[1]
Fuchs, F.D.; Whelton, P.K. High blood pressure and cardiovascular disease. Hypertension, 2020, 75(2), 285-292.
[2]
Kario, K. management of hypertension in the digital era: small wearable monitoring devices for remote blood pressure monitoring. Hypertension, 2020, 76(3), 640-650.
[3]
Alshami, A.; Romero, C.; Avila, A.; Varon, J. Management of hypertensive crises in the elderly. J. Geriatr. Cardiol., 2018, 15(7), 504-512.
[4]
Chow, C.K.; Gupta, R. Blood pressure control: a challenge to global health systems. Lancet, 2019, 394, 613-615.
[7]
Malachias, M.V.B.; Gomes, M.A.M.; Nobre, F.; Alessi, A.; Feitosa, A.D.; Coelho, E.B. 7th Brazilian Guideline of Arterial Hypertension: Chapter 2 - Diagnosis and Classification. Arq. Bras. Cardiol., 2016, 107(3), 7-13.
[8]
Prieto, M.C.; Gonzalez, A.A.; Visniauskas, B.; Navar, L.G. The evolving complexity of the collecting duct renin–angiotensin system in hypertension. Nat. Rev. Nephrol., 2021, 17(7), 481-492.
[10]
Singh, K.D. Karnik, SS Angiotensin Type 1 Receptor Blockers in Heart Failure. Curr. Drug Targets, 2019, 21(2), 125-131.
[11]
Malachias, M.V.B.; Paulo César Veiga Jardim, P.C.V.; Almeida, F.A.; Lima Júnior, E.; Feitosa, G.S. Pharmacological treatment. Arq. Bras. Cardiol., 2016, 107(3), 35-43.
[13]
Lau, J.; Rousseau, J.; Kwon, D.; Bénard, F.; Lin, K.S. A systematic review of molecular imaging agents targeting bradykinin B1 and B2 receptors. Pharmaceuticals, 2020, 13(8), 1-20.
[14]
Erdös, E.G.; Tan, F.; Skidgel, R.A. Angiotensin I-converting enzyme inhibitors are allosteric enhancers of kinin B1 and B2 receptor function. Hypertension, 2010, 55(2), 214-220.
[20]
Luo, K.; Yang, P.; Xu, G. Risk of bradykinin B2 receptor -58T/C gene polymorphism on hypertension: A meta-analysis. Nephrology, 2016, 21(8), 655-662.
[23]
Nikkari, S.T.; Määttä, K.M.; Kunnas, T.A. Functional inducible nitric oxide synthase gene variants associate with hypertension a case-control study in a finnish population-the TAMRISK study. Med. (United States), 2015, 94(46), e1958.
[29]
Oliveira-Paula, G.H.; Lacchini, R.; Luizon, M.R. Endothelial nitric oxide synthase tagSNPs influence the effects of enalapril in essential hypertension. Nitric Oxide -. Biol. Chem., 2016, 55-56, 62-69.
[33]
Liu, Z.; Khalil, R.A. Evolving mechanisms of vascular smooth muscle contraction highlight key targets in vascular disease. Biochem. Pharmacol., 2018, 153, 91-122.
[34]
Ringvold, H.C.; Khalil, R.A. Protein Kinase C as regulator of vascular smooth muscle function and potential target in vascular disorders. Adv. Pharmacol., 2017, 203-301.
[40]
Wang, Y.; Huang, Q.; Liu, J. Vascular endothelial growth factor A polymorphisms are associated with increased risk of coronary heart disease: A meta-analysis. Oncotarget, 2017, 8(18), 30539-30551.
[51]
Martinerie, L.; Munier, M.; Le Menuet, D.; Meduri, G.; Viengchareun, S.; Lombès, M. The mineralocorticoid signaling pathway throughout development: Expression, regulation and pathophysiological implications. Biochimie, 2013, 95(2), 148-157.
[73]
Xiao, Q.; Zhou, Y.; Lauschke, V.M. Impact of variants in ATP-binding cassette transporters on breast cancer treatment. Pharmacogenomics, 2020, 21(18), 1299-1310.
[75]
Kimchi-Sarfaty, C.; Oh, J.M.; Kim, I.W.A. “silent” polymorphism in the MDR1 gene changes substrate specificity. Science, 2007, 315(5811), 525-528.
[76]
Genvigir, F.D.V.; Cerda, A.; Hirata, T.D.C.; Hirata, M.H.; Hirata, R.D.C. Mycophenolic acid pharmacogenomics in kidney transplantation. J. Transl. Genet. Genomics, 2020, 4, 320-355.
[77]
Lacchini, R.; Figueiredo, V.N.; Demacq, C. MDR-1 C3435T polymorphism may affect blood pressure in resistant hypertensive patients independently of its effects on aldosterone release. JRAAS -. J. Renin Angiotensin Aldosterone Syst., 2014, 15(2), 170-176.
[80]
Malachias, M.V.B.; de Figueiredo, C.E.P.; Sass, N.; Antonello, I.C.; Torloni, M.R.; Bortolotto, M.R de FL. Arterial hypertension in pregnancy. Arq. Bras. Cardiol., 2016, 107(3), 49-52.
[81]
Luizon, M.R.; Palei, A.C.; Cavalli, R.C.; Sandrim, V.C. Pharmacogenetics in the treatment of preclampsia: Current findings, challenges and perspectives. Pharmacogenomics, 2017, 18(6), 571-583.
[83]
Melchiorre, K.; Giorgione, V.; Thilaganathan, B. The placenta and preeclampsia: villain or victim? Am. J. Obstet. Gynecol., 2021, S0002-9378(20), 31198-31204.
[95]
Andreucci, M.; Provenzano, M.; Faga, T. Aortic aneurysms, chronic kidney disease and metalloproteinases. Biomolecules, 2021, 11(2), 1-13.
[96]
Masciantonio, M.G.; Lee, C.K.S.; Arpino, V.; Mehta, S.; Gill, S.E. The balance between metalloproteinases and timps: critical regulator of microvascular endothelial cell function in health and disease. Prog. Mol. Biol. Transl. Sci., 2017, 147, 101-131.
[98]
Dakroub, A.; Nasser, S.A.; Kobeissy, F. Visfatin: An emerging adipocytokine bridging the gap in the evolution of cardiovascular diseases. J. Cell. Physiol., 2021, 236(9), 6282-6296.
[105]
Malfará, B.N.; Benzi, J.R de L. ABCG2 c.421C>A polymorphism alters nifedipine transport to breast milk in hypertensive breastfeeding women. Reprod. Toxicol., 2019, 85, 1-5.
[106]
Vardanyan, R.; Hruby, V. Antihypertensive drugs. In: Synthesis of Best-Seller Drugs; , 2016; pp. 329-356.
[107]
Suarez-Kurtz, G.; Paula, D.P.; Struchiner, C.J. Pharmacogenomic implications of population admixture: Brazil as a model case. Pharmacogenomics, 2014, 15(2), 209-219.
[108]
Suarez-Kurtz, G.; Parra, E.J. Population diversity in pharmacogenetics: a latin American perspective. Adv. Pharmacol., 2018, 83, 133-154.
[110]
Cunningham, P.N.; Chapman, A.B. The future of pharmacogenetics in the treatment of hypertension. Pharmacogenomics, 2019, 20(3), 129-132.