.; de Laurentiis, M. Biomarkers in triple-negative breast cancer: State-of-the-art and future perspectives. Int. J. Mol. Sci., 2020, 21, 4579.
[http://dx.doi.org/10.3390/ijms21134579]
[24]
Assaker, G.; Camirand, A.; Abdulkarim, B.; Omeroglu, A.; Deschenes, J.; Joseph, K.; Noman, A.S.M.; Ramana Kumar, A.V.; Kremer, R.; Sabri, S. PTHrP, a biomarker for cns metastasis in triple-negative breast cancer and selection for adjuvant chemotherapy in node-negative disease. JNCI Cancer Spectr., 2019, 4(1), pkz063.
[http://dx.doi.org/10.1093/jncics/pkz063] [PMID: 32296756]
[25]
Zhang, J.; Tian, Q.; Zhang, M.; Wang, H.; Wu, L.; Yang, J. Immune-related biomarkers in triple-negative breast cancer. Breast Cancer, 2021, 28(4), 792-805.
[http://dx.doi.org/10.1007/s12282-021-01247-8] [PMID: 33837508]
[26]
Wong, C.K.; Gromisch, C.; Ozturk, S.; Papageorgis, P.; Abdolmaleky, H.M.; Reinhard, B.M.; Thiagalingam, A.; Thiagalingam, S. MicroRNA-4417 is a tumor suppressor and prognostic biomarker for triple-negative breast cancer. Cancer Biol. Ther., 2019, 20(8), 1113-1120.
[http://dx.doi.org/10.1080/15384047.2019.1595285] [PMID: 30922194]
[27]
Tang, Q.; Ouyang, H.; He, D.; Yu, C.; Tang, G. MicroRNA-based potential diagnostic, prognostic and therapeutic applications in triplenegative breast cancer. Cancer Biol. Ther., 2019, 47(1), 2800-2809.
[http://dx.doi.org/10.1080/21691401.2019.1638791]
[28]
Sporikova, Z.; Koudelakova, V.; Trojanec, R.; Hajduch, M. Genetic markers in triple-negative breast cancer. Clin. Breast Cancer, 2018, 18(5), e841-e850.
[http://dx.doi.org/10.1016/j.clbc.2018.07.023] [PMID: 30146351]
[29]
da Silva, J.L.; Cardoso Nunes, N.C.; Izetti, P.; de Mesquita, G.G.; de Melo, A.C. Triple negative breast cancer: A thorough review of biomarkers. Crit. Rev. Oncol. Hematol., 2020, 145, 102855.
[http://dx.doi.org/10.1016/j.critrevonc.2019.102855] [PMID: 31927455]
[30]
Yadav, B.S.; Chanana, P.; Jhamb, S. Biomarkers in triple negative breast cancer: A review. World J. Clin. Oncol., 2015, 6(6), 252-263.
[http://dx.doi.org/10.5306/wjco.v6.i6.252] [PMID: 26677438]
[32]
Kanugo, A.; Misra, A. New and novel approaches for enhancing the oral absorption and bioavailability of protein and peptides therapeutics. Therapeutic Delivery, 2020, 11(11), 713-732.
[http://dx.doi.org/10.4155/tde-2020-0068]
[33]
Danaei, M.; Dehghankhold, M.; Ataei, S.; Hasanzadeh Davarani, F.; Javanmard, R.; Dokhani, A.; Khorasani, S.; Mozafari, M.R. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics, 2018, 10(2), 57.
[http://dx.doi.org/10.3390/pharmaceutics10020057] [PMID: 29783687]
[34]
Akbarzadeh, A.; Rezaei-Sadabady, R.; Davaran, S.; Joo, S.W.; Zarghami, N.; Hanifehpour, Y.; Samiei, M.; Kouhi, M.; Nejati-Koshki, K. Liposome: Classification, preparation, and applications. Nanoscale Res. Lett., 2013, 8(1), 102.
[http://dx.doi.org/10.1186/1556-276X-8-102] [PMID: 23432972]
[35]
Novais, M.V.M.; Gomes, E.R.; Miranda, M.C.; Silva, J.O.; Gomes, D.A.; Braga, F.C.; Pádua, R.M.; Oliveira, M.C. Liposomes co-encapsulating doxorubicin and glucoevatromonoside derivative induce synergic cytotoxic response against breast cancer cell lines. Biomed. Pharmacother., 2021, 136, 111123.
[http://dx.doi.org/10.1016/j.biopha.2020.111123] [PMID: 33486211]
[36]
Gkionis, L.; Campbell, R.A.; Aojula, H.; Harris, L.K.; Tirella, A. Manufacturing drug co-loaded liposomal formulations targeting breast cancer: Influence of preparative method on liposomes characteristics and in vitro toxicity. Int. J. Pharm., 2020, 590, 119926.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119926] [PMID: 33010397]
[37]
Zhang, H.; Tang, W.L.; Kheirolomoom, A.; Fite, B.Z.; Wu, B.; Lau, K.; Baikoghli, M.; Raie, M.N.; Tumbale, S.K.; Foiret, J.; Ingham, E.S.; Mahakian, L.M.; Tam, S.M.; Cheng, R.H.; Borowsky, A.D.; Ferrara, K.W. Development of thermosensitive resiquimod-loaded liposomes for enhanced cancer immunotherapy. J. Control. Release, 2021, 330, 1080-1094.
[http://dx.doi.org/10.1016/j.jconrel.2020.11.013] [PMID: 33189786]
[38]
Okamoto, Y.; Taguchi, K.; Imoto, S.; Giam Chuang, V.T.; Yamasaki, K.; Otagiri, M. Cell uptake and anti-tumor effect of liposomes containing encapsulated paclitaxel-bound albumin against breast cancer cells in 2D and 3D cultured models. J. Drug Deliv. Sci. Technol., 2020, 55, 101381.
[http://dx.doi.org/10.1016/j.jddst.2019.101381]
[39]
Ağardan, N.B.M.; Değim, Z.; Altıntaş, L.; Topal, T. Tamoxifen/raloxifene loaded liposomes for oral treatment of breast cancer. J. Drug Deliv. Sci. Technol., 2020, 57, 101612.
[http://dx.doi.org/10.1016/j.jddst.2020.101612]
[40]
Swami, R.; Kumar, Y.; Chaudhari, D.; Katiyar, S.S.; Kuche, K.; Katare, P.B.; Banerjee, S.K.; Jain, S. pH sensitive liposomes assisted specific and improved breast cancer therapy using co-delivery of SIRT1 shRNA and Docetaxel. Mater. Sci. Eng. C, 2021, 120, 111664.
[http://dx.doi.org/10.1016/j.msec.2020.111664] [PMID: 33545830]
[41]
Ghosh, S.; Lalani, R.; Maiti, K.; Banerjee, S.; Bhatt, H.; Bobde, Y.S.; Patel, V.; Biswas, S.; Bhowmick, S.; Misra, A. Synergistic co-loading of vincristine improved chemotherapeutic potential of pegylated liposomal doxorubicin against triple negative breast cancer and non-small cell lung cancer. Nanomedicine, 2021, 31, 102320.
[http://dx.doi.org/10.1016/j.nano.2020.102320] [PMID: 33075540]
[42]
Sharma, S.; Kanugo, A.; Gaikwad, J. Design and development of solid lipid nanoparticles of tazarotene for the treatment of psoriasis and acne: A quality by design approach. Mater. Technol., 2021.
[http://dx.doi.org/10.1080/10667857.2021.1873637]
[43]
Mukherjee, S.; Ray, S.; Thakur, R.S. Solid lipid nanoparticles: A modern formulation approach in drug delivery system. Indian J. Pharm. Sci., 2009, 349-358.
[http://dx.doi.org/10.4103/0250-474X.57282]
[44]
Pindiprolu, S.K.S.S.; Krishnamurthy, P.T.; Dev, C.; Chintamaneni, P.K. DR5 antibody conjugated lipid-based nanocarriers of gamma-secretase inhibitor for the treatment of triple negative breast cancer. Chem. Phys. Lipids, 2021, 235, 105033.
[http://dx.doi.org/10.1016/j.chemphyslip.2020.105033] [PMID: 33385372]
[45]
Eskiler, G.G.; Cecener, G.; Dikmen, G.; Egeli, U.; Tunca, B. Talazoparib loaded solid lipid nanoparticles: Preparation, characterization and evaluation of the therapeutic efficacy in vitro. Curr. Drug Deliv., 2019, 16(6), 511-529.
[http://dx.doi.org/10.2174/1567201816666190515105532] [PMID: 31113350]
[46]
Fathy Abd-Ellatef, G-E.; Gazzano, E.; Chirio, D.; Hamed, A.R.; Belisario, D.C.; Zuddas, C.; Peira, E.; Rolando, B.; Kopecka, J.; Assem Said Marie, M.; Sapino, S.; Ramadan Fahmy, S.; Gallarate, M.; Abdel-Hamid, A.Z.; Riganti, C. Curcumin-loaded solid lipid nanoparticles bypass p-glycoprotein mediated doxorubicin resistance in triple negative breast cancer cells. Pharmaceutics, 2020, 12(2), 96.
[http://dx.doi.org/10.3390/pharmaceutics12020096] [PMID: 31991669]
[47]
Pindiprolu, S.K.S.S.; Chintamaneni, P.K.; Krishnamurthy, P.T.; Ratna Sree Ganapathineedi, K. Formulation-optimization of solid lipid nanocarrier system of STAT3 inhibitor to improve its activity in triple negative breast cancer cells. Drug Dev. Ind. Pharm., 2019, 45(2), 304-313.
[http://dx.doi.org/10.1080/03639045.2018.1539496] [PMID: 30348020]
[48]
Zheng, G.; Zheng, M.; Yang, B.; Fu, H.; Li, Y. Improving breast cancer therapy using doxorubicin loaded solid lipid nanoparticles: Synthesis of a novel arginine-glycine-aspartic tripeptide conjugated, pH sensitive lipid and evaluation of the nanomedicine in vitro and in vivo. Biomed. Pharmacother., 2019, 116, 109006.
[http://dx.doi.org/10.1016/j.biopha.2019.109006] [PMID: 31152925]
[49]
Andey, T.; Sudhakar, G.; Marepally, S.; Patel, A.; Banerjee, R.; Singh, M. Lipid nanocarriers of a lipid-conjugated estrogenic derivative inhibit tumor growth and enhance cisplatin activity against triple-negative breast cancer: pharmacokinetic and efficacy evaluation. Mol. Pharm., 2015, 12(4), 1105-1120.
[http://dx.doi.org/10.1021/mp5008629] [PMID: 25661724]
[50]
Salvi, V. R.; Pawar, P. Nanostructured lipid carriers (nlc) system: a novel drug targeting carrier. J. Drug Del. Sci. Technol., 2019, 255-267.
[http://dx.doi.org/10.1016/j.jddst.2019.02.017]
[51]
Khosa, A.; Reddi, S.; Saha, R.N. Nanostructured lipid carriers for site-specific drug delivery. Biomed. Pharmacother., 2018, 598-613.
[http://dx.doi.org/10.1016/j.biopha.2018.04.055]
[52]
Borges, G.S.M.; Silva, J.O.; Fernandes, R.S.; de Souza, Â.M.; Cassali, G.D.; Yoshida, M.I.; Leite, E.A.; de Barros, A.L.B.; Ferreira, L.A.M. Sclareol is a potent enhancer of doxorubicin: Evaluation of the free combination and co-loaded nanostructured lipid carriers against breast cancer. Life Sci., 2019, 232, 116678.
[http://dx.doi.org/10.1016/j.lfs.2019.116678] [PMID: 31344429]
[53]
Pedro, I.D.R.; Almeida, O.P.; Martins, H.R.; Lemos, J. de A.; Branco de Barros, A.L.; Leite, E.A.; Carneiro, G. Optimization and in vitro/in vivo performance of paclitaxel-loaded nanostructured lipid carriers for breast cancer treatment. J. Drug Deliv. Sci. Technol., 2019, 54, 101370.
[http://dx.doi.org/10.1016/j.jddst.2019.101370]
[54]
Lanna, E.G.; Siqueira, R.P.; Machado, M.G.C.; de Souza, A.; Trindade, I.C.; Branquinho, R.T.; Mosqueira, V.C.F. Lipid-based nanocarriers co-loaded with artemether and triglycerides of docosahexaenoic acid: Effects on human breast cancer cells. Biomed. Pharmacother., 2021, 134, 111114.
[http://dx.doi.org/10.1016/j.biopha.2020.111114] [PMID: 33352447]
[55]
Khan, A.W.; Kotta, S.; Ansari, S.H.; Sharma, R.K.; Ali, J. Self-nanoemulsifying drug delivery system (SNEDDS) of the poorly water-soluble grapefruit flavonoid Naringenin: Design, characterization, in vitro and in vivo evaluation. Drug Deliv., 2015, 22(4), 552-561.
[http://dx.doi.org/10.3109/10717544.2013.878003] [PMID: 24512268]
[56]
Date, A.A.; Desai, N.; Dixit, R.; Nagarsenker, M. Self-nanoemulsifying drug delivery systems: Formulation insights, applications and advances. Nanomedicine, 2010, 1595-1616.
[http://dx.doi.org/10.2217/nnm.10.126]
[57]
Shahba, A.A.W.; Mohsin, K.; Alanazi, F.K. Novel self-nanoemulsifying drug delivery systems (SNEDDS) for oral delivery of cinnarizine: Design, optimization, and in-vitro assessment. AAPS PharmSciTech, 2012, 13(3), 967-977.
[http://dx.doi.org/10.1208/s12249-012-9821-4] [PMID: 22760454]
[58]
Tripathi, S.; Kushwah, V.; Thanki, K.; Jain, S. Triple antioxidant SNEDDS formulation with enhanced oral bioavailability: Implication of chemoprevention of breast cancer. Nanomedicine, 2016, 12(6), 1431-1443.
[http://dx.doi.org/10.1016/j.nano.2016.03.003] [PMID: 27033463]
[59]
Batool, A.; Arshad, R.; Razzaq, S.; Nousheen, K.; Kiani, M.H.; Shahnaz, G. Formulation and evaluation of hyaluronic acid-based mucoadhesive self nanoemulsifying drug delivery system (SNEDDS) of tamoxifen for targeting breast cancer. Int. J. Biol. Macromol., 2020, 152, 503-515.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.02.275] [PMID: 32112841]
[60]
Aliabadi, H.M.; Lavasanifar, A. Polymeric micelles for drug delivery; Exp. Opinion Drug Del, 2006, pp. 139-162.
[http://dx.doi.org/10.1517/17425247.3.1.139]
[61]
Cho, H.; Lai, T.C.; Tomoda, K.; Kwon, G.S. Polymeric micelles for multi-drug delivery in cancer. AAPS PharmSciTech, 2015, 16(1), 10-20.
[http://dx.doi.org/10.1208/s12249-014-0251-3] [PMID: 25501872]
[62]
Kulthe, S.S.; Choudhari, Y.M.; Inamdar, N.N.; Mourya, V. Polymeric micelles: Authoritative aspects for drug delivery. Des. Monomers Polym., 2012, 15(5), 465-521.
[http://dx.doi.org/10.1080/1385772X.2012.688328]
[63]
Kutty, R.V.; Feng, S.S. Cetuximab conjugated vitamin E TPGS micelles for targeted delivery of docetaxel for treatment of triple negative breast cancers. Biomaterials, 2013, 34(38), 10160-10171.
[http://dx.doi.org/10.1016/j.biomaterials.2013.09.043] [PMID: 24090836]
[64]
Zhao, D.; Wu, J.; Li, C.; Zhang, H.; Li, Z.; Luan, Y. Precise ratiometric loading of PTX and DOX based on redox-sensitive mixed micelles for cancer therapy. Colloids Surf. B Biointerfaces, 2017, 155, 51-60.
[http://dx.doi.org/10.1016/j.colsurfb.2017.03.056] [PMID: 28407531]
[65]
Sabra, S.A.; Sheweita, S.A.; Haroun, M.; Ragab, D.; Eldemellawy, M.A.; Xia, Y.; Goodale, D.; Allan, A.L.; Elzoghby, A.O.; Rohani, S. Magnetically guided self-assembled protein micelles for enhanced delivery of dasatinib to human triple-negative breast cancer cells. J. Pharm. Sci., 2019, 108(5), 1713-1725.
[http://dx.doi.org/10.1016/j.xphs.2018.11.044] [PMID: 30528944]
[66]
Yang, Y.; Long, Y.; Wang, Y.; Ren, K.; Li, M.; Zhang, Z.; Xiang, B.; He, Q. Enhanced anti-tumor and anti-metastasis therapy for triple negative breast cancer by CD44 receptor-targeted hybrid self-delivery micelles. Int. J. Pharm., 2020, 577, 119085.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119085] [PMID: 32001290]
[67]
Su, S.; Ding, Y.; Li, Y.; Wu, Y.; Nie, G. Integration of photothermal therapy and synergistic chemotherapy by a porphyrin self-assembled micelle confers chemosensitivity in triple-negative breast cancer. Biomaterials, 2016, 80, 169-178.
[http://dx.doi.org/10.1016/j.biomaterials.2015.11.058] [PMID: 26708642]
[68]
Cheng, R.; Meng, F.; Deng, C.; Klok, H.A.; Zhong, Z. Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery. Biomaterials, 2013, 3647-3657.
[http://dx.doi.org/10.1016/j.biomaterials.2013.01.084]
[69]
Shashni, B.; Nishikawa, Y.; Nagasaki, Y. Management of tumor growth and angiogenesis in triple-negative breast cancer by using redox nanoparticles. Biomaterials, 2021, 269, 120645.
[http://dx.doi.org/10.1016/j.biomaterials.2020.120645] [PMID: 33453633]
[70]
Basu, A.; Upadhyay, P.; Ghosh, A.; Bose, A.; Gupta, P.; Chattopadhyay, S.; Chattopadhyay, D.; Adhikary, A. Hyaluronic acid engrafted metformin loaded graphene oxide nanoparticle as CD44 targeted anti-cancer therapy for triple negative breast cancer. Biochim. Biophys. Acta, Gen. Subj., 2021, 1865(3), 129841.
[http://dx.doi.org/10.1016/j.bbagen.2020.129841] [PMID: 33412224]
[71]
Amirsaadat, S.; Jafari-Gharabaghlou, D.; Alijani, S.; Mousazadeh, H.; Dadashpour, M.; Zarghami, N. Metformin and silibinin co-loaded plga-peg nanoparticles for effective combination therapy against human breast cancer cells. J. Drug Deliv. Sci. Technol., 2020, 61, 102107.
[http://dx.doi.org/10.1016/j.jddst.2020.102107]
[72]
Mohebian, Z.; Babazadeh, M.; Zarghami, N.; Mousazadeh, H. Anticancer efficiency of curcumin-loaded mesoporous silica nanoparticles/nanofiber composites for potential postsurgical breast cancer treatment. J. Drug Deliv. Sci. Technol., 2020, 61, 102170.
[http://dx.doi.org/10.1016/j.jddst.2020.102170]
[73]
Prabhuraj, R.S.; Bomb, K.; Srivastava, R.; Bandyopadhyaya, R. Selection of superior targeting ligands using pegylated plga nanoparticles for delivery of curcumin in the treatment of triple-negative breast cancer cells. J. Drug Deliv. Sci. Technol., 2020, 57, 101722.
[http://dx.doi.org/10.1016/j.jddst.2020.101722]
[74]
Bhattacharya, S.; Ghosh, A.; Maiti, S.; Ahir, M.; Debnath, G.H.; Gupta, P.; Bhattacharjee, M.; Ghosh, S.; Chattopadhyay, S.; Mukherjee, P.; Adhikary, A. Delivery of thymoquinone through hyaluronic acid-decorated mixed Pluronic® nanoparticles to attenuate angiogenesis and metastasis of triple-negative breast cancer. J. Control. Release, 2020, 322, 357-374.
[http://dx.doi.org/10.1016/j.jconrel.2020.03.033] [PMID: 32243981]
[75]
Noriega-Luna, B.; Godínez, L.A.; Rodríguez, F.J.; Rodríguez, A.; Zaldívar-Lelo De Larrea, G.; Sosa-Ferreyra, C.F.; Mercado-Curiel, R.F.; Manríquez, J.; Bustos, E. Applications of dendrimers in drug delivery agents, diagnosis, therapy, and detection. Nanomaterials, 2014, 507273.
[http://dx.doi.org/10.1155/2014/507273]
[76]
Abbasi, E.; Aval, S.F.; Akbarzadeh, A.; Milani, M.; Nasrabadi, H.T.; Joo, S.W.; Hanifehpour, Y.; Nejati-Koshki, K.; Pashaei-Asl, R. Dendrimers: Synthesis, applications, and properties. Nanoscale Res. Lett., 2014, 9(1), 247.
[http://dx.doi.org/10.1186/1556-276X-9-247] [PMID: 24994950]
[77]
Madaan, K.; Kumar, S.; Poonia, N.; Lather, V.; Pandita, D. Dendrimers in drug delivery and targeting: Drug-dendrimer interactions and toxicity issues. J. Pharm. Bioallied Sci., 2014, 6(3), 139-150.
[http://dx.doi.org/10.4103/0975-7406.130965] [PMID: 25035633]
[78]
Torres-Pérez, S.A.; Ramos-Godínez, M. del P.; Ramón-Gallegos, E. Glycosylated one-step pamam dendrimers loaded with methotrexate for target therapy in breast cancer cells mda-mb-231. J. Drug Deliv. Sci. Technol., 2020, 58, 101769.
[http://dx.doi.org/10.1016/j.jddst.2020.101769]
[79]
Guo, X.L.; Kang, X.X.; Wang, Y.Q.; Zhang, X.J.; Li, C.J.; Liu, Y.; Du, L.B. Co-delivery of cisplatin and doxorubicin by covalently conjugating with polyamidoamine dendrimer for enhanced synergistic cancer therapy. Acta Biomater., 2019, 84, 367-377.
[http://dx.doi.org/10.1016/j.actbio.2018.12.007] [PMID: 30528609]
[80]
Jain, A.; Mahira, S.; Majoral, J.P.; Bryszewska, M.; Khan, W.; Ionov, M. Dendrimer mediated targeting of siRNA against polo-like kinase for the treatment of triple negative breast cancer. J. Biomed. Mater. Res. A, 2019, 107(9), 1933-1944.
[http://dx.doi.org/10.1002/jbm.a.36701] [PMID: 31008565]
[81]
Zhang, L.; Varma, N.R.; Gang, Z.Z.; Ewing, J.R.; Arbab, A.S.; Ali, M.M. Targeting triple negative breast cancer with a small-sized paramagnetic nanoparticle. J. Nanomed. Nanotechnol., 2016, 7(5), 404.
[http://dx.doi.org/10.4172/2157-7439.1000404] [PMID: 28018751]
[82]
Aladesuyi, O.A.; Oluwafemi, O.S. Synthesis strategies and application of ternary quantum dots — in cancer therapy. Nano-Struct. Nano-Objects., 2020, 24, 100568.
[http://dx.doi.org/10.1016/j.nanoso.2020.100568]
[83]
Dots, Q. Prospectives, toxicity, advances and applications. J. Drug Deliv. Sci. Technol., 2021, 61, 102308.
[http://dx.doi.org/10.1016/j.jddst.2020.102308]
[84]
Doxorubicin delivery to breast cancer cells with transferrin-targeted carbon quantum dots: An in vitro and in silico study. J. Drug Deliv. Sci. Technol., 2021, 62, 102342.
[http://dx.doi.org/10.1016/j.jddst.2021.102342]
[85]
Chen, H.; Wang, T.; Li, K.; He, Q.; Hou, X.; Yang, R.; Wang, B. Effects of surface modification of quantum dots on viability and migration of triple-negative breast cancer cells. J. Colloid Interface Sci., 2017, 485, 51-58.
[http://dx.doi.org/10.1016/j.jcis.2016.09.024] [PMID: 27643470]
[86]
Sarkar, P.; Ghosh, S.; Sarkar, K. Folic acid based carbon dot functionalized stearic acid-g-polyethyleneimine amphiphilic nanomicelle: Targeted drug delivery and imaging for triple negative breast cancer. Colloids Surf. B Biointerfaces, 2021, 197, 111382.
[http://dx.doi.org/10.1016/j.colsurfb.2020.111382] [PMID: 33160259]
[87]
Ghosh, S.; Ghosal, K.; Mohammad, S.A.; Sarkar, K. Dendrimer functionalized carbon quantum dot for selective detection of breast cancer and gene therapy. Chem. Eng. J., 2019, 373, 468-484.
[http://dx.doi.org/10.1016/j.cej.2019.05.023]
[88]
Monteiro, C.A.P.; Oliveira, A.D.P.R.; Silva, R.C.; Lima, R.R.M.; Souto, F.O.; Baratti, M.O.; Carvalho, H.F.; Santos, B.S.; Cabral Filho, P.E.; Fontes, A. Evaluating internalization and recycling of folate receptors in breast cancer cells using quantum dots. J. Photochem. Photobiol. B, 2020, 209, 111918.
[http://dx.doi.org/10.1016/j.jphotobiol.2020.111918] [PMID: 32531690]
[89]
Fan, J.; Liu, B.; Long, Y.; Wang, Z.; Tong, C.; Wang, W.; You, P.; Liu, X. Sequentially-targeted biomimetic nano drug system for triple-negative breast cancer ablation and lung metastasis inhibition. Acta Biomater., 2020, 113, 554-569.
[http://dx.doi.org/10.1016/j.actbio.2020.06.025] [PMID: 32569637]
[90]
Saljoughi, H.; Khakbaz, F.; Mahani, M. Synthesis of folic acid conjugated photoluminescent carbon quantum dots with ultrahigh quantum yield for targeted cancer cell fluorescence imaging. Photodiagn. Photodyn. Ther., 2020, 30, 101687.
[http://dx.doi.org/10.1016/j.pdpdt.2020.101687] [PMID: 32070730]
[91]
Kim, M.W.; Jeong, H.Y.; Kang, S.J.; Jeong, I.H.; Choi, M.J.; You, Y.M.; Im, C.S.; Song, I.H.; Lee, T.S.; Lee, J.S.; Lee, A.; Park, Y.S. Anti-EGF receptor aptamer-guided co-delivery of anti-cancer sirnas and quantum dots for theranostics of triple-negative breast cancer. Theranostics, 2019, 9(3), 837-852.
[http://dx.doi.org/10.7150/thno.30228] [PMID: 30809312]
[92]
Jain, V.; Kumar, H.; Anod, H.V.; Chand, P.; Gupta, N.V.; Dey, S.; Kesharwani, S.S. Review of nanotechnology-based approaches for breast cancer and triple-negative breast cancer J. Cont. Release, 2020, 628-647.
[http://dx.doi.org/10.1016/j.jconrel.2020.07.003]
[93]
Xiong, M.; Zhang, Q.; Hu, W.; Zhao, C.; Lv, W.; Yi, Y.; Wang, Y.; Tang, H.; Wu, M.; Wu, Y. The novel mechanisms and applications of exosomes in dermatology and cutaneous medical aesthetics. Pharmacol. Res., 2021, 166, 105490.
[http://dx.doi.org/10.1016/j.phrs.2021.105490] [PMID: 33582246]
[94]
Liu, J.; Ren, L.; Li, S.; Li, W.; Zheng, X.; Yang, Y.; Fu, W.; Yi, J.; Wang, J.; Du, G. The biology, function, and applications of exosomes in cancer. Acta Pharm. Sin. B, 2021, 11(9), 2783-2797.
[http://dx.doi.org/10.1016/j.apsb.2021.01.001] [PMID: 34589397]
[95]
Yang, P.; Cao, X.; Cai, H.; Feng, P.; Chen, X.; Zhu, Y.; Yang, Y.; An, W.; Yang, Y.; Jie, J. The exosomes derived from CAR-T cell efficiently target mesothelin and reduce triple-negative breast cancer growth. Cell. Immunol., 2021, 360, 104262.
[http://dx.doi.org/10.1016/j.cellimm.2020.104262] [PMID: 33373818]
[96]
Zhao, L.; Gu, C.; Gan, Y.; Shao, L.; Chen, H.; Zhu, H. Exosome-mediated siRNA delivery to suppress postoperative breast cancer metastasis. J. Control. Release, 2020, 318, 1-15.
[http://dx.doi.org/10.1016/j.jconrel.2019.12.005] [PMID: 31830541]
[97]
Yu, M.; Gai, C.; Li, Z.; Ding, D.; Zheng, J.; Zhang, W.; Lv, S.; Li, W. Targeted exosome-encapsulated erastin induced ferroptosis in triple negative breast cancer cells. Cancer Sci., 2019, 110(10), 3173-3182.
[http://dx.doi.org/10.1111/cas.14181] [PMID: 31464035]
[98]
Nagayama, A.; Vidula, N.; Ellisen, L.; Bardia, A. Novel antibody-drug conjugates for triple negative breast cancer. Ther. Adv. Med. Oncol., 2020, 12, 1758835920915980.
[http://dx.doi.org/10.1177/1758835920915980] [PMID: 32426047]
[99]
Khongorzul, P.; Ling, C.J.; Khan, F.U.; Ihsan, A.U.; Zhang, J. Antibody-drug conjugates: A comprehensive review. Mol. Cancer Res., 2020, 3-19.
[http://dx.doi.org/10.1158/1541-7786.MCR-19-0582]
[100]
Islam, S.S.; Uddin, M.; Noman, A.S.M.; Akter, H.; Dity, N.J.; Basiruzzman, M.; Uddin, F.; Ahsan, J.; Annoor, S.; Alaiya, A.A.; Al-Alwan, M.; Yeger, H.; Farhat, W.A. Antibody-drug conjugate T-DM1 treatment for HER2+ breast cancer induces ROR1 and confers resistance through activation of Hippo transcriptional coactivator YAP1. EBioMedicine, 2019, 43, 211-224.
[http://dx.doi.org/10.1016/j.ebiom.2019.04.061] [PMID: 31085100]
[101]
Yamaguchi, A.; Anami, Y.; Ha, S.Y.Y.; Roeder, T.J.; Xiong, W.; Lee, J.; Ueno, N.T.; Zhang, N.; An, Z.; Tsuchikama, K. Chemical generation of small molecule-based bispecific antibody-drug conjugates for broadening the target scope. Bioorg. Med. Chem., 2021, 32, 116013.
[http://dx.doi.org/10.1016/j.bmc.2021.116013] [PMID: 33482584]
[102]
M-Rabet,M.; Cabaud, O.; Josselin, E.; Finetti, P.; Castellano, R.; Farina, A.; Agavnian-Couquiaud, E.; Saviane, G.; Collette, Y.; Viens, P.; Gonçalves, A.; Ginestier, C.; Charafe-Jauffret, E.; Birnbaum, D.; Olive, D.; Bertucci, F.; Lopez, M. Nectin-4: A new prognostic biomarker for efficient therapeutic targeting of primary and metastatic triple-negative breast cancer. Ann. Oncol., 2017, 28(4), 769-776.
[http://dx.doi.org/10.1093/annonc/mdw678] [PMID: 27998973]
[103]
Li, C.W.; Lim, S.O.; Chung, E.M.; Kim, Y.S.; Park, A.H.; Yao, J.; Cha, J.H.; Xia, W.; Chan, L.C.; Kim, T.; Chang, S.S.; Lee, H.H.; Chou, C.K.; Liu, Y.L.; Yeh, H.C.; Perillo, E.P.; Dunn, A.K.; Kuo, C.W.; Khoo, K.H.; Hsu, J.L.; Wu, Y.; Hsu, J.M.; Yamaguchi, H.; Huang, T.H.; Sahin, A.A.; Hortobagyi, G.N.; Yoo, S.S.; Hung, M.C. Eradication of triple-negative breast cancer cells by targeting glycosylated PD-L1. Cancer Cell, 2018, 33(2), 187-201.e10.
[http://dx.doi.org/10.1016/j.ccell.2018.01.009] [PMID: 29438695]
[104]
Kalinsky, K.; Diamond, J.R.; Vahdat, L.T.; Tolaney, S.M.; Juric, D.; O’Shaughnessy, J.; Moroose, R.L.; Mayer, I.A.; Abramson, V.G.; Goldenberg, D.M.; Sharkey, R.M.; Maliakal, P.; Hong, Q.; Goswami, T.; Wegener, W.A.; Bardia, A. Sacituzumab govitecan in previously treated hormone receptor-positive/HER2-negative metastatic breast cancer: final results from a phase I/II, single-arm, basket trial. Ann. Oncol., 2020, 31(12), 1709-1718.
[http://dx.doi.org/10.1016/j.annonc.2020.09.004] [PMID: 32946924]
[105]
FDA approves new therapy for triple negative breast cancer that has spread, not responded to other treatments | FDA Available from:. https://www.fda.gov/news-events/press-announcements/fda-approves-new-therapy-triple-negative-breast-cancer-has-spread-not-responded-other-treatments (Accessed on March 19, 2021).
[106]
Cooper, B.M.; Iegre, J.; O’ Donovan, D.H.; Ölwegård Halvarsson, M.; Spring, D.R. Peptides as a platform for targeted therapeutics for cancer: Peptide-drug conjugates (PDCs). Chem. Soc. Rev., 2021, 50(3), 1480-1494.
[http://dx.doi.org/10.1039/D0CS00556H] [PMID: 33346298]
[107]
Wang, Y.; Cheetham, A.G.; Angacian, G.; Su, H.; Xie, L.; Cui, H. Peptide–drug conjugates as effective prodrug strategies for targeted delivery. Adv. Drug Deliv. Rev., 2017, 112-126.
[http://dx.doi.org/10.1016/j.addr.2016.06.015]
[108]
EPTIDES & ANTIBODIES - Peptides in Antibody & Peptide Drug Conjugates Available from. https://drug-dev.com/peptides-antibodies-peptides-in-antibody-peptide-drug-conjugates/ Accessed on March 19, 2021).
[109]
Thakur, V.; Kutty, R.V. Recent advances in nanotheranostics for triple negative breast cancer treatment. J. Exp. Clin. Cancer Res., 2019, 38(1), 430.
[http://dx.doi.org/10.1186/s13046-019-1443-1] [PMID: 31661003]
[110]
Hoppenz, P.; Els-Heindl, S.; Beck-Sickinger, A.G. Peptide-drug conjugates and their targets in advanced cancer therapies. Front Chem., 2020, 571.
[http://dx.doi.org/10.3389/fchem.2020.00571]
[111]
Marsolais, C.; Charfi, C.; Demeule, M.; Currie, J-C.; Larocque, A.; Zgheib, A.; Duquette, N.; Béliveau, R.; Annabi, B. Abstract 2910: A novel sortilin-targeted docetaxel peptide conjugate (th1902), for the treatment of sortilin-positive (sort1+) triple-negative breast cancer. In: Cancer Research; American; Association for Cancer Research (AACR),. , 2020; pp. (80)2910-2910.
[http://dx.doi.org/10.1158/1538-7445.AM2020-2910]
[112]
Ziaei, E.; Saghaeidehkordi, A.; Dill, C.; Maslennikov, I.; Chen, S.; Kaur, K. Targeting triple negative breast cancer cells with novel cytotoxic peptide-doxorubicin conjugates. Bioconjug. Chem., 2019, 30(12), 3098-3106.
[http://dx.doi.org/10.1021/acs.bioconjchem.9b00755] [PMID: 31715102]
[113]
Li, S.; Zhao, H.; Chang, X.; Wang, J.; Zhao, E.; Yin, Z.; Mao, X.; Deng, S.; Hao, T.; Wang, H.; Yang, Y. Synthesis, in vitro stability, and antiproliferative effect of d-cysteine modified GnRH-doxorubicin conjugates. J. Pept. Sci., 2019, 25(1), e3135.
[http://dx.doi.org/10.1002/psc.3135] [PMID: 30467919]
[114]
Sheikhpour, M.; Golbabaie, A.; Kasaeian, A. Carbon nanotubes: A review of novel strategies for cancer diagnosis and treatment. Mater. Sci. Eng. C, 2017, 1289-1304.
[http://dx.doi.org/10.1016/j.msec.2017.02.132]
[115]
Ravi Kiran, A.V.V.V.; Kusuma Kumari, G.; Krishnamurthy, P.T. Carbon nanotubes in drug delivery: Focus on anticancer therapies. J. Drug Deliv. Sci. Technol., 2020, 101892.
[http://dx.doi.org/10.1016/j.jddst.2020.101892]
[116]
Anzar, N.; Hasan, R.; Tyagi, M.; Yadav, N.; Narang, J. Carbon canotube - A review on synthesis, properties and plethora of applications in the field of biomedical science. Sensors Int., 2020, 1, 100003.
[http://dx.doi.org/10.1016/j.sintl.2020.100003]
[117]
Wailes, E.M.; Levi-Polyachenko, N.H. Multi-walled nanotubes for cellular reprogramming of cancer. Nanomedicine, 2016, 12(4), 955-963.
[http://dx.doi.org/10.1016/j.nano.2015.12.363] [PMID: 26733259]
[118]
Badea, M.A.; Prodana, M.; Dinischiotu, A.; Crihana, C.; Ionita, D.; Balas, M. Cisplatin loaded multiwalled carbon nanotubes induce resistance in triple negative breast cancer cells. Pharmaceutics, 2018, 10(4), 228.
[http://dx.doi.org/10.3390/pharmaceutics10040228] [PMID: 30428555]
[119]
Singhai, N.J.; Maheshwari, R.; Ramteke, S. CD44 receptor targeted ‘smart’ multi-walled carbon nanotubes for synergistic therapy of triple-negative breast cancer. Colloid Interface Sci. Commun., 2020, 35, 100235.
[http://dx.doi.org/10.1016/j.colcom.2020.100235]
[120]
Dolatkhah, M.; Hashemzadeh, N.; Barar, J.; Adibkia, K.; Aghanejad, A.; Barzegar-Jalali, M.; Omidi, Y. Graphene-based multifunctional nanosystems for simultaneous detection and treatment of breast cancer. Colloids Surf. B Biointerfaces, 2020, 111104.
[http://dx.doi.org/10.1016/j.colsurfb.2020.111104]
[121]
Alemi, F.; Zarezadeh, R.; Sadigh, A.R.; Hamishehkar, H.; Rahimi, M.; Majidinia, M.; Asemi, Z.; Ebrahimi-Kalan, A.; Yousefi, B.; Rashtchizadeh, N. Graphene oxide and reduced graphene oxide: Efficient cargo platforms for cancer theranostics. J. Drug Deliv. Sci. Technol., 2020, 101974.
[http://dx.doi.org/10.1016/j.jddst.2020.101974]
[122]
Tao, Y.; Auguste, D.T. Array-based identification of triple-negative breast cancer cells using fluorescent nanodot-graphene oxide complexes. Biosens. Bioelectron., 2016, 81, 431-437.
[http://dx.doi.org/10.1016/j.bios.2016.03.033] [PMID: 27003608]
[123]
Ghamkhari, A.; Abbaspour-Ravasjani, S.; Talebi, M.; Hamishehkar, H.; Hamblin, M.R. Development of a graphene oxide-poly lactide nanocomposite as a smart drug delivery system. Int. J. Biol. Macromol., 2021, 169, 521-531.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.12.084] [PMID: 33340628]
[124]
Mauro, N.; Scialabba, C.; Agnello, S.; Cavallaro, G.; Giammona, G. Folic acid-functionalized graphene oxide nanosheets via plasma etching as a platform to combine NIR anticancer phototherapy and targeted drug delivery. Mater. Sci. Eng. C, 2020, 107, 110201.
[http://dx.doi.org/10.1016/j.msec.2019.110201] [PMID: 31761243]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy