Generic placeholder image

Current Bioinformatics

Editor-in-Chief

ISSN (Print): 1574-8936
ISSN (Online): 2212-392X

Research Article

Integrated Bioinformatics and Machine Learning Algorithms Analyses Highlight Related Pathways and Genes Associated with Alzheimer's Disease

Author(s): Hui Zhang , Qidong Liu, Xiaoru Sun, Yaru Xu, Yiling Fang, Silu Cao, Bing Niu* and Cheng Li*

Volume 17, Issue 3, 2022

Published on: 04 February, 2022

Page: [284 - 295] Pages: 12

DOI: 10.2174/1574893617666211220154326

Price: $65

Abstract

Background: The pathophysiology of Alzheimer's Disease (AD) is still not fully studied.

Objective: This study aimed to explore the differently expressed key genes in AD and build a predictive model of diagnosis and treatment.

Methods: Gene expression data of the entorhinal cortex of AD, asymptomatic AD, and control samples from the GEO database were analyzed to explore the relevant pathways and key genes in the progression of AD. Differentially expressed genes between AD and the other two groups in the module were selected to identify biological mechanisms in AD through KEGG and PPI network analysis in Metascape. Furthermore, genes with a high connectivity degree by PPI network analysis were selected to build a predictive model using different machine learning algorithms. Besides, model performance was tested with five-fold cross-validation to select the best fitting model.

Results: A total of 20 co-expression gene clusters were identified after the network was constructed. Module 1 (in black) and module 2 (in royal blue) were most positively and negatively correlated with AD, respectively. Total 565 genes in module 1 and 215 genes in module 2, respectively, overlapped in two differentially expressed genes lists. They were enriched in the G protein-coupled receptor signaling pathway, immune-related processes, and so on. 11 genes were screened by using lasso logistic regression, and they were considered to play an important role in predicting AD samples. The model built by the support vector machine algorithm with 11 genes showed the best performance.

Conclusion: This result shed light on the diagnosis and treatment of AD.

Keywords: Alzheimer’s disease, entorhinal cortex, machine learning, bioinformatics, expressed key genes, G protein-coupled receptor.

Graphical Abstract
[1]
Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT. Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med 2011; 1(1): a006189-9.
[http://dx.doi.org/10.1101/cshperspect.a006189] [PMID: 22229116]
[2]
Mosconi L, Berti V, Quinn C, et al. Sex differences in Alzheimer risk: Brain imaging of endocrine vs. chronologic aging. Neurology 2017; 89(13): 1382-90.
[http://dx.doi.org/10.1212/WNL.0000000000004425] [PMID: 28855400]
[3]
Ashford JW. APOE genotype effects on Alzheimer’s disease onset and epidemiology. J Mol Neurosci 2004; 23(3): 157-65.
[http://dx.doi.org/10.1385/JMN:23:3:157] [PMID: 15181244]
[4]
Khachaturian ZS. Alzheimer’s association. 2014 Alzheimer’s disease facts and figures. Alzheimers Dement 2010; 10(2): e47-92.
[PMID: 24818261]
[5]
Prince M, Bryce R, Albanese E, Wimo A, Ribeiro W, Ferri CP. The global prevalence of dementia: A systematic review and metaanalysis. Alzheimers Dement 2013; 9(1): 63-75.e2.
[http://dx.doi.org/10.1016/j.jalz.2012.11.007] [PMID: 23305823]
[6]
Guerreiro RJ, Gustafson DR, Hardy J. The genetic architecture of Alzheimer’s disease: Beyond APP, PSENs and APOE. Neurobiol Aging 2012; 33(3): 437-56.
[http://dx.doi.org/10.1016/j.neurobiolaging.2010.03.025] [PMID: 20594621]
[7]
Corder EH, Saunders AM, Strittmatter WJ, et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 1993; 261(5123): 921-3.
[http://dx.doi.org/10.1126/science.8346443] [PMID: 8346443]
[8]
Strittmatter WJ, Weisgraber KH, Huang DY, et al. Binding of human apolipoprotein E to synthetic amyloid beta peptide: Isoform-specific effects and implications for late-onset Alzheimer disease. Proc Natl Acad Sci USA 1993; 90(17): 8098-102.
[http://dx.doi.org/10.1073/pnas.90.17.8098] [PMID: 8367470]
[9]
Karch CM, Goate AM. Alzheimer’s disease risk genes and mechanisms of disease pathogenesis. Biol Psychiatry 2015; 77(1): 43-51.
[http://dx.doi.org/10.1016/j.biopsych.2014.05.006] [PMID: 24951455]
[10]
Chen J, Xie C, Zhao Y, Li Z, Xu P, Yao L. Gene expression analysis reveals the dysregulation of immune and metabolic pathways in Alz-heimer’s disease. Oncotarget 2016; 7(45): 72469-74.
[http://dx.doi.org/10.18632/oncotarget.12505] [PMID: 27732949]
[11]
Shipp MA, Ross KN, Tamayo P, et al. Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nat Med 2002; 8(1): 68-74.
[http://dx.doi.org/10.1038/nm0102-68] [PMID: 11786909]
[12]
Mani S, Chen Y, Li X, et al. Machine learning for predicting the response of breast cancer to neoadjuvant chemotherapy. J Am Med Inform Assoc 2013; 20(4): 688-95.
[http://dx.doi.org/10.1136/amiajnl-2012-001332] [PMID: 23616206]
[13]
Patel H, Hodges AK, Curtis C, et al. Transcriptomic analysis of probable asymptomatic and symptomatic Alzheimer brains. Brain Behav Immun 2019; 80: 644-56.
[14]
Caselli RJ, Reiman EM. Characterizing the preclinical stages of Alzheimer’s disease and the prospect of presymptomatic intervention. J Alzheimers Dis 2013; 33(Suppl. 1): S405-16.
[15]
Allen JD, Chen M, Xie Y. Model-Based Background Correction (MBCB): R methods and GUI for illumina bead-array data. J Cancer Sci Ther 2009; 1(1): 25-7.
[http://dx.doi.org/10.4172/1948-5956.1000004] [PMID: 20502629]
[16]
Du P, Kibbe WA, Lin SM. Lumi: A pipeline for processing Illumina microarray. Bioinformatics 2008; 24(13): 1547-8.
[http://dx.doi.org/10.1093/bioinformatics/btn224] [PMID: 18467348]
[17]
Langfelder P, Horvath S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinform 2008; 9: 559.
[http://dx.doi.org/10.1186/1471-2105-9-559]
[18]
Ritchie ME, Phipson B, Wu D, et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 2015; 43(7): e47.
[http://dx.doi.org/10.1093/nar/gkv007] [PMID: 25605792]
[19]
Radoaca A. Simple venn diagrams for multisets Proceedings of the 2015 17th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC). 2016 Sept. 24-27; Timisoara, Romania.
[http://dx.doi.org/10.1109/SYNASC.2015.36]
[20]
Tripathi S, Pohl MO, Zhou Y, et al. Meta- and orthogonal integration of influenza “OMICs” data defines a role for UBR4 in virus budding. Cell Host Microbe 2015; 18(6): 723-35.
[http://dx.doi.org/10.1016/j.chom.2015.11.002] [PMID: 26651948]
[21]
Oughtred R, Stark C, Breitkreutz BJ, et al. The BioGRID interaction database: 2019 update. Nucleic Acids Res 2019; 47(D1): D529-41.
[http://dx.doi.org/10.1093/nar/gky1079] [PMID: 30476227]
[22]
Li T, Wernersson R, Hansen RB, et al. A scored human protein-protein interaction network to catalyze genomic interpretation. Nat Methods 2017; 14(1): 61-4.
[http://dx.doi.org/10.1038/nmeth.4083] [PMID: 27892958]
[23]
Bader GD, Hogue CW. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinform 2003; 4(2): 2.
[24]
Campbell C. Support Vector Machines and Other Kernel-based Learning Machines. Morgan & Claypool Publishers 2011.
[25]
Breiman L, Friedman J, Stone CJ, Olshen RA. Classification and regression treesFranklin. USA: Wadsworth International Group 1984.
[26]
Zhang M, Su Q, Lu Y, Zhao M, Niu B. Application of machine learning approaches for protein-protein interactions prediction. Med Chem 2017; 13(6): 506-14.
[http://dx.doi.org/10.2174/1573406413666170522150940] [PMID: 28530547]
[27]
Altman NS. An introduction to Kernel and nearest-neighbor nonparametric regression. Am Stat 1992; 46(3): 175-85.
[28]
Langarizadeh M, Moghbeli F. Applying Naive Bayesian networks to disease prediction: A systematic review. Acta Inform Med 2016; 24(5): 364-9.
[http://dx.doi.org/10.5455/aim.2016.24.364-369] [PMID: 28077895]
[29]
Kohavi R. A study of cross-validation and bootstrap for accuracy estimation and model selection. Proc Int Joint Conf Artif Intel 1995; 2: 1137-43.
[30]
Zheng Y, Peng H, Zhang X, Zhao Z, Gao X, Li J. Old drug repositioning and new drug discovery through similarity learning from drug-target joint feature spaces. BMC Bioinform 2019; 20(Suppl. 23): 605.
[http://dx.doi.org/10.1186/s12859-019-3238-y] [PMID: 31881829]
[31]
Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-learn: Machine learning in python. J Mach Learn Res 2011; 12: 2825-30.
[32]
Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 1991; 82(4): 239-59.
[http://dx.doi.org/10.1007/BF00308809] [PMID: 1759558]
[33]
Convit A, de Asis J, de Leon MJ, Tarshish CY, De Santi S, Rusinek H. Atrophy of the medial occipitotemporal, inferior, and middle tem-poral gyri in non-demented elderly predict decline to Alzheimer’s disease. Neurobiol Aging 2000; 21(1): 19-26.
[http://dx.doi.org/10.1016/S0197-4580(99)00107-4] [PMID: 10794844]
[34]
Heng BC, Aubel D, Fussenegger M. An overview of the diverse roles of G-protein coupled receptors (GPCRs) in the pathophysiology of various human diseases. Biotechnol Adv 2013; 31(8): 1676-94.
[http://dx.doi.org/10.1016/j.biotechadv.2013.08.017] [PMID: 23999358]
[35]
Guerram M, Zhang LY, Jiang ZZ. G-protein coupled receptors as therapeutic targets for neurodegenerative and cerebrovascular diseases. Neurochem Inter 2016; 101: 1-14.
[http://dx.doi.org/10.1016/j.neuint.2016.09.005]
[36]
Wang X, Zhou X, Li G, Zhang Y, Wu Y, Song W. Modifications and trafficking of APP in the pathogenesis of Alzheimer’s disease. Front Mol Neurosci 2017; 10: 294.
[37]
Davies J, Chen J, Pink R, et al. Orexin receptors exert a neuroprotective effect in Alzheimer’s disease (AD) via heterodimerization with GPR103. Sci Reports 2015; 5: 12584.
[38]
Weiner HL, Frenkel D. Immunology and immunotherapy of Alzheimer’s disease. Nat Rev Immunol 2006; 6(5): 404-16.
[http://dx.doi.org/10.1038/nri1843] [PMID: 16639431]
[39]
Ciechanover A, Brundin P. The ubiquitin proteasome system in neurodegenerative diseases: Sometimes the chicken, sometimes the egg. Neuron 2003; 40(2): 446.
[40]
Li Y, Liu L, Barger SW, Griffin WS. Interleukin-1 mediates pathological effects of microglia on tau phosphorylation and on synaptophy-sin synthesis in cortical neurons through a p38-MAPK pathway. J Neurosci 2003; 23(5): 1605-11.
[http://dx.doi.org/10.1523/JNEUROSCI.23-05-01605.2003] [PMID: 12629164]
[41]
Isaacson JS, Scanziani M. How inhibition shapes cortical activity. Neuron 2011; 72(2): 231-43.
[http://dx.doi.org/10.1016/j.neuron.2011.09.027] [PMID: 22017986]
[42]
Southwell DG, Nicholas CR, Basbaum AI, et al. Interneurons from embryonic development to cell-based therapy. Science 2014; 344(6180): 1240622.
[http://dx.doi.org/10.1126/science.1240622] [PMID: 24723614]
[43]
Tyson JA, Anderson SA. GABAergic interneuron transplants to study development and treat disease. Trends Neurosci 2014; 37(3): 169-77.
[http://dx.doi.org/10.1016/j.tins.2014.01.003] [PMID: 24508416]
[44]
Shetty AK, Turner DA. Fetal hippocampal grafts containing CA3 cells restore host hippocampal glutamate decarboxylase-positive inter-neuron numbers in a rat model of temporal lobe epilepsy. J Neurosci 2000; 20(23): 8788-801.
[45]
Sinnen BL, Bowen AB, Gibson ES, Kennedy MJ. Local and use-dependent effects of -amyloid oligomers on NMDA receptor function revealed by optical quantal analysis. J Neurosci 2016; 36(45): 11532-43.
[http://dx.doi.org/10.1523/JNEUROSCI.1603-16.2016] [PMID: 27911757]
[46]
Mucke L, Selkoe DJ. Neurotoxicity of amyloid β-protein: Synaptic and network dysfunction. Cold Spring Harb Perspect Med 2012; 2(7): a006338.
[http://dx.doi.org/10.1101/cshperspect.a006338] [PMID: 22762015]
[47]
Wilkinson DG, Francis PT, Schwam E, Payne-Parrish J. Cholinesterase inhibitors used in the treatment of Alzheimer’s disease: The rela-tionship between pharmacological effects and clinical efficacy. Drugs Aging 2004; 21(7): 453-78.
[http://dx.doi.org/10.2165/00002512-200421070-00004] [PMID: 15132713]
[48]
Lacor PN, Buniel MC, Furlow PW, et al. Abeta oligomer-induced aberrations in synapse composition, shape, and density provide a mo-lecular basis for loss of connectivity in Alzheimer’s disease. J Neurosci 2007; 27(4): 796-807.
[http://dx.doi.org/10.1523/JNEUROSCI.3501-06.2007] [PMID: 17251419]
[49]
Ren J, Du Y, Li S, Ma S, Jiang Y, Wu C. Robust network-based regularization and variable selection for high-dimensional genomic data in cancer prognosis. Genet Epidemiol 2019; 43(3): 276-91.
[http://dx.doi.org/10.1002/gepi.22194] [PMID: 30746793]
[50]
Wu C, Zhang Q, Jiang Y, Ma S. Robust network-based analysis of the associations between (epi)genetic measurements. J Multivariate Anal 2018; 168: 119-30.
[51]
Hu Y, Zhou G, Zhang C, et al. Identify compounds’ target against Alzheimer’s disease based on in-silico approach. Curr Alzheimer Res 2019; 16(3): 193-208.
[http://dx.doi.org/10.2174/1567205016666190103154855] [PMID: 30605059]
[52]
Andrews-Zwilling Y, Bien-Ly N, Xu Q, et al. Apolipoprotein E4 causes age- and Tau-dependent impairment of GABAergic interneurons, leading to learning and memory deficits in mice. J Neurosci 2010; 30(41): 13707-17.
[http://dx.doi.org/10.1523/JNEUROSCI.4040-10.2010] [PMID: 20943911]
[53]
Serrano-Pozo A, Mielke ML, Gómez-Isla T, et al. Reactive glia not only associates with plaques but also parallels tangles in Alzheimer’s disease. Am J Pathol 2011; 179(3): 1373-84.
[http://dx.doi.org/10.1016/j.ajpath.2011.05.047] [PMID: 21777559]
[54]
Sanchez PE, Zhu L, Verret L, et al. Levetiracetam suppresses neuronal network dysfunction and reverses synaptic and cognitive deficits in an Alzheimer’s disease model. Proc Natl Acad Sci USA 2012; 109(42): E2895-903.
[http://dx.doi.org/10.1073/pnas.1121081109] [PMID: 22869752]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy