Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

A Critical Analysis of Quercetin as the Attractive Target for the Treatment of Parkinson's Disease

Author(s): Ozlem Bahadır Acıkara, Gökçe Şeker Karatoprak, Çiğdem Yücel, Esra Küpeli Akkol*, Eduardo Sobarzo-Sánchez, Maryam Khayatkashani, Mohammad Amjad Kamal and Hamid Reza Khayat Kashani*

Volume 21, Issue 9, 2022

Published on: 05 April, 2022

Page: [795 - 817] Pages: 23

DOI: 10.2174/1871527320666211206122407

Price: $65

Abstract

Parkinson's Disease (PD) is a multifaceted disorder with various factors suggested to play a synergistic pathophysiological role, such as oxidative stress, autophagy, pro-inflammatory events, and neurotransmitter abnormalities. While it is crucial to discover new treatments in addition to preventing PD, recent studies have focused on determining whether nutraceuticals will exert neuroprotective actions and pharmacological functions in PD. Quercetin, a flavonol-type flavonoid, is found in many fruits and vegetables and is recognised as a complementary therapy for PD. The neuroprotective effect of quercetin is directly associated with its antioxidant activity, in addition to stimulating cellular defence against oxidative stress. Other related mechanisms are activating Sirtuins (SIRT1) and inducing autophagy, in addition to induction of Nrf2-ARE and Paraoxonase 2 (PON2). Quercetin, whose neuroprotective activity has been demonstrated in many studies, unfortunately, has a disadvantage because of its poor water solubility, chemical instability, and low oral bioavailability. It has been reported that the disadvantages of quercetin have been eliminated with nanocarriers loaded with quercetin. The role of nanotechnology and nanodelivery systems in reducing oxidative stress during PD provides an indisputable advantage. Accordingly, the present review aims to shed light on quercetin's beneficial effects and underlying mechanisms in neuroprotection. In addition, the contribution of nanodelivery systems to the neuroprotective effect of quercetin is also discussed.

Keywords: Parkinson’s disease, quercetin, natural compound, neuroprotective, nanodelivery systems, antioxidant activity.

Graphical Abstract
[1]
Ortiz GG, Pacheco-Moisés FP, Mireles-Ramirez MA, et al. Oxidative Stress and Parkinson’s Disease: Effects on Environmental Toxicology. In: Ahmed R, Ed. Free Radicals and Diseases. London: IntechOpen 2016.
[http://dx.doi.org/10.5772/63794]
[2]
Guo JD, Zhao X, Li Y, Li GR, Liu XL. Damage to dopaminergic neurons by oxidative stress in Parkinson’s disease (Review). Int J Mol Med 2018; 41(4): 1817-25.
[http://dx.doi.org/10.3892/ijmm.2018.3406] [PMID: 29393357]
[3]
Hemmati-Dinarvand M, Saedi S, Valilo M, et al. Oxidative stress and Parkinson’s disease: Conflict of oxidant-antioxidant systems. Neurosci Lett 2019; 709: 134296.
[http://dx.doi.org/10.1016/j.neulet.2019.134296] [PMID: 31153970]
[4]
Adams RD, Victor M, Ropper AH. Principles of Neurology. New York: McGraw-Hill Press 1997.
[5]
Tung EH, Simpson GM. Medication induced movement disorders. In: Sadock BJ, Sadock VA, Eds. Comprehensive Textbook of Psychiatry. Philadelphia: Lippincott Williams & Wilkins 2000; pp. 2267-8.
[6]
Eckert T, Sailer M, Kaufmann J, et al. Differentiation of idiopathic Parkinson’s disease, multiple system atrophy, progressive supranuclear palsy, and healthy controls using magnetization transfer imaging. Neuroimage 2004; 21(1): 229-35.
[http://dx.doi.org/10.1016/j.neuroimage.2003.08.028] [PMID: 14741660]
[7]
Ahn TB, Kim SY, Kim JY, et al. α-Synuclein gene duplication is present in sporadic Parkinson disease. Neurology 2008; 70(1): 43-9.
[http://dx.doi.org/10.1212/01.wnl.0000271080.53272.c7] [PMID: 17625105]
[8]
Brueggemann N, Odin P, Gruenewald A, et al. Re: α-synuclein gene duplication is present in sporadic Parkinson disease. Neurology 2008; 71(16): 1294.
[http://dx.doi.org/10.1212/01.wnl.0000338439.00992.c7] [PMID: 18852448]
[9]
Ahmed Z, Asi YT, Sailer A, et al. The neuropathology, pathophysiology and genetics of multiple system atrophy. Neuropathol Appl Neurobiol 2012; 38(1): 4-24.
[http://dx.doi.org/10.1111/j.1365-2990.2011.01234.x] [PMID: 22074330]
[10]
Boonstra TA, van der Kooij H, Munneke M, Bloem BR. Gait disorders and balance disturbances in Parkinson’s disease: Clinical update and pathophysiology. Curr Opin Neurol 2008; 21(4): 461-71.
[http://dx.doi.org/10.1097/WCO.0b013e328305bdaf] [PMID: 18607208]
[11]
King LA, St George RJ, Carlson-Kuhta P, Nutt JG, Horak FB. Preparation for compensatory forward stepping in Parkinson’s disease. Arch Phys Med Rehabil 2010; 91(9): 1332-8.
[http://dx.doi.org/10.1016/j.apmr.2010.05.013] [PMID: 20801249]
[12]
Ecker D, Unrath A, Kassubek J, Sabolek M. Dopamine agonists and their risk to induce psychotic episodes in Parkinson’s disease: a case-control study. BMC Neurol 2009; 9: 23.
[http://dx.doi.org/10.1186/1471-2377-9-23] [PMID: 19515253]
[13]
Shimohama S, Sawada H, Kitamura Y, Taniguchi T. Disease model: Parkinson’s disease. Trends Mol Med 2003; 9(8): 360-5.
[http://dx.doi.org/10.1016/S1471-4914(03)00117-5] [PMID: 12928038]
[14]
Almeida QJ, Hyson HC. The evolution of pharmacological treatment for Parkinson’s disease. Recent Patents CNS Drug Discov 2008; 3(1): 50-4.
[http://dx.doi.org/10.2174/157488908783421500] [PMID: 18221241]
[15]
Fulton B, Benfield P. Galanthamine. Drugs Aging 1996; 9(1): 60-5.
[http://dx.doi.org/10.2165/00002512-199609010-00006] [PMID: 8818586]
[16]
Pringsheim T, Jette N, Frolkis A, Steeves TD. The prevalence of Parkinson’s disease: a systematic review and meta-analysis. Mov Disord 2014; 29(13): 1583-90.
[http://dx.doi.org/10.1002/mds.25945] [PMID: 24976103]
[17]
Ross GW, Abbott RD. Living and dying with Parkinson’s disease. Mov Disord 2014; 29(13): 1571-3.
[http://dx.doi.org/10.1002/mds.25955] [PMID: 25044188]
[18]
Gibb WRG, Lees J. Pathological clues to the cause of Parkinson’s disease. Oxford: Butterworth-Heinemann Press 1994.
[19]
Marsden CD. Parkinson’s disease. J Neurol Neurosurg Psychiatry 1994; 57(6): 672-81.
[http://dx.doi.org/10.1136/jnnp.57.6.672] [PMID: 7755681]
[20]
Paulson HL, Stern MB. Clinical manifestations of Parkinson’s disease. MovDisord Neurol Prin Pract 2004; 14: 233-45.
[21]
Chan DK, Cordato DJ, O’Rourke F. Management for motor and non-motor complications in late Parkinson’s disease. Geriatrics 2008; 63(5): 22-7.
[PMID: 18447408]
[22]
Elbaz A, Bower JH, Maraganore DM, et al. Risk tables for parkinsonism and Parkinson’s disease. J Clin Epidemiol 2002; 55(1): 25-31.
[http://dx.doi.org/10.1016/S0895-4356(01)00425-5] [PMID: 11781119]
[23]
Fahn S. Description of Parkinson’s disease as a clinical syndrome. Ann N Y Acad Sci 2003; 991: 1-14.
[http://dx.doi.org/10.1111/j.1749-6632.2003.tb07458.x] [PMID: 12846969]
[24]
Pallone JA, Frigerio R, Schneider NK, Lesnick TG. Introduction to Parkinson’s disease. Dis Mon 2007; 53(4): 195-9.
[http://dx.doi.org/10.1016/j.disamonth.2007.05.001] [PMID: 17586325]
[25]
Weintraub D, Stern MB. Psychiatric complications in Parkinson disease. Am J Geriatr Psychiatry 2005; 13(10): 844-51.
[http://dx.doi.org/10.1097/00019442-200510000-00003] [PMID: 16223962]
[26]
Elbaz A, Bower JH, Peterson BJ, et al. Survival study of Parkinson disease in Olmsted county, Minnesota. Arch Neurol 2003; 60(1): 91-6.
[http://dx.doi.org/10.1001/archneur.60.1.91] [PMID: 12533094]
[27]
Özkan S. Parkinson hastalığının etyolojisi. Türkiye Klinikleri J Neurol-Special Topics 2008; 1(4): 6-14.
[28]
Korell M, Taner CM. Epidemiology of Parkinson’s Disease: An Overwiev. In: Edabi M, Pfeiffer RF, Eds. Parkinson’s Disease. New York: CRC Pres 2005; pp. 39-50.
[29]
Devine MJ, Gwinn K, Singleton A, Hardy J. Parkinson’s disease and α-synuclein expression. Mov Disord 2011; 26(12): 2160-8.
[http://dx.doi.org/10.1002/mds.23948] [PMID: 21887711]
[30]
Ibáñez P, Lesage S, Janin S, et al. Alpha-synuclein gene rearrangements in dominantly inherited parkinsonism: Frequency, phenotype, and mechanisms. Arch Neurol 2009; 66(1): 102-8.
[http://dx.doi.org/10.1001/archneurol.2008.555] [PMID: 19139307]
[31]
Singleton AB, Farrer MJ, Bonifati V. The genetics of Parkinson’s disease: Progress and therapeutic implications. Mov Disord 2013; 28(1): 14-23.
[http://dx.doi.org/10.1002/mds.25249] [PMID: 23389780]
[32]
Dzamko N, Halliday GM. An emerging role for LRRK2 in the immune system. Biochem Soc Trans 2012; 40(5): 1134-9.
[http://dx.doi.org/10.1042/BST20120119] [PMID: 22988878]
[33]
Lee S, Imai Y, Gehrke S, Liu S, Lu B. The synaptic function of LRRK2. Biochem Soc Trans 2012; 40(5): 1047-51.
[http://dx.doi.org/10.1042/BST20120113] [PMID: 22988863]
[34]
Sanna G, Del Giudice MG, Crosio C, Iaccarino C. LRRK2 and vesicle trafficking. Biochem Soc Trans 2012; 40(5): 1117-22.
[http://dx.doi.org/10.1042/BST20120117] [PMID: 22988875]
[35]
Martin I, Kim JW, Lee BD, et al. Ribosomal protein s15 phosphorylation mediates LRRK2 neurodegeneration in Parkinson’s disease. Cell 2014; 157(2): 472-85.
[http://dx.doi.org/10.1016/j.cell.2014.01.064] [PMID: 24725412]
[36]
Paisán-Ruíz C, Jain S, Evans EW, et al. Cloning of the gene containing mutations that cause PARK8-linked Parkinson’s disease. Neuron 2004; 44(4): 595-600.
[http://dx.doi.org/10.1016/j.neuron.2004.10.023] [PMID: 15541308]
[37]
Healy DG, Falchi M, O’Sullivan SS, et al. Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson’s disease: A case-control study. Lancet Neurol 2008; 7(7): 583-90.
[http://dx.doi.org/10.1016/S1474-4422(08)70117-0] [PMID: 18539534]
[38]
Aasly JO, Vilariño-Güell C, Dachsel JC, et al. Novel pathogenic LRRK2 p.Asn1437His substitution in familial Parkinson’s disease. Mov Disord 2010; 25(13): 2156-63.
[http://dx.doi.org/10.1002/mds.23265] [PMID: 20669305]
[39]
Zimprich A, Benet-Pagès A, Struhal W, et al. A mutation in VPS35, encoding a subunit of the retromer complex, causes late-onset Parkinson disease. Am J Hum Genet 2011; 89(1): 168-75.
[http://dx.doi.org/10.1016/j.ajhg.2011.06.008] [PMID: 21763483]
[40]
Trinh J, Farrer M. Advances in the genetics of Parkinson disease. Nat Rev Neurol 2013; 9(8): 445-54.
[http://dx.doi.org/10.1038/nrneurol.2013.132] [PMID: 23857047]
[41]
Schrag A, Schott JM. Epidemiological, clinical, and genetic characteristics of early-onset parkinsonism. Lancet Neurol 2006; 5(4): 355-63.
[http://dx.doi.org/10.1016/S1474-4422(06)70411-2] [PMID: 16545752]
[42]
Lücking CB, Dürr A, Bonifati V, et al. Association between early-onset Parkinson’s disease and mutations in the parkin gene. N Engl J Med 2000; 342(21): 1560-7.
[http://dx.doi.org/10.1056/NEJM200005253422103] [PMID: 10824074]
[43]
Periquet M, Latouche M, Lohmann E, et al. Parkin mutations are frequent in patients with isolated early-onset parkinsonism. Brain 2003; 126(Pt 6): 1271-8.
[http://dx.doi.org/10.1093/brain/awg136] [PMID: 12764050]
[44]
Klein C, Lohmann-Hedrich K, Rogaeva E, Schlossmacher MG, Lang AE. Deciphering the role of heterozygous mutations in genes associated with parkinsonism. Lancet Neurol 2007; 6(7): 652-62.
[http://dx.doi.org/10.1016/S1474-4422(07)70174-6] [PMID: 17582365]
[45]
McCoy MK, Cookson MR. Mitochondrial quality control and dynamics in Parkinson’s disease. Antioxid Redox Signal 2012; 16(9): 869-82.
[http://dx.doi.org/10.1089/ars.2011.4019] [PMID: 21568830]
[46]
Puschmann A. Monogenic Parkinson’s disease and parkinsonism: Clinical phenotypes and frequencies of known mutations. Parkinsonism Relat Disord 2013; 19(4): 407-15.
[http://dx.doi.org/10.1016/j.parkreldis.2013.01.020] [PMID: 23462481]
[47]
Krebs CE, Karkheiran S, Powell JC, et al. The Sac1 domain of SYNJ1 identified mutated in a family with early-onset progressive Parkinsonism with generalized seizures. Hum Mutat 2013; 34(9): 1200-7.
[http://dx.doi.org/10.1002/humu.22372] [PMID: 23804563]
[48]
Quadri M, Fang M, Picillo M, et al. Mutation in the SYNJ1 gene associated with autosomal recessive, early-onset Parkinsonism. Hum Mutat 2013; 34(9): 1208-15.
[http://dx.doi.org/10.1002/humu.22373] [PMID: 23804577]
[49]
Wilson GR, Sim JC, McLean C, et al. Mutations in RAB39B cause X-linked intellectual disability and early-onset Parkinson disease with α-synuclein pathology. Am J Hum Genet 2014; 95(6): 729-35.
[http://dx.doi.org/10.1016/j.ajhg.2014.10.015] [PMID: 25434005]
[50]
Goldman SM. Environmental toxins and Parkinson’s disease. Annu Rev Pharmacol Toxicol 2014; 54: 141-64.
[http://dx.doi.org/10.1146/annurev-pharmtox-011613-135937] [PMID: 24050700]
[51]
Gatto NM, Rhodes SL, Manthripragada AD, et al. α-Synuclein gene may interact with environmental factors in increasing risk of Parkinson’s disease. Neuroepidemiology 2010; 35(3): 191-5.
[http://dx.doi.org/10.1159/000315157] [PMID: 20664293]
[52]
Noyce AJ, Bestwick JP, Silveira-Moriyama L, et al. Meta-analysis of early nonmotor features and risk factors for Parkinson disease. Ann Neurol 2012; 72(6): 893-901.
[http://dx.doi.org/10.1002/ana.23687] [PMID: 23071076]
[53]
Dickson DW, Braak H, Duda JE, et al. Neuropathological assessment of Parkinson’s disease: Refining the diagnostic criteria. Lancet Neurol 2009; 8(12): 1150-7.
[http://dx.doi.org/10.1016/S1474-4422(09)70238-8] [PMID: 19909913]
[54]
Dickson DW. Parkinson’s disease and parkinsonism: Neuropathology. Cold Spring Harb Perspect Med 2012; 2(8): a009258.
[http://dx.doi.org/10.1101/cshperspect.a009258] [PMID: 22908195]
[55]
Masters CL, Kril JJ, Halliday GM, et al. Overview and recent advances in neuropathology. Part 2: Neurodegeneration. Pathology 2011; 43(2): 93-102.
[http://dx.doi.org/10.1097/PAT.0b013e3283426eee] [PMID: 21233670]
[56]
Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M. Alpha-synuclein in Lewy bodies. Nature 1997; 388(6645): 839-40.
[http://dx.doi.org/10.1038/42166] [PMID: 9278044]
[57]
Goedert M, Spillantini MG, Del Tredici K, Braak H. 100 years of Lewy pathology. Nat Rev Neurol 2013; 9(1): 13-24.
[http://dx.doi.org/10.1038/nrneurol.2012.242] [PMID: 23183883]
[58]
Iwanaga K, Wakabayashi K, Yoshimoto M, et al. Lewy body-type degeneration in cardiac plexus in Parkinson’s and incidental Lewy body diseases. Neurology 1999; 52(6): 1269-71.
[http://dx.doi.org/10.1212/WNL.52.6.1269] [PMID: 10214756]
[59]
Fumimura Y, Ikemura M, Saito Y, et al. Analysis of the adrenal gland is useful for evaluating pathology of the peripheral autonomic nervous system in Lewy body disease. J Neuropathol Exp Neurol 2007; 66(5): 354-62.
[http://dx.doi.org/10.1097/nen.0b013e3180517454] [PMID: 17483692]
[60]
Beach TG, Adler CH, Sue LI, et al. Multi-organ distribution of phosphorylated alpha-synuclein histopathology in subjects with Lewy body disorders. Acta Neuropathol 2010; 119(6): 689-702.
[http://dx.doi.org/10.1007/s00401-010-0664-3] [PMID: 20306269]
[61]
Del Tredici K, Hawkes CH, Ghebremedhin E, Braak H. Lewy pathology in the submandibular gland of individuals with incidental Lewy body disease and sporadic Parkinson’s disease. Acta Neuropathol 2010; 119(6): 703-13.
[http://dx.doi.org/10.1007/s00401-010-0665-2] [PMID: 20229352]
[62]
Braak H, Del Tredici K, Rüb U, de Vos RAI, Jansen Steur ENH, Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 2003; 24(2): 197-211.
[http://dx.doi.org/10.1016/S0197-4580(02)00065-9] [PMID: 12498954]
[63]
Cecarini V, Gee J, Fioretti E, et al. Protein oxidation and cellular homeostasis: Emphasis on metabolism. Biochim Biophys Acta 2007; 1773(2): 93-104.
[http://dx.doi.org/10.1016/j.bbamcr.2006.08.039] [PMID: 17023064]
[64]
Sitte N. Oxidative Damage to Proteins. In: von Zglinicki T, Ed. Aging at the Molecular Level. Dordrecht: Springer 2003; pp. 27- 45.
[http://dx.doi.org/10.1007/978-94-017-0667-4_3]
[65]
Aslan SN, Karahalil B. Oxidative stress and Parkinson Disease. J Fac Pharm Ankara 2019; 43(1): 94-116.
[66]
Blesa J, Trigo-Damas I, Quiroga-Varela A, Jackson-Lewis VR. Oxidative stress and Parkinson’s disease. Front Neuroanat 2015; 9: 91.
[http://dx.doi.org/10.3389/fnana.2015.00091] [PMID: 26217195]
[67]
Aslankoç R, Demirci D, İnan Ü, Yildiz M, Öztürk A, Çet ı̇ n M, et al. The role of antioxidant enzymes in oxidative stress - superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx). Med J SDU 2019; 26(3): 362-9.
[http://dx.doi.org/10.17343/sdutfd.566969]
[68]
Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O. Oxidative stress and antioxidant defense. World Allergy Organ J 2012; 5(1): 9-19.
[http://dx.doi.org/10.1097/WOX.0b013e3182439613] [PMID: 23268465]
[69]
Lee KH, Cha M, Lee BH. Neuroprotective effect of antioxidants in the brain. Int J Mol Sci 2020; 21(19): 7152.
[http://dx.doi.org/10.3390/ijms21197152] [PMID: 32998277]
[70]
Surendran S, Rajasankar S. Parkinson’s disease: Oxidative stress and therapeutic approaches. Neurol Sci 2010; 31(5): 531-40.
[http://dx.doi.org/10.1007/s10072-010-0245-1] [PMID: 20221655]
[71]
Ighodaro OM, Akinloye OA. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx): Their fundamental role in the entire antioxidant defence grid. Alex J Med 2018; 54(4): 287-93.
[http://dx.doi.org/10.1016/j.ajme.2017.09.001]
[72]
de Farias CC, Maes M, Bonifácio KL, et al. Highly specific changes in antioxidant levels and lipid peroxidation in Parkinson’s disease and its progression: Disease and staging biomarkers and new drug targets. Neurosci Lett 2016; 617: 66-71.
[http://dx.doi.org/10.1016/j.neulet.2016.02.011] [PMID: 26861200]
[73]
Kurutas EB. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: Current state. Nutr J 2016; 15(1): 71.
[http://dx.doi.org/10.1186/s12937-016-0186-5] [PMID: 27456681]
[74]
Ruipérez V, Darios F, Davletov B. Alpha-synuclein, lipids and Parkinson’s disease. Prog Lipid Res 2010; 49(4): 420-8.
[http://dx.doi.org/10.1016/j.plipres.2010.05.004] [PMID: 20580911]
[75]
Xicoy H, Peñuelas N, Vila M, Laguna A. Autophagic- and lysosomal-related biomarkers for Parkinson’s disease. Lights and Shadows Cells 2019; 8(11): 1317.
[http://dx.doi.org/10.3390/cells8111317] [PMID: 31731485]
[76]
Petrovic J, Radovanovic L, Saponjic J. Prodromal local sleep disorders in a rat model of Parkinson’s disease cholinopathy, hemiparkinsonism and hemiparkinsonism with cholinopathy. Behav Brain Res 2021; 397: 112957.
[http://dx.doi.org/10.1016/j.bbr.2020.112957] [PMID: 33038348]
[77]
Shichiri M. The role of lipid peroxidation in neurological disorders. J Clin Biochem Nutr 2014; 54(3): 151-60.
[http://dx.doi.org/10.3164/jcbn.14-10] [PMID: 24895477]
[78]
Dias MC, Figueiredo P, Duarte IF, Santos C. Different responses of young and expanded lettuce leaves to fungicide Mancozeb: chlorophyll fluorescence, lipid peroxidation, pigments and proline content. Photosynthetica 2014; 52: 148-51.
[http://dx.doi.org/10.1007/s11099-014-0016-y]
[79]
Stojkovska I, Wagner BM, Morrison BE. Parkinson’s disease and enhanced inflammatory response. Exp Biol Med (Maywood) 2015; 240(11): 1387-95.
[http://dx.doi.org/10.1177/1535370215576313] [PMID: 25769314]
[80]
Cappellano G, Carecchio M, Fleetwood T, et al. Immunity and inflammation in neurodegenerative diseases. Am J Neurodegener Dis 2013; 2(2): 89-107.
[PMID: 23844334]
[81]
Tansey MG, McCoy MK, Frank-Cannon TC. Neuroinflammatory mechanisms in Parkinson’s disease: Potential environmental triggers, pathways, and targets for early therapeutic intervention. Exp Neurol 2007; 208(1): 1-25.
[http://dx.doi.org/10.1016/j.expneurol.2007.07.004] [PMID: 17720159]
[82]
Comi C, Tondo G. Insights into the protective role of immunity in neurodegenerative disease. Neural Regen Res 2017; 12(1): 64-5.
[http://dx.doi.org/10.4103/1673-5374.198980] [PMID: 28250745]
[83]
Farooqui T, Farooqui AA. Lipid-mediated oxidative stress and inflammation in the pathogenesis of Parkinson’s disease. Parkinsons Dis 2011; 2011: 247467.
[http://dx.doi.org/10.4061/2011/247467] [PMID: 21403820]
[84]
Murakami Y, Kawata A, Ito S, Katayama T, Fujisawa S. Radical-scavenging and anti-inflammatory activity of quercetin and related compounds and their combinations against RAW264.7 cells stimulated with Porphyromonas gingivalis Fimbriae. Relationships between anti-inflammatory activity and quantum chemical parameters. In Vivo 2015; 29(6): 701-10.
[PMID: 26546527]
[85]
Osorio E, Pérez EG, Areche C, et al. Why is quercetin a better antioxidant than taxifolin? Theoretical study of mechanisms involving activated forms. J Mol Model 2013; 19(5): 2165-72.
[http://dx.doi.org/10.1007/s00894-012-1732-5] [PMID: 23283546]
[86]
Kumar P, Sharma S, Khanna M, Raj HG. Effect of Quercetin on lipid peroxidation and changes in lung morphology in experimental influenza virus infection. Int J Exp Pathol 2003; 84(3): 127-33.
[http://dx.doi.org/10.1046/j.1365-2613.2003.00344.x] [PMID: 12974942]
[87]
Dangles O, Dufour C, Fargeix G. Inhibition of lipid peroxidation by quercetin and quercetin derivatives: Antioxidant and prooxidant effects. J Chem Soc, Perkin Trans 2 2000; 1215-22.
[http://dx.doi.org/10.1039/a910183g]
[88]
Cherrak SA, Mokhtari-Soulimane N, Berroukeche F, et al. In vitro antioxidant versus metal ion chelating properties of flavonoids: A structure-activity investigation. PLoS One 2016; 11(10): e0165575.
[http://dx.doi.org/10.1371/journal.pone.0165575] [PMID: 27788249]
[89]
Leopoldini M, Russo N, Chiodo S, Toscano M. Iron chelation by the powerful antioxidant flavonoid quercetin. J Agric Food Chem 2006; 54(17): 6343-51.
[http://dx.doi.org/10.1021/jf060986h] [PMID: 16910729]
[90]
Kanimozhi S, Bhavani P, Subramanian P. Influence of the flavonoid, quercetin on antioxidant status, lipid peroxidation and histopathological changes in hyperammonemic rats. Indian J Clin Biochem 2017; 32(3): 275-84.
[http://dx.doi.org/10.1007/s12291-016-0603-8] [PMID: 28811686]
[91]
Vieira EK, Bona S, Di Naso FC, Porawski M, Tieppo J, Marroni NP. Quercetin treatment ameliorates systemic oxidative stress in cirrhotic rats. ISRN Gastroenterol 2011; 2011: 604071.
[http://dx.doi.org/10.5402/2011/604071] [PMID: 21991520]
[92]
Heo HJ, Lee CY. Protective effects of quercetin and vitamin C against oxidative stress-induced neurodegeneration. J Agric Food Chem 2004; 52(25): 7514-7.
[http://dx.doi.org/10.1021/jf049243r] [PMID: 15675797]
[93]
Ahn T-B, Jeon BS. The role of quercetin on the survival of neuron-like PC12 cells and the expression of α-synuclein. Neural Regen Res 2015; 10(7): 1113-9.
[http://dx.doi.org/10.4103/1673-5374.160106] [PMID: 26330835]
[94]
Magalingam KB, Radhakrishnan A, Haleagrahara N. Rutin, a bioflavonoid antioxidant protects rat pheochromocytoma (PC-12) cells against 6-hydroxydopamine (6-OHDA)-induced neurotoxicity. Int J Mol Med 2013; 32(1): 235-40.
[http://dx.doi.org/10.3892/ijmm.2013.1375] [PMID: 23670213]
[95]
Magalingam KB, Radhakrishnan A, Ramdas P, Haleagrahara N. Quercetin glycosides induced neuroprotection by changes in the gene expression in a cellular model of Parkinson’s disease. J Mol Neurosci 2015; 55(3): 609-17.
[http://dx.doi.org/10.1007/s12031-014-0400-x] [PMID: 25129099]
[96]
Sasaki M, Nakamura H, Tsuchiya S, et al. Quercetin-induced PC12 cell death accompanied by caspase-mediated DNA fragmentation. Biol Pharm Bull 2007; 30(4): 682-6.
[http://dx.doi.org/10.1248/bpb.30.682] [PMID: 17409502]
[97]
Chakraborty J, Rajamma U, Jana N, Mohanakumar KP. Quercetin improves the activity of the ubiquitin-proteasomal system in 150Q mutated huntingtin-expressing cells but exerts detrimental effects on neuronal survivability. J Neurosci Res 2015; 93(10): 1581-91.
[http://dx.doi.org/10.1002/jnr.23618] [PMID: 26153070]
[98]
Yang EJ, Kim GS, Kim JA, Song KS. Protective effects of onion-derived quercetin on glutamate-mediated hippocampal neuronal cell death. Pharmacogn Mag 2013; 9(36): 302-8.
[http://dx.doi.org/10.4103/0973-1296.117824] [PMID: 24124281]
[99]
Gitika B, Sai Ram M, Sharma SK, Ilavazhagan G, Banerjee PK. Quercetin protects C6 glial cells from oxidative stress induced by tertiary-butylhydroperoxide. Free Radic Res 2006; 40(1): 95-102.
[http://dx.doi.org/10.1080/10715760500335447] [PMID: 16298764]
[100]
Ay M, Luo J, Langley M, et al. Molecular mechanisms underlying protective effects of quercetin against mitochondrial dysfunction and progressive dopaminergic neurodegeneration in cell culture and MitoPark transgenic mouse models of Parkinson’s Disease. J Neurochem 2017; 141(5): 766-82.
[http://dx.doi.org/10.1111/jnc.14033] [PMID: 28376279]
[101]
Zheng B, Liao Z, Locascio JJ, et al. PGC-1α, a potential therapeutic target for early intervention in Parkinson’s disease. Sci Transl Med 2010; 2(52): 52ra73.
[http://dx.doi.org/10.1126/scitranslmed.3001059] [PMID: 20926834]
[102]
Haq SH, Al Amro AA. Neuroprotective effect of quercetin in murine cortical brain tissue cultures. Clin Nutr Exp 2019; 23: 89-96.
[http://dx.doi.org/10.1016/j.yclnex.2018.10.002]
[103]
Arredondo F, Echeverry C, Abin-Carriquiry JA, et al. After cellular internalization, quercetin causes Nrf2 nuclear translocation, increases glutathione levels, and prevents neuronal death against an oxidative insult. Free Radic Biol Med 2010; 49(5): 738-47.
[http://dx.doi.org/10.1016/j.freeradbiomed.2010.05.020] [PMID: 20554019]
[104]
Vauzour D, Ravaioli G, Vafeiadou K, Rodriguez-Mateos A, Angeloni C, Spencer JPE. Peroxynitrite induced formation of the neurotoxins 5-S-cysteinyl-dopamine and DHBT-1: Implications for Parkinson’s disease and protection by polyphenols. Arch Biochem Biophys 2008; 476(2): 145-51.
[http://dx.doi.org/10.1016/j.abb.2008.03.011] [PMID: 18394421]
[105]
Pollard SE, Kuhnle GG, Vauzour D, et al. The reaction of flavonoid metabolites with peroxynitrite. Biochem Biophys Res Commun 2006; 350(4): 960-8.
[http://dx.doi.org/10.1016/j.bbrc.2006.09.131] [PMID: 17045238]
[106]
van Meeteren ME, Hendriks JJ, Dijkstra CD, van Tol EA. Dietary compounds prevent oxidative damage and nitric oxide production by cells involved in demyelinating disease. Biochem Pharmacol 2004; 67(5): 967-75.
[http://dx.doi.org/10.1016/j.bcp.2003.10.018] [PMID: 15104250]
[107]
Chen JC, Ho FM, Chen CP, et al. Inhibition of iNOS gene expression by quercetin is mediated by the inhibition of IkappaB kinase, nuclear factor-kappa B and STAT1, and depends on heme oxygenase-1 induction in mouse BV-2 microglia. Eur J Pharmacol 2005; 521(1-3): 9-20.
[http://dx.doi.org/10.1016/j.ejphar.2005.08.005] [PMID: 16171798]
[108]
Kao TK, Ou YC, Raung SL, Lai CY, Liao SL, Chen CJ. Inhibition of nitric oxide production by quercetin in endotoxin/cytokine-stimulated microglia. Life Sci 2010; 86(9-10): 315-21.
[http://dx.doi.org/10.1016/j.lfs.2009.12.014] [PMID: 20060843]
[109]
Simonyi A, Chen Z, Jiang J, et al. Inhibition of microglial activation by elderberry extracts and its phenolic components. Life Sci 2015; 128: 30-8.
[http://dx.doi.org/10.1016/j.lfs.2015.01.037] [PMID: 25744406]
[110]
Zhang ZJ, Cheang LCV, Wang MW, Lee SM. Quercetin exerts a neuroprotective effect through inhibition of the iNOS/NO system and pro-inflammation gene expression in PC12 cells and in zebrafish. Int J Mol Med 2011; 27(2): 195-203.
[PMID: 21132259]
[111]
Bureau G, Longpré F, Martinoli MG. Resveratrol and quercetin, two natural polyphenols, reduce apoptotic neuronal cell death induced by neuroinflammation. J Neurosci Res 2008; 86(2): 403-10.
[http://dx.doi.org/10.1002/jnr.21503] [PMID: 17929310]
[112]
Bournival J, Plouffe M, Renaud J, Provencher C, Martinoli MG. Quercetin and sesamin protect dopaminergic cells from MPP+-induced neuroinflammation in a microglial (N9)-neuronal (PC12) coculture system. Oxid Med Cell Longev 2012; 2012: 921941.
[http://dx.doi.org/10.1155/2012/921941] [PMID: 22919443]
[113]
Sharma V, Mishra M, Ghosh S, et al. Modulation of interleukin-1β mediated inflammatory response in human astrocytes by flavonoids: implications in neuroprotection. Brain Res Bull 2007; 73(1-3): 55-63.
[http://dx.doi.org/10.1016/j.brainresbull.2007.01.016] [PMID: 17499637]
[114]
Lee M, McGeer EG, McGeer PL. Quercetin, not caffeine, is a major neuroprotective component in coffee. Neurobiol Aging 2016; 46: 113-23.
[http://dx.doi.org/10.1016/j.neurobiolaging.2016.06.015] [PMID: 27479153]
[115]
Das SS, Verma PRP, Singh SK. Quercetin-loaded nanomedicine as nutritional application. In: Rahman M, Beg S, Kumar V, Ahmad F, Eds. Nanomedicine for Bioactives. Singapore: Springer 2020; pp. 259-301.
[http://dx.doi.org/10.1007/978-981-15-1664-1_9]
[116]
Zbarsky V, Datla KP, Parkar S, Rai DK, Aruoma OI, Dexter DT. Neuroprotective properties of the natural phenolic antioxidants curcumin and naringenin but not quercetin and fisetin in a 6-OHDA model of Parkinson’s disease. Free Radic Res 2005; 39(10): 1119-25.
[http://dx.doi.org/10.1080/10715760500233113] [PMID: 16298737]
[117]
Kääriäinen TM, Piltonen M, Ossola B, et al. Lack of robust protective effect of quercetin in two types of 6-hydroxydopamine-induced parkinsonian models in rats and dopaminergic cell cultures. Brain Res 2008; 1203: 149-59.
[http://dx.doi.org/10.1016/j.brainres.2008.01.089] [PMID: 18329008]
[118]
Mehdizadeh M, Mohammad TJ, Maliheh N, Roya A. Neuroprotective effect of quercetin in a model of Parkinson’s disease in rat: A histochemical analysis. BCN 2009; 1: 3-6.
[119]
Haleagrahara N, Siew CJ, Mitra NK, Kumari M. Neuroprotective effect of bioflavonoid quercetin in 6-hydroxydopamine-induced oxidative stress biomarkers in the rat striatum. Neurosci Lett 2011; 500(2): 139-43.
[http://dx.doi.org/10.1016/j.neulet.2011.06.021] [PMID: 21704673]
[120]
Mu X, Yuan X, Du LD, He GR, Du GH. Antagonism of quercetin against tremor induced by unilateral striatal lesion of 6-OHDA in rats. Asian Nat Prod Res 2016; 18(1): 65-71.
[http://dx.doi.org/10.1080/10286020.2015.1057576] [PMID: 26217978]
[121]
Langley M, Ghosh A, Charli A, et al. Mito-Apocynin prevents mitochondrial dysfunction, microglial activation, oxidative damage, and progressive neurodegeneration in mitoPark transgenic mice. Antioxid Redox Signal 2017; 27(14): 1048-66.
[http://dx.doi.org/10.1089/ars.2016.6905] [PMID: 28375739]
[122]
Marcellino D, Lindqvist E, Schneider M, et al. Chronic A2A antagonist treatment alleviates parkinsonian locomotor deficiency in MitoPark mice. Neurobiol Dis 2010; 40(2): 460-6.
[http://dx.doi.org/10.1016/j.nbd.2010.07.008] [PMID: 20656029]
[123]
Smith KM, Browne SE, Jayaraman S, et al. Effects of the selective adenosine A2A receptor antagonist, SCH 412348, on the parkinsonian phenotype of MitoPark mice. Eur J Pharmacol 2014; 728: 31-8.
[http://dx.doi.org/10.1016/j.ejphar.2014.01.052] [PMID: 24486705]
[124]
Khan A, Ali T, Rehman SU, et al. Neuroprotective effect of quercetin against the detrimental effects of LPS in the adult mouse Brain. Front Pharmacol 2018; 9: 1383.
[http://dx.doi.org/10.3389/fphar.2018.01383] [PMID: 30618732]
[125]
Kale A, Piskin Ö, Bas Y, et al. Neuroprotective effects of Quercetin on radiation-induced brain injury in rats. J Radiat Res (Tokyo) 2018; 59(4): 404-10.
[http://dx.doi.org/10.1093/jrr/rry032] [PMID: 29688418]
[126]
Hasan W, Rajak R, Kori RK, Yadav RS, Jat D. Neuroprotective effects of mitochondria-targeted quercetin against rotenone-induced oxidative damage in cerebellum of mice. Int J Nutr Pharmacol Neurol Dis 2019; 9: 136-45.
[127]
El-Horany HE, El-Latif RN, ElBatsh MM, Emam MN. Ameliorative effect of quercetin on neurochemical and behavioral deficits in rotenone rat model of parkinson’s disease: modulating autophagy (Quercetin on Experimental Parkinson’s Disease). J Biochem Mol Toxicol 2016; 30(7): 360-9.
[http://dx.doi.org/10.1002/jbt.21821] [PMID: 27252111]
[128]
Nikokalam Nazif N, Khosravi M, Ahmadi R, Bananej M, Majd A. Neuroprotection effect of quercetin on TNF-α levels and gene expression of Caspase 3 in MPTP-ınduced male NMRI mice. Iran Red Crescent Med J 2019; 21(12): e94883.
[129]
Lazo-Gomez R, Tapia R. Quercetin prevents spinal motor neuron degeneration induced by chronic excitotoxic stimulus by a sirtuin 1-dependent mechanism. Transl Neurodegener 2017; 6(1): 31.
[http://dx.doi.org/10.1186/s40035-017-0102-8] [PMID: 29201361]
[130]
Gupta R, Shukla RK, Pandey A, et al. Involvement of PKA/DARPP-32/PP1α and β- arrestin/Akt/GSK-3β signaling in cadmium-induced DA-D2 receptor-mediated motor dysfunctions: Protective role of quercetin. Sci Rep 2018; 8(1): 2528.
[http://dx.doi.org/10.1038/s41598-018-20342-z] [PMID: 29410441]
[131]
Sharma S, Raj K, Singh S. Neuroprotective effect of quercetin in combination with piperine against rotenone- and iron supplement-induced Parkinson’s disease in experimental rats. Neurotox Res 2020; 37(1): 198-209.
[http://dx.doi.org/10.1007/s12640-019-00120-z] [PMID: 31654381]
[132]
Singh S, Jamwal S, Kumar P. Neuroprotective potential of Quercetin in combination with piperine against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity. Neural Regen Res 2017; 12(7): 1137-44.
[http://dx.doi.org/10.4103/1673-5374.211194] [PMID: 28852397]
[133]
Singh S, Kumar P. Piperine in combination with quercetin halt 6-OHDA induced neurodegeneration in experimental rats: Biochemical and neurochemical evidences. Neurosci Res 2018; 133: 38-47.
[http://dx.doi.org/10.1016/j.neures.2017.10.006] [PMID: 29056550]
[134]
Boyina HK, Geethakhrishnan SL, Panuganti S, et al. In silico and in vivo studies on quercetin as potential anti-parkinson agent. Adv Exp Med Biol 2020; 1195: 1-11.
[http://dx.doi.org/10.1007/978-3-030-32633-3_1] [PMID: 32468451]
[135]
Spuch C, Navarro C. Liposomes for targeted delivery of active agents against neurodegenerative disease (Alzheimer’s disease and Parkinson’s disease). J Drug Deliv 2011; 2011: 469679.
[http://dx.doi.org/10.1155/2011/469679] [PMID: 22203906]
[136]
Pardridge WM. Blood-brain barrier drug targeting: the future of brain drug development. Mol Interv 2003; 3(2): 90-105, 51.
[http://dx.doi.org/10.1124/mi.3.2.90] [PMID: 14993430]
[137]
Moradi SZ, Momtaz S, Bayrami Z, Farzaei MH, Abdollahi M. Nanoformulations of herbal extracts in treatment of neurodegenerative disorders. Front Bioeng Biotechnol 2020; 8: 238.
[http://dx.doi.org/10.3389/fbioe.2020.00238] [PMID: 32318551]
[138]
Acharya S, Meenambiga SS. Nanotechnology in Parkinson’s disease - A Review. Res J Pharm Tech 2020; 13(4): 1965-9.
[http://dx.doi.org/10.5958/0974-360X.2020.00354.6]
[139]
Díaz M, Vaamonde L, Dajas F. Assessment of the protective capacity of nanosomes of quercetin in an experimental model of Parkinson’s disease in the rat. Gen Med (Los Angel) 2015; 3(5): 1-7.
[http://dx.doi.org/10.4172/2327-5146.1000207]
[140]
Priprem A, Watanatorn J, Sutthiparinyanont S, Phachonpai W, Muchimapura S. Anxiety and cognitive effects of quercetin liposomes in rats. Nanomedicine 2008; 4(1): 70-8.
[http://dx.doi.org/10.1016/j.nano.2007.12.001] [PMID: 18249157]
[141]
Amanzadeh E, Esmaeili A, Abadi REN, Kazemipour N, Pahlevanneshan Z, Beheshti S. Quercetin conjugated with superparamagnetic iron oxide nanoparticles improves learning and memory better than free quercetin via interacting with proteins involved in LTP. Sci Rep 2019; 9(1): 6876.
[http://dx.doi.org/10.1038/s41598-019-43345-w] [PMID: 31053743]
[142]
Ganesan P, Ko HM, Kim IS, Choi DK. Recent trends in the development of nanophytobioactive compounds and delivery systems for their possible role in reducing oxidative stress in Parkinson’s disease models. Int J Nanomedicine 2015; 10: 6757-72.
[http://dx.doi.org/10.2147/IJN.S93918] [PMID: 26604750]
[143]
Di Martino P, Censi R, Gigliobianco MR, et al. Nano-medicine improving the bioavailability of small molecules for the prevention of neurodegenerative diseases. Curr Pharm Des 2017; 23(13): 1897-908.
[http://dx.doi.org/10.2174/1381612822666161227154447] [PMID: 28025942]
[144]
Costa LG, Garrick JM, Roquè PJ, Pellacani C. Mechanisms of neuroprotection by quercetin: Counteracting oxidative stress and more. Oxid Med Cell Longev 2016; 2016: 2986796.
[http://dx.doi.org/10.1155/2016/2986796] [PMID: 26904161]
[145]
Ghaffari F, Hajizadeh Moghaddam A, Zare M. Neuroprotective effect of quercetin nanocrystal in a 6-Hydroxydopamine model of Parkinson disease: Biochemical and behavioral evidence. Basic Clin Neurosci 2018; 9(5): 317-24.
[http://dx.doi.org/10.32598/bcn.9.5.317] [PMID: 30719246]
[146]
Yarjanli Z, Ghaedi K, Esmaeili A, Zarrabi A, Rahgozar S. The antitoxic effects of quercetin and quercetin-conjugated iron oxide nanoparticles (QNPs) against H2O2-induced toxicity in PC12 cells. Int J Nanomedicine 2019; 14: 6813-30.
[http://dx.doi.org/10.2147/IJN.S212582] [PMID: 31692568]
[147]
Möschwitzer JP. Drug nanocrystals in the commercial pharmaceutical development process. Int J Pharm 2013; 453(1): 142-56.
[http://dx.doi.org/10.1016/j.ijpharm.2012.09.034]
[148]
Keck CM, Müller RH. Drug nanocrystals of poorly soluble drugs produced by high pressure homogenisation. Eur J Pharm Biopharm 2006; 62(1): 3-16.
[http://dx.doi.org/10.1016/j.ejpb.2005.05.009] [PMID: 16129588]
[149]
Sharma A, Sharma US. Liposomes in drug delivery: Progress and limitations. Int J Pharm 1997; 154(2): 123-40.
[http://dx.doi.org/10.1016/S0378-5173(97)00135-X]
[150]
Yücel C. Değim Z, Yilmaz S. Nanoparticle and liposome formulations of doxycycline: transport properties through Caco-2 cell line and effects on matrix metalloproteinase secretion. Biomed Pharmacother 2013; 67(6): 459-67.
[http://dx.doi.org/10.1016/j.biopha.2013.03.001] [PMID: 23583191]
[151]
Phachonpai W, Wattanathorn J, Muchimapura S, Tong-Un T, Preechagoon D. Neuroprotective effect of quercetin encapsulated liposomes: a novel therapeutic strategy against Alzheimer’s disease. Am J Appl Sci 2010; 7(4): 480-5.
[http://dx.doi.org/10.3844/ajassp.2010.480.485]
[152]
Wattanathorn J, Phachonpai W, Priprem A, Suthiparinyanont S. Intranasal administration of quercetin liposome decreases anxiety-like behavior and increases spatial memory. Am J Agric Biol Sci 2007; 2(1): 31-5.
[http://dx.doi.org/10.3844/ajabssp.2007.31.35]
[153]
de Boer VC, Dihal AA, van der Woude H, et al. Tissue distribution of quercetin in rats and pigs. J Nutr 2005; 135(7): 1718-25.
[http://dx.doi.org/10.1093/jn/135.7.1718] [PMID: 15987855]
[154]
Datla KP, Christidou M, Widmer WW, Rooprai HK, Dexter DT. Tissue distribution and neuroprotective effects of citrus flavonoid tangeretin in a rat model of Parkinson’s disease. Neuroreport 2001; 12(17): 3871-5.
[http://dx.doi.org/10.1097/00001756-200112040-00053] [PMID: 11726811]
[155]
Blasina F, Vaamonde L, Silvera F, Tedesco AC, Dajas F. Intravenous nanosomes of quercetin improve brain function and hemodynamic instability after severe hypoxia in newborn piglets. Neurochem Int 2015; 89: 149-56.
[http://dx.doi.org/10.1016/j.neuint.2015.08.007] [PMID: 26297982]
[156]
Kumar P, Sharma G, Kumar R, et al. Promises of a biocompatible nanocarrier in improved brain delivery of quercetin: Biochemical, pharmacokinetic and biodistribution evidences. Int J Pharm 2016; 515(1-2): 307-14.
[http://dx.doi.org/10.1016/j.ijpharm.2016.10.024] [PMID: 27756627]
[157]
Bagad M, Khan ZA. Poly(n-butylcyanoacrylate) nanoparticles for oral delivery of quercetin: preparation, characterization, and pharmacokinetics and biodistribution studies in Wistar rats. Int J Nanomedicine 2015; 10: 3921-35.
[http://dx.doi.org/10.2147/IJN.S80706] [PMID: 26089668]
[158]
Chen WW, Zhang X, Huang WJ. Role of neuroinflammation in neurodegenerative diseases (Review). Mol Med Rep 2016; 13(4): 3391-6.
[http://dx.doi.org/10.3892/mmr.2016.4948] [PMID: 26935478]
[159]
Testa G, Gamba P, Badilli U, et al. Loading into nanoparticles improves quercetin’s efficacy in preventing neuroinflammation induced by oxysterols. PLoS One 2014; 9(5): e96795.
[http://dx.doi.org/10.1371/journal.pone.0096795] [PMID: 24802026]
[160]
Dhawan S, Kapil R, Singh B. Formulation development and systematic optimization of solid lipid nanoparticles of quercetin for improved brain delivery. J Pharm Pharmacol 2011; 63(3): 342-51.
[http://dx.doi.org/10.1111/j.2042-7158.2010.01225.x] [PMID: 21749381]
[161]
Ebrahimpour S, Esmaeili A, Beheshti S. Effect of quercetin-conjugated superparamagnetic iron oxide nanoparticles on diabetes-induced learning and memory impairment in rats. Int J Nanomedicine 2018; 13: 6311-24.
[http://dx.doi.org/10.2147/IJN.S177871] [PMID: 30349252]
[162]
Dajas F, Abin-Carriquiry JA, Arredondo F, et al. Quercetin in brain diseases: Potential and limits. Neurochem Int 2015; 89: 140-8.
[http://dx.doi.org/10.1016/j.neuint.2015.07.002] [PMID: 26160469]
[163]
Barnes JS, Schug KA. Oxidative degradation of quercetin with hydrogen peroxide using continuous-flow kinetic electrospray-ion trap-time-of-flight mass spectrometry. J Agric Food Chem 2014; 62(19): 4322-31.
[http://dx.doi.org/10.1021/jf500619x] [PMID: 24758471]
[164]
Keenan J, Iqbal U, Moreno M, Sandhu J. Microbubble protein delivery for Parkinson’s. J Ther Ultrasound 2015; 3: O21.
[http://dx.doi.org/10.1186/2050-5736-3-S1-O21]
[165]
Liu Y, Gong Y, Xie W, et al. Microbubbles in combination with focused ultrasound for the delivery of quercetin-modified sulfur nanoparticles through the blood brain barrier into the brain parenchyma and relief of endoplasmic reticulum stress to treat Alzheimer’s disease. Nanoscale 2020; 12(11): 6498-511.
[http://dx.doi.org/10.1039/C9NR09713A] [PMID: 32154811]
[166]
Yue P, Miao W, Gao L, Zhao X, Teng J. Ultrasound-triggered effects of the microbubbles coupled to GDNF plasmid-loaded PEGylated liposomes in a rat model of Parkinson’s Disease. Front Neurosci 2018; 12: 222.
[http://dx.doi.org/10.3389/fnins.2018.00222] [PMID: 29686604]
[167]
Khan H, Tundis R, Ullah H, et al. Flavonoids targeting NRF2 in neurodegenerative disorders. Food Chem Toxicol 2020; 146: 111817.b.
[http://dx.doi.org/10.1016/j.fct.2020.111817] [PMID: 33069760]
[168]
Napatr S, Jintanaporn W, Supaporn M, Tiamkao S, Brown K, Chaisiwamongkol K. Cognitive-enhancing effect of quercetin in a rat model of Parkinson’s Disease induced by 6-hydroxydopamine. Evid-based Compl. Alt. 2012. Article ID 2012; 823206: 1-9.
[http://dx.doi.org/10.1155/2012/823206]
[169]
Pei B, Yang M, Qi X, Shen X, Chen X, Zhang F. Quercetin ameliorates ischemia/reperfusion-induced cognitive deficits by inhibiting ASK1/JNK3/caspase-3 by enhancing the Akt signaling pathway. Biochem Biophys Res Commun 2016; 478(1): 199-205.
[http://dx.doi.org/10.1016/j.bbrc.2016.07.068] [PMID: 27450812]
[170]
Tamtaji OR, Hadinezhad T, Fallah M, et al. The therapeutic potential of quercetin in Parkinson’s Disease: Insights into its molecular and cellular regulation. Curr Drug Targets 2020; 21(5): 509-18.
[http://dx.doi.org/10.2174/1389450120666191112155654] [PMID: 31721700]
[171]
Jiang X, Ganesan P, Rengarajan T, Choi DK, Arulselvan P. Cellular phenotypes as inflammatory mediators in Parkinson’s disease: Interventional targets and role of natural products. Biomed Pharmacother 2018; 106: 1052-62.
[http://dx.doi.org/10.1016/j.biopha.2018.06.162] [PMID: 30119171]
[172]
Zhu M, Han S, Fink AL. Oxidized quercetin inhibits α-synuclein fibrillization. Biochim Biophys Acta 2013; 1830(4): 2872-81.
[http://dx.doi.org/10.1016/j.bbagen.2012.12.027] [PMID: 23295967]
[173]
Spencer JP, Kuhnle GG, Williams RJ, Rice-Evans C. Intracellular metabolism and bioactivity of quercetin and its in vivo metabolites. Biochem J 2003; 372(Pt 1): 173-81.
[http://dx.doi.org/10.1042/bj20021972] [PMID: 12578560]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy