[4]
McCarthy, J.; Hayesm, P.J. Some Philosophical Problems from Standpoint of Artificial Intelligence.Machine Intelligence; Edinburgh University Press: Edinburgh, 1969, pp. 463-502.
[12]
Weinstein, J.N.; Kohn, K.W.; Grever, M.R.; Viswanadhan, V.N.; Rubinstein, L.V.; Monks, A.P.; Scudiero, D.A.; Welch, L.; Koutsoukos, A.D.; Chiausa, A.J.; Paull, K.D. Neural computing in cancer drug development: Predicting mechanism of action. Science, 1992, 258, 447-451.
[14]
Ho, T.K. Random decision forests.Proc. Int. Conf. Doc. Anal. Recognition, ICDAR; , 1995, pp. 278-282.
[15]
Guenther, N.M.S. Support Vector Machines (SVM) Support Vector Machines (SVM). Gesture, 2001, 23, 349-361.
[18]
Dahl, G.E.; Jaitly, N.; Salakhutdinov, R. Multi-Task Neural Networks for QSAR Predictions arXiv:1406.1231v1, 2014.
[38]
Kearnes, S.; Goldman, B.; Pande, V. Modeling industrial ADMET data with multitask networks. arXiv, 1606, 08793v3., 2016.
[46]
Browne, C.B. A Survey of monte Carlo tree search methods. IEEE T. Comp. Intel. Al, 2017, 4, 1-43.
[49]
Chuang, K.V.; Keiser, M.J. Predicting reaction performance in C–N cross-coupling using machine learning. Science. Science, 2018, 362, 186-190.
[51]
Steiner, S.; Wolf, J.; Glatzel, S.; Andreou, A.; Granda, J.M.; Keenan, G.; Hinkley, T.; Aragon-Camarasa, G.; Kitson, P.J.; Angelone, D.; Cronin, L. Organic synthesis in a modular robotic system driven by a chemical programming language. Science, 2019, 363, eaav2211.
[64]
Klaeger, S.; Heinzlmeir, S.; Wilhelm, M.; Küster, B. The target landscape of clinical kinase inhibi-tors. Mol. Cell. Proteomics, 2017, 16, S14.
[90]
Duvenaud, D.; Maclaurin, D.; Aguilera-Iparraguirre, J.; Gómez-Bombarelli, R.; Hirzel, T.; Aspuru-Guzik, A.; Adams, R.P. Convolutional networks on graphs for learning molecular fingerprints. Adv. Neural Inf. Process. Syst., 2015, 2, 224-2232.
[112]
Yauney, G.; Shah, P. Reinforcement learning with action-derived rewards for chemotherapy and clinical trial dosing regimen selection. Proc. 3rd Mach. Learn. Healthc. Conf., 2018, pp. 161-226.
[115]
Curtis, C.; Shah, S.P.; Chin, S.F.; Turashvili, G.; Rueda, O.M.; Dunning, M.J.; Speed, D.; Lynch, A.G.; Samarajiwa, S.; Yuan, Y.; Gräf, S.; Ha, G.; Haffari, G.; Bashashati, A.; Russell, R.; McKinney, S.; Langerød, A.; Green, A.; Provenzano, E.; Wishart, G.; Pinder, S.; Watson, P.; Markowetz, F.; Murphy, L.; Ellis, I.; Purushotham, A.; Børresen-Dale, A.L.; Brenton, J.D.; Tavaré, S.; Caldas, C.; Aparicio, S.; Speers, C.; Watson, P.; Blamey, R.; Green, A.; MacMillan, D.; Rakha, E.; Gillett, C.; Grigoriadis, A.; De Rinaldis, E.; Tutt, A.; Parisien, M.; Troup, S.; Chan, D.; Fielding, C.; Maia, A.T.; McGuire, S.; Osborne, M.; Sayale-ro, S.M.; Spiteri, I.; Hadfield, J.; Bell, L.; Chow, K.; Gale, N.; Ko-valik, M.; Ng, Y.; Prentice, L.; Tavaré, S.; Markowetz, F.; Langerød, A.; Provenzano, E.; Purushotham, A.; Børresen-Dale, A.L.; Caldas, C. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups.
Nature, 2012,
486(7403), 346-352.
[
http://dx.doi.org/10.1038/nature10983] [PMID:
22522925]
[123]
Jamal, S.; Khubaib, M.; Gangwar, R.; Grover, S.; Grover, A.; Hasnain, S.E. Artificial intelligence and machine learning based prediction of resistant and susceptible mutations in Mycobacterium tuberculo-sis. Sci. Rep., 2020, 10, 1-16.
[131]
Rutering, J.; Ilmer, M.; Recio, A.; Coleman, M.; Vykoukal, J.; Alt, E.; Orleans, N. Mutational land-scape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nat. Med., 2016, 5, 1-8.
[133]
Abramoff, M.D.; Lavin, P.T.; Birch, M.; Shah, N.; Folk, J.C. Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices. NPJ Digit. Med., 2018, 1, 39.