Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

A Comprehensive Review on PCSK9 as Mechanistic Target Approach in Cancer Therapy

Author(s): Amita Singh, Pranesh Kumar, Archana Bharti Sonkar, Anurag Kumar Gautam, Abhishek Verma, Biswanath Maity, Himani Tiwari, Nanda Gopal Sahoo, Amit K. Keshari, S.K. Yadav and Sudipta Saha*

Volume 23, Issue 1, 2023

Published on: 22 August, 2022

Page: [24 - 32] Pages: 9

DOI: 10.2174/1389557521666211202115823

Abstract

PCSK9 is a strongly expressed protein in the liver and brain that binds to the LDLR and regulates cholesterol in the liver effectively. Other receptors with which it interacts include VLDLR, LRP1, ApoER2, and OLR1. PCSK9 gain-of-function results in lysosomal degradation of these receptors, which may result in hyperlipidemia. PCSK9 deficiency results in a lower amount of cholesterol, which reduces cholesterol's accessibility to cancer cells. PCSK9 regulates several proteins and signaling pathways in cancer, including JNK, NF-κВ, and the mitochondrial-mediated apoptotic pathway. In the liver, breast, lungs, and colon tissue, PCSK9 initiates and facilitates cancer development, while in prostate cancer cells, it induces apoptosis. PCSK9 has a significant impact on brain cancer, promoting cancer cell survival by manipulating the mitochondrial apoptotic pathway and exhibiting apoptotic activity in neurons by influencing the NF-κВ, JNK, and caspase-dependent pathways. The PCSK9 impact in cancer at different organs is explored in this study, as well as the targeted signaling mechanisms involved in cancer growth. As a result, these signaling mechanisms may be aimed for the development and exploration of anti-cancer drugs in the immediate future.

Keywords: PCSK9, cancer, LDLR, JNK, NF-κВ, mitochondrial-mediated apoptotic pathway.

Graphical Abstract
[1]
Nozue, T. Lipid lowering therapy and circulating PCSK9 concentration. J. Atheroscler. Thromb., 2017, 24(9), 895-907.
[2]
Ding, Z.; Pothineni, N.V.K.; Goel, A.; Lüscher, T.F.; Mehta, J.L. PCSK9 and inflammation: role of shear stress, pro-inflammatory cytokines, and LOX-1. Cardiovasc. Res., 2020, 116(5), 908-915.
[http://dx.doi.org/10.1093/cvr/cvz313] [PMID: 31746997]
[3]
Han, Y.; Willis, M. The role of PCSK9 in lipid metabolism and its relationship to new therapies for lowering cholesterol and reducing cardiac disease. J. Cardiol. Ther., 2015, 2, 393-399.
[http://dx.doi.org/10.17554/j.issn.2309-6861.2015.02.97]
[4]
Lambert, G.; Sjouke, B.; Choque, B.; Kastelein, J.J.; Hovingh, G.K. The PCSK9 decade. J. Lipid Res., 2012, 53(12), 2515-2524.
[http://dx.doi.org/10.1194/jlr.R026658] [PMID: 22811413]
[5]
Blanchard, V.; Khantalin, I.; Ramin-Mangata, S.; Chémello, K.; Nativel, B.; Lambert, G. PCSK9: From biology to clinical applications. Pathology, 2019, 51(2), 177-183.
[http://dx.doi.org/10.1016/j.pathol.2018.10.012] [PMID: 30522786]
[6]
Banerjee, Y.; Santos, R.D.; Al-Rasadi, K.; Rizzo, M. Targeting PCSK9 for therapeutic gains: Have we addressed all the concerns? Atherosclerosis, 2016, 248, 62-75.
[http://dx.doi.org/10.1016/j.atherosclerosis.2016.02.018] [PMID: 26987067]
[7]
Sun, X.; Essalmani, R.; Day, R.; Khatib, A.M.; Seidah, N.G.; Prat, A. Proprotein convertase subtilisin/kexin type 9 deficiency reduces melanoma metastasis in liver. Neoplasia, 2012, 14(12), 1122-1131.
[http://dx.doi.org/10.1593/neo.121252] [PMID: 23308045]
[8]
Weider, E.; Susan-Resiga, D.; Essalmani, R.; Hamelin, J.; Asselin, M.C.; Nimesh, S.; Ashraf, Y.; Wycoff, K.L.; Zhang, J.; Prat, A.; Seidah, N.G. Proprotein convertase subtilisin/kexin type 9 (PCSK9) single domain antibodies are potent inhibitors of low density lipoprotein receptor degradation. J. Biol. Chem., 2016, 291(32), 16659-16671.
[http://dx.doi.org/10.1074/jbc.M116.717736] [PMID: 27284008]
[9]
Farnier, M. PCSK9: From discovery to therapeutic applications. Arch. Cardiovasc. Dis., 2014, 107(1), 58-66.
[http://dx.doi.org/10.1016/j.acvd.2013.10.007] [PMID: 24373748]
[10]
Stoekenbroek, R.M.; Lambert, G.; Cariou, B.; Hovingh, G.K. Inhibiting PCSK9 - biology beyond LDL control. Nat. Rev. Endocrinol., 2018, 15(1), 52-62.
[http://dx.doi.org/10.1038/s41574-018-0110-5] [PMID: 30367179]
[11]
Wiciński, M.; Żak, J.; Malinowski, B.; Popek, G.; Grześk, G. PCSK9 signaling pathways and their potential importance in clinical practice. EPMA J., 2017, 8(4), 391-402.
[http://dx.doi.org/10.1007/s13167-017-0106-6] [PMID: 29209441]
[12]
Burke, A.C.; Dron, J.S.; Hegele, R.A.; Huff, M.W. PCSK9: Regulation and PCSK9: Regulation and target for drug development for dyslipidemia. Annu. Rev. Pharmacol. Toxicol., 2017, 57, 223-244.
[http://dx.doi.org/10.1146/annurev-pharmtox-010716-104944] [PMID: 27575716]
[13]
Athavale, D.; Chouhan, S.; Pandey, V.; Mayengbam, S.S.; Singh, S.; Bhat, M.K. Hepatocellular carcinoma-associated hypercholesterolemia: Involvement of proprotein-convertase-subtilisin-kexin type-9 (PCSK9). Cancer Metab., 2018, 6, 16.
[http://dx.doi.org/10.1186/s40170-018-0187-2] [PMID: 30386595]
[14]
Dixon, D.L.; Trankle, C.; Buckley, L.; Parod, E.; Carbone, S.; Van Tassell, B.W.; Abbate, A. A review of PCSK9 inhibition and its effects beyond LDL receptors. J. Clin. Lipidol., 2016, 10(5), 1073-1080.
[http://dx.doi.org/10.1016/j.jacl.2016.07.004] [PMID: 27678423]
[15]
Schulz, R.; Schlüter, K.D. PCSK9 targets important for lipid metabolism. Clin. Res. Cardiol. Suppl., 2017, 12(Suppl. 1), 2-11.
[http://dx.doi.org/10.1007/s11789-017-0085-0] [PMID: 28176216]
[16]
Sohda, T.; Iwata, K.; Hirano, G.; Sakurai, K.; Yokoyama, K.; Morihara, D.; Takeyama, Y.; Irie, M.; Shakado, S.; Sakisaka, S. 3-Hydroxyl-3-methylglutaryl-coenzyme A reductase is up regulated in hepatocellular carcinoma associated with paraneoplastic hypercholesterolemia. Med. Mol. Morphol., 2013, 46(4), 239-242.
[http://dx.doi.org/10.1007/s00795-013-0042-z] [PMID: 23549978]
[17]
Piechota, M.; Piechota, A.; Śliwczyński, A. Liver cell carcinoma in Poland: Data reported to the National Health Fund in the years 2008-2012. J. Liver, 2015, 04, 2167-0889.
[http://dx.doi.org/10.4172/2167-0889.1000183]
[18]
Bhat, M.; Skill, N.; Marcus, V.; Deschenes, M.; Tan, X.; Bouteaud, J.; Negi, S.; Awan, Z.; Aikin, R.; Kwan, J.; Amre, R.; Tabaries, S.; Hassanain, M.; Seidah, N.G.; Maluccio, M.; Siegel, P.; Metrakos, P. Decreased PCSK9 expression in human hepatocellular carcinoma. BMC Gastroenterol., 2015, 15, 176.
[http://dx.doi.org/10.1186/s12876-015-0371-6] [PMID: 26674961]
[19]
Ruscica, M.; Ferri, N.; Macchi, C.; Meroni, M.; Lanti, C.; Ricci, C.; Maggioni, M.; Fracanzani, A.L.; Badiali, S.; Fargion, S.; Magni, P.; Valenti, L.; Dongiovanni, P. Liver fat accumulation is associated with circulating PCSK9. Ann. Med., 2016, 48(5), 384-391.
[http://dx.doi.org/10.1080/07853890.2016.1188328] [PMID: 27222915]
[20]
Cawley, N.X.; Lyons, A.T.; Abebe, D.; Wassif, C.A.; Porter, F.D. Evaluation of the potential role of proprotein convertase subtilisin/kexin type 9 (PCSK9) in Niemann-Pick disease, type C1. Int. J. Mol. Sci., 2020, 21(7), 2430.
[http://dx.doi.org/10.3390/ijms21072430] [PMID: 32244519]
[21]
Soutar, A.K. Unexpected roles for PCSK9 in lipid metabolism. Curr. Opin. Lipidol., 2011, 22(3), 192-196.
[http://dx.doi.org/10.1097/MOL.0b013e32834622b5] [PMID: 21494143]
[22]
Nagashima, S.; Morishima, K.; Okamoto, H.; Ishibashi, S. Possible involvement of PCSK9 overproduction in hyperlipoproteinemia asso-ciated with hepatocellular carcinoma: A case report. J. Clin. Lipidol., 2016, 10(4), 1045-1049.
[http://dx.doi.org/10.1016/j.jacl.2016.05.004] [PMID: 27578139]
[23]
Druce, I.; Abujrad, H.; Ooi, T.C. PCSK9 and triglyceriderich lipoprotein metabolism. J. Biomed. Res., 2015, 29, 429.
[PMID: 26320603]
[24]
Kuzu, O.F.; Noory, M.A.; Robertson, G.P. The role of cholesterol in cancer. Cancer Res., 2016, 76(8), 2063-2070.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-2613] [PMID: 27197250]
[25]
Tavori, H.; Rashid, S.; Fazio, S. On the function and homeostasis of PCSK9: Reciprocal interaction with LDLR and additional lipid effects. Atherosclerosis, 2015, 238(2), 264-270.
[http://dx.doi.org/10.1016/j.atherosclerosis.2014.12.017] [PMID: 25544176]
[26]
Demers, A.; Samami, S.; Lauzier, B.; Des Rosiers, C.; Ngo Sock, E.T.; Ong, H.; Mayer, G. PCSK9 induces CD36 degradation and affects long-chain fatty acid uptake and triglyceride metabolism in adipocytes and in mouse liver. Arterioscler. Thromb. Vasc. Biol., 2015, 35(12), 2517-2525.
[http://dx.doi.org/10.1161/ATVBAHA.115.306032] [PMID: 26494228]
[27]
He, M.; Zhang, W.; Dong, Y.; Wang, L.; Fang, T.; Tang, W.; Lv, B.; Chen, G.; Yang, B.; Huang, P.; Xia, J. Pro-inflammation NF-κB signaling triggers a positive feedback via enhancing cholesterol accumulation in liver cancer cells. J. Exp. Clin. Cancer Res., 2017, 36(1), 15.
[http://dx.doi.org/10.1186/s13046-017-0490-8] [PMID: 28100270]
[28]
Awan, Z.; Baass, A.; Genest, J. Proprotein Convertase Subtilisin/Kexin type 9 (PCSK9): lessons learned from patients with hypercholesterolemia. Clin. Chem., 2014, 60(11), 1380-1389.
[http://dx.doi.org/10.1373/clinchem.2014.225946] [PMID: 25248569]
[29]
Dragan, S.; Serban, M.C.; Banach, M. Proprotein convertase subtilisin/kexin 9 inhibitors: An emerging lipid-lowering therapy? J. Cardiovasc. Pharmacol. Ther., 2015, 20(2), 157-168.
[http://dx.doi.org/10.1177/1074248414539562] [PMID: 24938457]
[30]
Lopez, D. Proteins interacting with PCSK9: A potential for personalized medicine. Rem. Open Access, 2017, 2, 1056.
[31]
Kühl, M; Binner, C; Jozwiak, J Treatment of hypercholesterolaemia with PCSK9 inhibitors in patients after cardiac transplantation. 2019, 14, 0210373.
[http://dx.doi.org/10.1371/journal.pone.0210373]
[32]
Schlegel, V.; Treuner-Kaueroff, T.; Seehofer, D.; Berg, T.; Becker, S.; Ceglarek, U.; Thiery, J.; Kaiser, T. Low PCSK9 levels are correlated with mortality in patients with end-stage liver disease. PLoS One, 2017, 12(7), e0181540.
[http://dx.doi.org/10.1371/journal.pone.0181540] [PMID: 28727814]
[33]
Patel, R.S.; Scopelliti, E.M.; Olugbile, O. The role of PCSK9 inhibitors in the treatment of hypercholesterolemia. Ann. Pharmacother., 2018, 52(10), 1000-1018.
[http://dx.doi.org/10.1177/1060028018771670] [PMID: 29667842]
[34]
Fontes-Carvalho, R.; Marques Silva, P.; Rodrigues, E.; Araújo, F.; Gavina, C.; Ferreira, J.; Morais, J. Practical guide for the use of PCSK9 inhibitors in Portugal. Rev. Port. Cardiol., 2019, 38(6), 391-405.
[http://dx.doi.org/10.1016/j.repce.2019.07.004] [PMID: 31324407]
[35]
Whayne, T.F., Jr Defining the role of PCSK9 inhibitors in the treatment of hyperlipidemia. Am. J. Cardiovasc. Drugs, 2016, 16(2), 83-92.
[http://dx.doi.org/10.1007/s40256-015-0150-3] [PMID: 26596726]
[36]
Seidah, N.G. Proprotein convertase subtilisin kexin 9 (PCSK9) inhibitors in the treatment of hypercholesterolemia and other pathologies. Curr. Pharm. Des., 2013, 19(17), 3161-3172.
[http://dx.doi.org/10.2174/13816128113199990313] [PMID: 23317404]
[37]
Demidyuk, I.V.; Shubin, A.V.; Gasanov, E.V.; Kurinov, A.M.; Demkin, V.V.; Vinogradova, T.V.; Zinovyeva, M.V.; Sass, A.V.; Zborovskaya, I.B.; Kostrov, S.V. Alterations in gene expression of proprotein convertases in human lung cancer have a limited number of scena-rios. PLoS One, 2013, 8(2), e55752.
[http://dx.doi.org/10.1371/journal.pone.0055752] [PMID: 23409034]
[38]
Masaoutis, C.; Mihailidou, C.; Tsourouflis, G.; Theocharis, S. Exosomes in lung cancer diagnosis and treatment. From the translating research into future clinical practice. Biochimie, 2018, 151, 27-36.
[http://dx.doi.org/10.1016/j.biochi.2018.05.014] [PMID: 29857182]
[39]
Brescia, F.J. Lung cancer-a philosophical, ethical, and personal perspective. Crit. Rev. Oncol. Hematol., 2001, 40(2), 139-148.
[http://dx.doi.org/10.1016/S1040-8428(01)00140-8] [PMID: 11682321]
[40]
Xu, X.; Cui, Y.; Cao, L.; Zhang, Y.; Yin, Y.; Hu, X. PCSK9 regulates apoptosis in human lung adenocarcinoma A549 cells via endoplasmic reticulum stress and mitochondrial signaling pathways. Exp. Ther. Med., 2017, 13(5), 1993-1999.
[http://dx.doi.org/10.3892/etm.2017.4218] [PMID: 28565798]
[41]
Bonaventura, A.; Grossi, F.; Carbone, F.; Vecchié, A.; Minetti, S.; Bardi, N.; Elia, E.; Ansaldo, A.M.; Ferrara, D.; Rijavec, E.; Dal Bello, M.G.; Rossi, G.; Biello, F.; Tagliamento, M.; Alama, A.; Coco, S.; Spallarossa, P.; Dallegri, F.; Genova, C.; Montecucco, F. Serum PCSK9 levels at the second nivolumab cycle predict overall survival in elderly patients with NSCLC: A pilot study. Cancer Immunol. Immunother., 2019, 68(8), 1351-1358.
[http://dx.doi.org/10.1007/s00262-019-02367-z] [PMID: 31327024]
[42]
Touvier, M.; Fassier, P.; His, M.; Norat, T.; Chan, D.S.; Blacher, J.; Hercberg, S.; Galan, P.; Druesne-Pecollo, N.; Latino-Martel, P. Cholesterol and breast cancer risk: A systematic review and meta-analysis of prospective studies. Br. J. Nutr., 2015, 114(3), 347-357.
[http://dx.doi.org/10.1017/S000711451500183X] [PMID: 26173770]
[43]
Harris, J.R.; Lippman, M.E.; Veronesi, U.; Willett, W. Breast cancer (1). N. Engl. J. Med., 1992, 327(5), 319-328.
[http://dx.doi.org/10.1056/NEJM199207303270505] [PMID: 1620171]
[44]
Nelson, E.R. The significance of cholesterol and its metabolite, 27-hydroxycholesterol in breast cancer. Mol. Cell. Endocrinol., 2018, 466, 73-80.
[http://dx.doi.org/10.1016/j.mce.2017.09.021] [PMID: 28919300]
[45]
Nazih, H.; Bard, J.M. Cholesterol, oxysterols and LXRs in breast cancer pathophysiology. Int. J. Mol. Sci., 2020, 21(4), 1356.
[http://dx.doi.org/10.3390/ijms21041356] [PMID: 32079340]
[46]
Brown, M.; Ahmed, S. Emerging role of Proprotein Convertase Subtilisin/Kexin type-9 (PCSK-9) in inflammation and diseases. Toxicol. Appl. Pharmacol., 2019, 370, 170-177.
[http://dx.doi.org/10.1016/j.taap.2019.03.018] [PMID: 30914377]
[47]
Lagace, T.A. PCSK9 and LDLR degradation: Regulatory mechanisms in circulation and in cells. Curr. Opin. Lipidol., 2014, 25(5), 387-393.
[http://dx.doi.org/10.1097/MOL.0000000000000114] [PMID: 25110901]
[48]
Gu, H.M.; Adijiang, A.; Mah, M.; Zhang, D.W. Characterization of the role of EGF-A of low density lipoprotein receptor in PCSK9 binding. J. Lipid Res., 2013, 54(12), 3345-3357.
[http://dx.doi.org/10.1194/jlr.M041129] [PMID: 24103783]
[49]
Antalis, C.J.; Arnold, T.; Rasool, T.; Lee, B.; Buhman, K.K.; Siddiqui, R.A. High ACAT1 expression in estrogen receptor negative basal-like breast cancer cells is associated with LDL-induced proliferation. Breast Cancer Res. Treat., 2010, 122(3), 661-670.
[http://dx.doi.org/10.1007/s10549-009-0594-8] [PMID: 19851860]
[50]
Nowak, C.; Ärnlöv, J. A Mendelian randomization study of the effects of blood lipids on breast cancer risk. Nat. Commun., 2018, 9(1), 3957.
[http://dx.doi.org/10.1038/s41467-018-06467-9] [PMID: 30262900]
[51]
Danilo, C.; Frank, P.G. Cholesterol and breast cancer development. Curr. Opin. Pharmacol., 2012, 12(6), 677-682.
[http://dx.doi.org/10.1016/j.coph.2012.07.009] [PMID: 22867847]
[52]
Cedó, L.; Reddy, S.T.; Mato, E.; Blanco-Vaca, F.; Escolà-Gil, J.C. HDL and LDL: potential new players in breast cancer development. J. Clin. Med., 2019, 8(6), 8.
[http://dx.doi.org/10.3390/jcm8060853] [PMID: 31208017]
[53]
Cruz, P.M.; Mo, H.; McConathy, W.J.; Sabnis, N.; Lacko, A.G. The role of cholesterol metabolism and cholesterol transport in carcinogenesis: A review of scientific findings, relevant to future cancer therapeutics. Front. Pharmacol., 2013, 4, 119.
[http://dx.doi.org/10.3389/fphar.2013.00119] [PMID: 24093019]
[54]
Ding, X.; Zhang, W.; Li, S.; Yang, H. The role of cholesterol metabolism in cancer. Am. J. Cancer Res., 2019, 9(2), 219-227.
[PMID: 30906624]
[55]
Lei, L; Li, X; Yuan, YJ Inhibition of proprotein convertase subtilisin/kexin type 9 attenuates 2,4,6-trinitrobenzenesulfonic acidinduced colitis via repressing toll-like receptor 4/nuclear factorkappa B. 2020, 36, 705-711.
[56]
Momtazi-Borojeni, A.A.; Nik, M.E.; Jaafari, M.R.; Banach, M.; Sahebkar, A. Effects of immunization against PCSK9 in an experimental model of breast cancer. Arch. Med. Sci., 2019, 15(3), 570-579.
[http://dx.doi.org/10.5114/aoms.2019.84734] [PMID: 31110521]
[57]
Strief, D.M. An overview of prostate cancer: Diagnosis and treatment. Urol. Nurs., 2007, 27(6), 475-479.
[PMID: 18217529]
[58]
Droz, J.P.; Balducci, L.; Bolla, M.; Emberton, M.; Fitzpatrick, J.M.; Joniau, S.; Kattan, M.W.; Monfardini, S.; Moul, J.W.; Naeim, A.; van Poppel, H.; Saad, F.; Sternberg, C.N. Management of prostate cancer in older men: Recommendations of a working group of the International Society of Geriatric Oncology. BJU Int., 2010, 106(4), 462-469.
[http://dx.doi.org/10.1111/j.1464-410X.2010.09334.x] [PMID: 20346033]
[59]
Hager, M.H.; Solomon, K.R.; Freeman, M.R. The role of cholesterol in prostate cancer. Curr. Opin. Clin. Nutr. Metab. Care, 2006, 9(4), 379-385.
[http://dx.doi.org/10.1097/01.mco.0000232896.66791.62] [PMID: 16778565]
[60]
Stopsack, K.H.; Gerke, T.A.; Andrén, O.; Andersson, S.O.; Giovannucci, E.L.; Mucci, L.A.; Rider, J.R. Cholesterol uptake and regulation in high-grade and lethal prostate cancers. Carcinogenesis, 2017, 38(8), 806-811.
[http://dx.doi.org/10.1093/carcin/bgx058] [PMID: 28595267]
[61]
Radwan, A.A.; Alanazi, F.K. Targeting cancer using cholesterol conjugates. Saudi Pharm. J., 2014, 22(1), 3-16.
[http://dx.doi.org/10.1016/j.jsps.2013.01.003] [PMID: 24493968]
[62]
Couture, F.; D’Anjou, F.; Desjardins, R.; Boudreau, F.; Day, R. Role of proprotein convertases in prostate cancer progression. Neoplasia, 2012, 14(11), 1032-1042.
[http://dx.doi.org/10.1593/neo.121368] [PMID: 23226097]
[63]
Horton, J.D.; Cohen, J.C.; Hobbs, H.H. PCSK9: a convertase that coordinates LDL catabolism. J. Lipid Res., 2009, 50(Suppl.), S172-S177.
[http://dx.doi.org/10.1194/jlr.R800091-JLR200] [PMID: 19020338]
[64]
Gan, S.S.; Ye, J.Q.; Wang, L.; Qu, F.J.; Chu, C.M.; Tian, Y.J.; Yang, W.; Cui, X.G. Inhibition of PCSK9 protects against radiation-induced damage of prostate cancer cells. OncoTargets Ther., 2017, 10, 2139-2146.
[http://dx.doi.org/10.2147/OTT.S129413] [PMID: 28442922]
[65]
Ricci-Vitiani, L.; Lombardi, D.G.; Pilozzi, E.; Biffoni, M.; Todaro, M.; Peschle, C.; De Maria, R. Identification and expansion of human colon-cancer-initiating cells. Nature, 2007, 445(7123), 111-115.
[http://dx.doi.org/10.1038/nature05384] [PMID: 17122771]
[66]
Basu, V. Role of low density lipoprotein receptor as a potential suppressor of growth and survival of colorectal cancer cells; PhD Dissertation, 2017.
[67]
Seidah, N.G. New developments in proprotein convertase subtilisin-kexin 9's biology and clinical implications. Curr. Opin. Lipidol., 2016, 27(3), 274-281.
[http://dx.doi.org/10.1097/MOL.0000000000000295] [PMID: 27031271]
[68]
Folsom, A.R.; Peacock, J.M.; Boerwinkle, E. Sequence variation in proprotein convertase subtilisin/kexin type 9 serine protease gene, low LDL cholesterol, and cancer incidence. Cancer Epidemiol. Biomarkers Prev., 2007, 16(11), 2455-2458.
[http://dx.doi.org/10.1158/1055-9965.EPI-07-0502] [PMID: 18006936]
[69]
Momtazi-Borojeni, A.A.; Nik, M.E.; Jaafari, M.R.; Banach, M.; Sahebkar, A. Potential anti-tumor effect of a nanoliposomal antiPCSK9 vaccine in mice bearing colorectal cancer. Arch. Med. Sci., 2019, 15(3), 559-569.
[http://dx.doi.org/10.5114/aoms.2019.84732] [PMID: 31110520]
[70]
Zhang, X.; Zhu, S.; Li, T.; Liu, Y.J.; Chen, W.; Chen, J. Targeting immune checkpoints in malignant glioma. Oncotarget, 2017, 8(4), 7157-7174.
[http://dx.doi.org/10.18632/oncotarget.12702] [PMID: 27756892]
[71]
Rousselet, E.; Marcinkiewicz, J.; Kriz, J.; Zhou, A.; Hatten, M.E.; Prat, A.; Seidah, N.G. PCSK9 reduces the protein levels of the LDL receptor in mouse brain during development and after ischemic stroke. J. Lipid Res., 2011, 52(7), 1383-1391.
[http://dx.doi.org/10.1194/jlr.M014118] [PMID: 21518694]
[72]
Bingham, B.; Kotnis, S.; McHendry-Rinde, B.; Shen, R.; Wood, A.; Kennedy, J.D. Laser scanning cytometry in the characterization of the proapoptotic effects of transiently transfected genes in cerebellar granule neurons. Cytometry A, 2006, 69(11), 1114-1122.
[http://dx.doi.org/10.1002/cyto.a.20327] [PMID: 16967493]
[73]
Kysenius, K.; Muggalla, P.; Mätlik, K.; Arumäe, U.; Huttunen, H.J. PCSK9 regulates neuronal apoptosis by adjusting ApoER2 levels and signaling. Cell. Mol. Life Sci., 2012, 69(11), 1903-1916.
[http://dx.doi.org/10.1007/s00018-012-0977-6] [PMID: 22481440]
[74]
Zimetti, F.; Caffarra, P.; Ronda, N.; Favari, E.; Adorni, M.P.; Zanotti, I.; Bernini, F.; Barocco, F.; Spallazzi, M.; Galimberti, D.; Ricci, C.; Ruscica, M.; Corsini, A.; Ferri, N. Increased PCSK9 cerebrospinal fluid concentrations in alzheimer’s disease. J. Alzheimers Dis., 2017, 55(1), 315-320.
[http://dx.doi.org/10.3233/JAD-160411] [PMID: 27662294]
[75]
Cesaro, A.; Bianconi, V.; Gragnano, F. Beyond cholesterol metabolism: The pleiotropic effects of proprotein convertase subtilisin/kexin type 9 (PCSK9). Biofactors, 2020, 46, 367-380.
[76]
Wang, L.; Wang, Z.; Shi, J.; Jiang, Q.; Wang, H.; Li, X.; Hao, D. Inhibition of proprotein convertase subtilisin/kexin type 9 attenuates neuronal apoptosis following focal cerebral ischemia via apolipoprotein E receptor 2 downregulation in hyperlipidemic mice. Int. J. Mol. Med., 2018, 42(4), 2098-2106.
[http://dx.doi.org/10.3892/ijmm.2018.3797] [PMID: 30066942]
[77]
Liu, M.; Wu, G.; Baysarowich, J.; Kavana, M.; Addona, G.H.; Bierilo, K.K.; Mudgett, J.S.; Pavlovic, G.; Sitlani, A.; Renger, J.J.; Hubbard, B.K.; Fisher, T.S.; Zerbinatti, C.V. PCSK9 is not involved in the degradation of LDL receptors and BACE1 in the adult mouse brain. J. Lipid Res., 2010, 51(9), 2611-2618.
[http://dx.doi.org/10.1194/jlr.M006635] [PMID: 20453200]
[78]
Adorni, M.P.; Ruscica, M.; Ferri, N.; Bernini, F.; Zimetti, F. Proprotein convertase subtilisin/kexin type 9, brain cholesterol homeostasis and potential implication for Alzheimer’s disease. Front. Aging Neurosci., 2019, 11, 120.
[http://dx.doi.org/10.3389/fnagi.2019.00120] [PMID: 31178716]
[79]
Hoe, H.S.; Harris, D.C.; Rebeck, G.W. Multiple pathways of apolipoprotein E signaling in primary neurons. J. Neurochem., 2005, 93(1), 145-155.
[http://dx.doi.org/10.1111/j.1471-4159.2004.03007.x] [PMID: 15773914]
[80]
Sassi, K.; Nury, T.; Samadi, M. Cholesterol Derivatives as Promising Anticancer Agents in Glioblastoma Metabolic Therapy; Exon Publications: Brisbane, Australia, 2021, pp. 97-119.
[81]
Liu, L.S.; Bai, X.Q.; Gao, Y.; Wu, Q.; Ren, Z.; Li, Q.; Pan, L.H.; He, N.Y.; Peng, J.; Tang, Z.H. PCSK9 promotes oxLDL-induced PC12 cell apoptosis through the Bcl-2/Bax-caspase 9/3 signaling pathway. J. Alzheimers Dis., 2017, 57(3), 723-734.
[http://dx.doi.org/10.3233/JAD-161136] [PMID: 28304296]
[82]
Piao, M.X.; Bai, J.W.; Zhang, P.F.; Zhang, Y.Z. PCSK9 regulates apoptosis in human neuroglioma u251 cells via mitochondrial signaling pathways. Int. J. Clin. Exp. Pathol., 2015, 8(3), 2787-2794.
[PMID: 26045785]
[83]
Wu, Q.; Tang, Z.H.; Peng, J.; Liao, L.; Pan, L.H.; Wu, C.Y.; Jiang, Z.S.; Wang, G.X.; Liu, L.S. The dual behavior of PCSK9 in the regula-tion of apoptosis is crucial in Alzheimer’s disease progression (Review). Biomed. Rep., 2014, 2(2), 167-171.
[http://dx.doi.org/10.3892/br.2013.213] [PMID: 24649090]
[84]
Zhao, X.S.; Wu, Q.; Peng, J.; Pan, L.H.; Ren, Z.; Liu, H.T.; Jiang, Z.S.; Wang, G.X.; Tang, Z.H.; Liu, L.S. Hyperlipidemia-induced apoptosis of hippocampal neurons in apoE(-/-) mice may be associated with increased PCSK9 expression. Mol. Med. Rep., 2017, 15(2), 712-718.
[http://dx.doi.org/10.3892/mmr.2016.6055] [PMID: 28000893]
[85]
O’Connell, E.M.; Lohoff, F.W. Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) in the brain and relevance for neuropsychiatric disorders. Front. Neurosci., 2020, 14, 609.
[http://dx.doi.org/10.3389/fnins.2020.00609] [PMID: 32595449]

© 2024 Bentham Science Publishers | Privacy Policy