Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

The Role of Vitamin D in Gastrointestinal Diseases: Inflammation, Gastric Cancer, and Colorectal Cancer

Author(s): Yao Chen, Jue Hou, Zhangang Xiao, Yueshui Zhao, Fukuan Du, Xu Wu, Mingxing Li, Yu Chen, Lin Zhang, Chi Hin Cho, Qinglian Wen*, Wei Hu* and Jing Shen*

Volume 29, Issue 22, 2022

Published on: 17 January, 2022

Page: [3836 - 3856] Pages: 21

DOI: 10.2174/0929867328666211111163304

Price: $65

Open Access Journals Promotions 2
Abstract

Vitamin D as a prohormone is converted into the active form in vivo and binds to vitamin D receptors, exercising a wide range of biological functions. Recent studies strongly support that vitamin D supplementation is associated with reduced cancer risk and a good prognosis. Gastrointestinal cancer is the leading cause of cancer-related deaths worldwide. The key role of vitamin D in the development of gastrointestinal cancer has been observed. Moreover, Vitamin D can also affect innate immunity and perform anti-inflammation and anti-infection actions. Given the intimate relationship between cancer and inflammation, we herein summarize epidemiological and preclinical studies of vitamin D and the underlying mechanism of its action in inflammation, gastric and colorectal cancer by our group and other researchers. A beneficial effect of vitamin D in cancer and inflammatory disease has been supported by different studies. More controlled and larger clinical trials are needed before a reliable conclusion and realization of vitamin D supplementation in the adjunct treatment of gastrointestinal inflammation and cancer.

Keywords: Vitamin D, metabolism, innate immunity, antimicrobial peptide, inflammation, gastrointestinal cancer.

[1]
Jones, G. Extrarenal vitamin D activation and interactions between vitamin D2, vitamin D3, and vitamin D analogs. Annu. Rev. Nutr., 2013, 33, 23-44.
[http://dx.doi.org/10.1146/annurev-nutr-071812-161203] [PMID: 23642201]
[2]
Jeon, S.M.; Shin, E.A. Exploring vitamin D metabolism and function in cancer. Exp. Mol. Med., 2018, 50(4), 1-14.
[http://dx.doi.org/10.1038/s12276-018-0038-9] [PMID: 29657326]
[3]
Wu, X.; Hu, W.; Lu, L.; Zhao, Y.; Zhou, Y.; Xiao, Z.; Zhang, L.; Zhang, H.; Li, X.; Li, W.; Wang, S.; Cho, C.H.; Shen, J.; Li, M. Repurposing vitamin D for treatment of human malignancies via targeting tumor microenvironment. Acta Pharm. Sin. B, 2019, 9(2), 203-219.
[http://dx.doi.org/10.1016/j.apsb.2018.09.002] [PMID: 30972274]
[4]
Hewison, M.; Gacad, M.A.; Lemire, J.; Adams, J.S. Vitamin D as a cytokine and hematopoetic factor. Rev. Endocr. Metab. Disord., 2001, 2(2), 217-227.
[http://dx.doi.org/10.1023/A:1010015013211] [PMID: 11705327]
[5]
Prietl, B.; Treiber, G.; Pieber, T.R.; Amrein, K. Vitamin D and immune function. Nutrients, 2013, 5(7), 2502-2521.
[http://dx.doi.org/10.3390/nu5072502] [PMID: 23857223]
[6]
Mahendra, A.; Karishma, ; Choudhury, B.K.; Sharma, T.; Bansal, N.; Bansal, R.; Gupta, S. Vitamin D and gastrointestinal cancer. J. Lab. Phys., 2018, 10(1), 1-5.
[http://dx.doi.org/10.4103/JLP.JLP_49_17] [PMID: 29403195]
[7]
Shang, M.; Sun, J. Vitamin D/VDR, probiotics, and gastrointestinal diseases. Curr. Med. Chem., 2017, 24(9), 876-887.
[http://dx.doi.org/10.2174/0929867323666161202150008] [PMID: 27915988]
[8]
Battistini, C.; Ballan, R.; Herkenhoff, M.E.; Saad, S.M.I.; Sun, J. Vitamin D modulates intestinal microbiota in inflammatory bowel diseases. Int. J. Mol. Sci., 2020, 22(1), E362.
[http://dx.doi.org/10.3390/ijms22010362] [PMID: 33396382]
[9]
Pan, X.H.; Quan, W.W.; Wu, J.L.; Xiao, W.D.; Sun, Z.J.; Li, D. Antimicrobial peptide LL-37 in macrophages promotes colorectal cancer growth. Zhonghua Zhong Liu Za Zhi, 2018, 40(6), 412-417.
[PMID: 29936765]
[10]
Borel, P.; Caillaud, D.; Cano, N.J. Vitamin D bioavailability: State of the art. Crit. Rev. Food Sci. Nutr., 2015, 55(9), 1193-1205.
[http://dx.doi.org/10.1080/10408398.2012.688897] [PMID: 24915331]
[11]
Holick, M.F.; Binkley, N.C.; Bischoff-Ferrari, H.A.; Gordon, C.M.; Hanley, D.A.; Heaney, R.P.; Murad, M.H.; Weaver, C.M.; Endocrine, S. Evaluation, treatment, and prevention of vitamin D deficiency: An Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab., 2011, 96(7), 1911-1930.
[http://dx.doi.org/10.1210/jc.2011-0385] [PMID: 21646368]
[12]
Wimalawansa, S.J. Vitamin D in the new millennium. Curr. Osteoporos. Rep., 2012, 10(1), 4-15.
[http://dx.doi.org/10.1007/s11914-011-0094-8] [PMID: 22249582]
[13]
Kechichian, E.; Ezzedine, K. Vitamin D and the skin: An update for dermatologists. Am. J. Clin. Dermatol., 2018, 19(2), 223-235.
[http://dx.doi.org/10.1007/s40257-017-0323-8] [PMID: 28994020]
[14]
Touvier, M.; Deschasaux, M.; Montourcy, M.; Sutton, A.; Charnaux, N.; Kesse-Guyot, E.; Assmann, K.E.; Fezeu, L.; Latino-Martel, P.; Druesne-Pecollo, N.; Guinot, C.; Latreille, J.; Malvy, D.; Galan, P.; Hercberg, S.; Le Clerc, S.; Souberbielle, J.C.; Ezzedine, K. Determinants of vitamin D status in Caucasian adults: influence of sun exposure, dietary intake, sociodemographic, lifestyle, anthropometric, and genetic factors. J. Invest. Dermatol., 2015, 135(2), 378-388.
[http://dx.doi.org/10.1038/jid.2014.400] [PMID: 25211176]
[15]
Xiang, F.; Lucas, R.; de Gruijl, F.; Norval, M. A systematic review of the influence of skin pigmentation on changes in the concentrations of vitamin D and 25-hydroxyvitamin D in plasma/serum following experimental UV irradiation. Photochem. Photobiol. Sci., 2015, 14(12), 2138-2146.
[http://dx.doi.org/10.1039/C5PP00168D] [PMID: 26548800]
[16]
Terushkin, V.; Bender, A.; Psaty, E.L.; Engelsen, O.; Wang, S.Q.; Halpern, A.C. Estimated equivalency of vitamin D production from natural sun exposure versus oral vitamin D supplementation across seasons at two US latitudes. J. Am. Acad. Dermatol., 2010, 62(6), 1-9.
[http://dx.doi.org/10.1016/j.jaad.2009.07.028]
[17]
Brot, C.; Vestergaard, P.; Kolthoff, N.; Gram, J.; Hermann, A.P.; Sørensen, O.H. Vitamin D status and its adequacy in healthy Danish perimenopausal women: relationships to dietary intake, sun exposure and serum parathyroid hormone. Br. J. Nutr., 2001, 86(Suppl. 1), S97-S103.
[http://dx.doi.org/10.1079/BJN2001345] [PMID: 11520426]
[18]
Ray, D.; Goswami, R.; Gupta, N.; Tomar, N.; Singh, N.; Sreenivas, V. Predisposition to vitamin D deficiency osteomalacia and rickets in females is linked to their 25(OH)D and calcium intake rather than vitamin D receptor gene polymorphism. Clin. Endocrinol. (Oxf.), 2009, 71(3), 334-340.
[http://dx.doi.org/10.1111/j.1365-2265.2008.03500.x] [PMID: 19094076]
[19]
Ekwaru, J.P.; Zwicker, J.D.; Holick, M.F.; Giovannucci, E.; Veugelers, P.J. The importance of body weight for the dose response relationship of oral vitamin D supplementation and serum 25-hydroxyvitamin D in healthy volunteers. PLoS One, 2014, 9(11), e111265.
[http://dx.doi.org/10.1371/journal.pone.0111265] [PMID: 25372709]
[20]
Wang, T.J.; Zhang, F.; Richards, J.B.; Kestenbaum, B.; van Meurs, J.B.; Berry, D.; Kiel, D.P.; Streeten, E.A.; Ohlsson, C.; Koller, D.L.; Peltonen, L.; Cooper, J.D.; O’Reilly, P.F.; Houston, D.K.; Glazer, N.L.; Vandenput, L.; Peacock, M.; Shi, J.; Rivadeneira, F.; McCarthy, M.I.; Anneli, P.; de Boer, I.H.; Mangino, M.; Kato, B.; Smyth, D.J.; Booth, S.L.; Jacques, P.F.; Burke, G.L.; Goodarzi, M.; Cheung, C.L.; Wolf, M.; Rice, K.; Goltzman, D.; Hidiroglou, N.; Ladouceur, M.; Wareham, N.J.; Hocking, L.J.; Hart, D.; Arden, N.K.; Cooper, C.; Malik, S.; Fraser, W.D.; Hartikainen, A.L.; Zhai, G.; Macdonald, H.M.; Forouhi, N.G.; Loos, R.J.; Reid, D.M.; Hakim, A.; Dennison, E.; Liu, Y.; Power, C.; Stevens, H.E.; Jaana, L.; Vasan, R.S.; Soranzo, N.; Bojunga, J.; Psaty, B.M.; Lorentzon, M.; Foroud, T.; Harris, T.B.; Hofman, A.; Jansson, J.O.; Cauley, J.A.; Uitterlinden, A.G.; Gibson, Q.; Järvelin, M.R.; Karasik, D.; Siscovick, D.S.; Econs, M.J.; Kritchevsky, S.B.; Florez, J.C.; Todd, J.A.; Dupuis, J.; Hyppönen, E.; Spector, T.D. Common genetic determinants of vitamin D insufficiency: a genome-wide association study. Lancet, 2010, 376(9736), 180-188.
[http://dx.doi.org/10.1016/S0140-6736(10)60588-0] [PMID: 20541252]
[21]
Martucci, G.; Tuzzolino, F.; Arcadipane, A.; Pieber, T.R.; Schnedl, C.; Urbanic Purkart, T.; Treiber, G.; Amrein, K. The effect of high-dose cholecalciferol on bioavailable vitamin D levels in critically ill patients: A post hoc analysis of the VITdAL-ICU trial. Intens. Care Med., 2017, 43(11), 1732-1734.
[http://dx.doi.org/10.1007/s00134-017-4846-5] [PMID: 28550402]
[22]
Institute of Medicine (US) Committee to Review Dietary Reference Intakes for Vitamin D and Calcium. Ross, A.C.; Taylor, C.L.; Yaktine, A.L.; Del Valle, H.B., Eds.; National Academies Press: Washington, DC, 2011.
[23]
Munns, C.F.; Shaw, N.; Kiely, M.; Specker, B.L.; Thacher, T.D.; Ozono, K.; Michigami, T.; Tiosano, D.; Mughal, M.Z.; Mäkitie, O.; Ramos-Abad, L.; Ward, L.; DiMeglio, L.A.; Atapattu, N.; Cassinelli, H.; Braegger, C.; Pettifor, J.M.; Seth, A.; Idris, H.W.; Bhatia, V.; Fu, J.; Goldberg, G.; Sävendahl, L.; Khadgawat, R.; Pludowski, P.; Maddock, J.; Hyppönen, E.; Oduwole, A.; Frew, E.; Aguiar, M.; Tulchinsky, T.; Butler, G.; Högler, W. Global consensus recommendations on prevention and management of nutritional rickets. J. Clin. Endocrinol. Metab., 2016, 101(2), 394-415.
[http://dx.doi.org/10.1210/jc.2015-2175] [PMID: 26745253]
[24]
Lips, P. Vitamin D deficiency and secondary hyperparathyroidism in the elderly: consequences for bone loss and fractures and therapeutic implications. Endocr. Rev., 2001, 22(4), 477-501.
[http://dx.doi.org/10.1210/edrv.22.4.0437] [PMID: 11493580]
[25]
Nagpal, S.; Na, S.; Rathnachalam, R. Noncalcemic actions of vitamin D receptor ligands. Endocr. Rev., 2005, 26(5), 662-687.
[http://dx.doi.org/10.1210/er.2004-0002] [PMID: 15798098]
[26]
Lips, P. Vitamin D physiology. Prog. Biophys. Mol. Biol., 2006, 92(1), 4-8.
[http://dx.doi.org/10.1016/j.pbiomolbio.2006.02.016] [PMID: 16563471]
[27]
Amrein, K.; Scherkl, M.; Hoffmann, M.; Neuwersch-Sommeregger, S.; Köstenberger, M.; Tmava Berisha, A.; Martucci, G.; Pilz, S.; Malle, O. Vitamin D deficiency 2.0: an update on the current status worldwide. Eur. J. Clin. Nutr., 2020, 74(11), 1498-1513.
[http://dx.doi.org/10.1038/s41430-020-0558-y] [PMID: 31959942]
[28]
Mitri, J.; Pittas, A.G. Vitamin D and diabetes. Endocrinol. Metab. Clin. North Am., 2014, 43(1), 205-232.
[http://dx.doi.org/10.1016/j.ecl.2013.09.010] [PMID: 24582099]
[29]
Ullah, M.I.; Koch, C.A.; Tamanna, S.; Rouf, S.; Shamsuddin, L. Vitamin D deficiency and the risk of preeclampsia and eclampsia in Bangladesh. Horm. Metab. Res., 2013, 45(9), 682-687.
[http://dx.doi.org/10.1055/s-0033-1345199] [PMID: 23733167]
[30]
Tardelli, V.S.; Lago, M.P.P.D.; Silveira, D.X.D.; Fidalgo, T.M. Vitamin D and alcohol: a review of the current literature. Psychiatry Res., 2017, 248, 83-86.
[http://dx.doi.org/10.1016/j.psychres.2016.10.051] [PMID: 28033511]
[31]
Zhang, Y.; Fang, F.; Tang, J.; Jia, L.; Feng, Y.; Xu, P.; Faramand, A. Association between vitamin D supplementation and mortality: systematic review and meta-analysis. BMJ, 2019, 366, l4673.
[http://dx.doi.org/10.1136/bmj.l4673] [PMID: 31405892]
[32]
Bouillon, R.; Carmeliet, G.; Verlinden, L.; van Etten, E.; Verstuyf, A.; Luderer, H.F.; Lieben, L.; Mathieu, C.; Demay, M. Vitamin D and human health: lessons from vitamin D receptor null mice. Endocr. Rev., 2008, 29(6), 726-776.
[http://dx.doi.org/10.1210/er.2008-0004] [PMID: 18694980]
[33]
Heaney, R.P. Vitamin D in health and disease. Clin. J. Am. Soc. Nephrol., 2008, 3(5), 1535-1541.
[http://dx.doi.org/10.2215/CJN.01160308] [PMID: 18525006]
[34]
Jones, G.; Prosser, D.E.; Kaufmann, M. Cytochrome P450-mediated metabolism of vitamin D. J. Lipid Res., 2014, 55(1), 13-31.
[http://dx.doi.org/10.1194/jlr.R031534] [PMID: 23564710]
[35]
Schuster, I. Cytochromes P450 are essential players in the vitamin D signaling system. Biochim. Biophys. Acta, 2011, 1814(1), 186-199.
[http://dx.doi.org/10.1016/j.bbapap.2010.06.022] [PMID: 20619365]
[36]
Jäpelt, R.B.; Jakobsen, J. Vitamin D in plants: a review of occurrence, analysis, and biosynthesis. Front. Plant Sci., 2013, 4, 136.
[http://dx.doi.org/10.3389/fpls.2013.00136] [PMID: 23717318]
[37]
Zhang, G.; Jin, M. Genetic associations between CYP24A1 polymorphisms and predisposition of cancer: a meta-analysis. Int. J. Biol. Markers, 2020, 35(4), 71-79.
[http://dx.doi.org/10.1177/1724600820944408] [PMID: 33050822]
[38]
Sun, H.; Jiang, C.; Cong, L.; Wu, N.; Wang, X.; Hao, M.; Liu, T.; Wang, L.; Liu, Y.; Cong, X. CYP24A1 inhibition facilitates the antiproliferative effect of 1,25(OH)2D3 through downregulation of the WNT/β-Catenin pathway and methylation-mediated regulation of CYP24A1 in colorectal cancer cells. DNA Cell Biol., 2018, 37(9), 742-749.
[http://dx.doi.org/10.1089/dna.2017.4058] [PMID: 30052060]
[39]
Kósa, J.P.; Horváth, P.; Wölfling, J.; Kovács, D.; Balla, B.; Mátyus, P.; Horváth, E.; Speer, G.; Takács, I.; Nagy, Z.; Horváth, H.; Lakatos, P. CYP24A1 inhibition facilitates the anti-tumor effect of vitamin D3 on colorectal cancer cells. World J. Gastroenterol., 2013, 19(17), 2621-2628.
[http://dx.doi.org/10.3748/wjg.v19.i17.2621] [PMID: 23674869]
[40]
Dong, L.M.; Ulrich, C.M.; Hsu, L.; Duggan, D.J.; Benitez, D.S.; White, E.; Slattery, M.L.; Farin, F.M.; Makar, K.W.; Carlson, C.S.; Caan, B.J.; Potter, J.D.; Peters, U. Vitamin D related genes, CYP24A1 and CYP27B1, and colon cancer risk. Cancer Epidemiol. Biomarkers Prev., 2009, 18(9), 2540-2548.
[http://dx.doi.org/10.1158/1055-9965.EPI-09-0228] [PMID: 19706847]
[41]
Haussler, M.R.; Jurutka, P.W.; Mizwicki, M.; Norman, A.W. Vitamin D receptor (VDR)-mediated actions of 1α,25(OH)2vitamin D3: Genomic and non-genomic mechanisms. Best Pract. Res. Clin. Endocrinol. Metab., 2011, 25(4), 543-559.
[http://dx.doi.org/10.1016/j.beem.2011.05.010] [PMID: 21872797]
[42]
Pike, J.W.; Meyer, M.B. Fundamentals of vitamin D hormone-regulated gene expression. J. Steroid Biochem. Mol. Biol., 2014, 144(Pt A), 5-11.
[http://dx.doi.org/10.1016/j.jsbmb.2013.11.004]
[43]
Duran, A.; Hernandez, E.D.; Reina-Campos, M.; Castilla, E.A.; Subramaniam, S.; Raghunandan, S.; Roberts, L.R.; Kisseleva, T.; Karin, M.; Diaz-Meco, M.T.; Moscat, J. p62/SQSTM1 by binding to vitamin D receptor inhibits hepatic stellate cell activity, fibrosis, and liver cancer. Cancer Cell, 2016, 30(4), 595-609.
[http://dx.doi.org/10.1016/j.ccell.2016.09.004] [PMID: 27728806]
[44]
Nemere, I.; Safford, S.E.; Rohe, B.; DeSouza, M.M.; Farach-Carson, M.C. Identification and characterization of 1,25D3-membrane-associated rapid response, steroid (1,25D3-MARRS) binding protein. J. Steroid Biochem. Mol. Biol., 2004, 89-90(1-5), 281-285.
[http://dx.doi.org/10.1016/j.jsbmb.2004.03.031] [PMID: 15225786]
[45]
Going, C.C.; Alexandrova, L.; Lau, K.; Yeh, C.Y.; Feldman, D.; Pitteri, S.J. Vitamin D supplementation decreases serum 27-hydroxycholesterol in a pilot breast cancer trial. Breast Cancer Res. Treat., 2018, 167(3), 797-802.
[http://dx.doi.org/10.1007/s10549-017-4562-4] [PMID: 29116467]
[46]
Ji, Y.C.; Liu, C.; Zhang, X.; Zhang, C.S.; Wang, D.; Zhang, Y. Intestinal bacterium-derived cyp27a1 prevents colon cancer cell apoptosis. Am. J. Transl. Res., 2016, 8(10), 4434-4439.
[PMID: 27830027]
[47]
Haussler, M.R.; Haussler, C.A.; Bartik, L.; Whitfield, G.K.; Hsieh, J.C.; Slater, S.; Jurutka, P.W. Vitamin D receptor: Molecular signaling and actions of nutritional ligands in disease prevention. Nutr. Rev., 2008, 66(10)(Suppl. 2), S98-S112.
[http://dx.doi.org/10.1111/j.1753-4887.2008.00093.x] [PMID: 18844852]
[48]
Jurutka, P.W.; Bartik, L.; Whitfield, G.K.; Mathern, D.R.; Barthel, T.K.; Gurevich, M.; Hsieh, J.C.; Kaczmarska, M.; Haussler, C.A.; Haussler, M.R. Vitamin D receptor: key roles in bone mineral pathophysiology, molecular mechanism of action, and novel nutritional ligands. J. Bone Miner. Res., 2007, 22(Suppl. 2), V2-V10.
[http://dx.doi.org/10.1359/jbmr.07s216] [PMID: 18290715]
[49]
Spina, C.S.; Tangpricha, V.; Uskokovic, M.; Adorinic, L.; Maehr, H.; Holick, M.F. Vitamin D and cancer. Anticancer Res., 2006, 26(4A), 2515-2524.
[PMID: 16886659]
[50]
Holick, M.F. Vitamin D: its role in cancer prevention and treatment. Prog. Biophys. Mol. Biol., 2006, 92(1), 49-59.
[http://dx.doi.org/10.1016/j.pbiomolbio.2006.02.014] [PMID: 16566961]
[51]
Li, Y.C.; Kong, J.; Wei, M.; Chen, Z.F.; Liu, S.Q.; Cao, L.P. 1,25-Dihydroxyvitamin D(3) is a negative endocrine regulator of the renin-angiotensin system. J. Clin. Invest., 2002, 110(2), 229-238.
[http://dx.doi.org/10.1172/JCI0215219] [PMID: 12122115]
[52]
Hewison, M. Vitamin D and innate and adaptive immunity. Vitam. Horm., 2011, 86, 23-62.
[http://dx.doi.org/10.1016/B978-0-12-386960-9.00002-2] [PMID: 21419266]
[53]
Hewison, M. Antibacterial effects of vitamin D. Nat. Rev. Endocrinol., 2011, 7(6), 337-345.
[http://dx.doi.org/10.1038/nrendo.2010.226] [PMID: 21263449]
[54]
Roth, D.E.; Soto, G.; Arenas, F.; Bautista, C.T.; Ortiz, J.; Rodriguez, R.; Cabrera, L.; Gilman, R.H. Association between vitamin D receptor gene polymorphisms and response to treatment of pulmonary tuberculosis. J. Infect. Dis., 2004, 190(5), 920-927.
[http://dx.doi.org/10.1086/423212] [PMID: 15295697]
[55]
Wayse, V.; Yousafzai, A.; Mogale, K.; Filteau, S. Association of subclinical vitamin D deficiency with severe acute lower respiratory infection in Indian children under 5 y. Eur. J. Clin. Nutr., 2004, 58(4), 563-567.
[http://dx.doi.org/10.1038/sj.ejcn.1601845] [PMID: 15042122]
[56]
Abhimanyu, ; Coussens, A.K. The role of UV radiation and vitamin D in the seasonality and outcomes of infectious disease. Photochem. Photobiol. Sci., 2017, 16(3), 314-338.
[http://dx.doi.org/10.1039/C6PP00355A] [PMID: 28078341]
[57]
Lang, P.O.; Aspinall, R. Vitamin D Status and the host resistance to infections: What it is currently (not) understood. Clin. Ther., 2017, 39(5), 930-945.
[http://dx.doi.org/10.1016/j.clinthera.2017.04.004] [PMID: 28457494]
[58]
Brennan, A.; Katz, D.R.; Nunn, J.D.; Barker, S.; Hewison, M.; Fraher, L.J.; O’Riordan, J.L. Dendritic cells from human tissues express receptors for the immunoregulatory vitamin D3 metabolite, dihydroxycholecalciferol. Immunology, 1987, 61(4), 457-461.
[PMID: 2832307]
[59]
Penna, G.; Adorini, L. 1 Alpha,25-dihydroxyvitamin D3 inhibits differentiation, maturation, activation, and survival of dendritic cells leading to impaired alloreactive T cell activation. J. Immunol., 2000, 164(5), 2405-2411.
[http://dx.doi.org/10.4049/jimmunol.164.5.2405] [PMID: 10679076]
[60]
Adorini, L.; Penna, G.; Giarratana, N.; Uskokovic, M. Tolerogenic dendritic cells induced by vitamin D receptor ligands enhance regulatory T cells inhibiting allograft rejection and autoimmune diseases. J. Cell. Biochem., 2003, 88(2), 227-233.
[http://dx.doi.org/10.1002/jcb.10340] [PMID: 12520519]
[61]
Hewison, M.; Freeman, L.; Hughes, S.V.; Evans, K.N.; Bland, R.; Eliopoulos, A.G.; Kilby, M.D.; Moss, P.A.; Chakraverty, R. Differential regulation of vitamin D receptor and its ligand in human monocyte-derived dendritic cells. J. Immunol., 2003, 170(11), 5382-5390.
[http://dx.doi.org/10.4049/jimmunol.170.11.5382] [PMID: 12759412]
[62]
Liu, P.T.; Stenger, S.; Li, H.; Wenzel, L.; Tan, B.H.; Krutzik, S.R.; Ochoa, M.T.; Schauber, J.; Wu, K.; Meinken, C.; Kamen, D.L.; Wagner, M.; Bals, R.; Steinmeyer, A.; Zügel, U.; Gallo, R.L.; Eisenberg, D.; Hewison, M.; Hollis, B.W.; Adams, J.S.; Bloom, B.R.; Modlin, R.L. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science, 2006, 311(5768), 1770-1773.
[http://dx.doi.org/10.1126/science.1123933] [PMID: 16497887]
[63]
Hewison, M.; Burke, F.; Evans, K.N.; Lammas, D.A.; Sansom, D.M.; Liu, P.; Modlin, R.L.; Adams, J.S. Extra-renal 25-hydroxyvitamin D3-1alpha-hydroxylase in human health and disease. J. Steroid Biochem. Mol. Biol., 2007, 103(3-5), 316-321.
[http://dx.doi.org/10.1016/j.jsbmb.2006.12.078] [PMID: 17368179]
[64]
Mathieu, C.; Waer, M.; Laureys, J.; Rutgeerts, O.; Bouillon, R. Prevention of autoimmune diabetes in NOD mice by 1,25 dihydroxyvitamin D3. Diabetologia, 1994, 37(6), 552-558.
[http://dx.doi.org/10.1007/BF00403372] [PMID: 7926338]
[65]
Kaneno, R.; Duarte, A.J.; Borelli, A. Natural killer activity in the experimental privational rickets. Immunol. Lett., 2002, 81(3), 183-189.
[http://dx.doi.org/10.1016/S0165-2478(02)00037-8] [PMID: 11947923]
[66]
Ota, K.; Dambaeva, S.; Kim, M.W.; Han, A.R.; Fukui, A.; Gilman-Sachs, A.; Beaman, K.; Kwak-Kim, J. 1,25-Dihydroxy-vitamin D3 regulates NK-cell cytotoxicity, cytokine secretion, and degranulation in women with recurrent pregnancy losses. Eur. J. Immunol., 2015, 45(11), 3188-3199.
[http://dx.doi.org/10.1002/eji.201545541] [PMID: 26257123]
[67]
Deniz, G.; Erten, G.; Kücüksezer, U.C.; Kocacik, D.; Karagiannidis, C.; Aktas, E.; Akdis, C.A.; Akdis, M. Regulatory NK cells suppress antigen-specific T cell responses. J. Immunol., 2008, 180(2), 850-857.
[http://dx.doi.org/10.4049/jimmunol.180.2.850] [PMID: 18178824]
[68]
Al-Jaderi, Z.; Maghazachi, A.A. Effects of vitamin D3, calcipotriol and FTY720 on the expression of surface molecules and cytolytic activities of human natural killer cells and dendritic cells. Toxins (Basel), 2013, 5(11), 1932-1947.
[http://dx.doi.org/10.3390/toxins5111932] [PMID: 24169587]
[69]
Provvedini, D.M.; Tsoukas, C.D.; Deftos, L.J.; Manolagas, S.C. 1,25-dihydroxyvitamin D3 receptors in human leukocytes. Science, 1983, 221(4616), 1181-1183.
[http://dx.doi.org/10.1126/science.6310748] [PMID: 6310748]
[70]
Hewison, M. Vitamin D and immune function: an overview. Proc. Nutr. Soc., 2012, 71(1), 50-61.
[http://dx.doi.org/10.1017/S0029665111001650] [PMID: 21849106]
[71]
Lemire, J.M.; Archer, D.C.; Beck, L.; Spiegelberg, H.L. Immunosuppressive actions of 1,25-dihydroxyvitamin D3: preferential inhibition of Th1 functions. J. Nutr., 1995, 125(6)(Suppl.), 1704S-1708S.
[PMID: 7782931]
[72]
Rausch-Fan, X.; Leutmezer, F.; Willheim, M.; Spittler, A.; Bohle, B.; Ebner, C.; Jensen-Jarolim, E.; Boltz-Nitulescu, G. Regulation of cytokine production in human peripheral blood mononuclear cells and allergen-specific th cell clones by 1alpha,25-dihydroxyvitamin D3. Int. Arch. Allergy Immunol., 2002, 128(1), 33-41.
[http://dx.doi.org/10.1159/000058001] [PMID: 12037399]
[73]
Boonstra, A.; Barrat, F.J.; Crain, C.; Heath, V.L.; Savelkoul, H.F.; O’Garra, A. 1alpha,25-Dihydroxyvitamin d3 has a direct effect on naive CD4(+) T cells to enhance the development of Th2 cells. J. Immunol., 2001, 167(9), 4974-4980.
[http://dx.doi.org/10.4049/jimmunol.167.9.4974] [PMID: 11673504]
[74]
Daniel, C.; Sartory, N.A.; Zahn, N.; Radeke, H.H.; Stein, J.M. Immune modulatory treatment of trinitrobenzene sulfonic acid colitis with calcitriol is associated with a change of a T helper (Th) 1/Th17 to a Th2 and regulatory T cell profile. J. Pharmacol. Exp. Ther., 2008, 324(1), 23-33.
[http://dx.doi.org/10.1124/jpet.107.127209] [PMID: 17911375]
[75]
Kang, S.W.; Kim, S.H.; Lee, N.; Lee, W.W.; Hwang, K.A.; Shin, M.S.; Lee, S.H.; Kim, W.U.; Kang, I. 1,25-Dihyroxyvitamin D3 promotes FOXP3 expression via binding to vitamin D response elements in its conserved noncoding sequence region. J. Immunol., 2012, 188(11), 5276-5282.
[http://dx.doi.org/10.4049/jimmunol.1101211] [PMID: 22529297]
[76]
Chambers, E.S.; Suwannasaen, D.; Mann, E.H.; Urry, Z.; Richards, D.F.; Lertmemongkolchai, G.; Hawrylowicz, C.M. 1α,25-dihydroxyvitamin D3 in combination with transforming growth factor-β increases the frequency of Foxp3+ regulatory T cells through preferential expansion and usage of interleukin-2. Immunology, 2014, 143(1), 52-60.
[http://dx.doi.org/10.1111/imm.12289] [PMID: 24673126]
[77]
Gregori, S.; Casorati, M.; Amuchastegui, S.; Smiroldo, S.; Davalli, A.M.; Adorini, L. Regulatory T cells induced by 1 alpha,25-dihydroxyvitamin D3 and mycophenolate mofetil treatment mediate transplantation tolerance. J. Immunol., 2001, 167(4), 1945-1953.
[http://dx.doi.org/10.4049/jimmunol.167.4.1945] [PMID: 11489974]
[78]
Adorini, L.; Penna, G.; Giarratana, N.; Roncari, A.; Amuchastegui, S.; Daniel, K.C.; Uskokovic, M. Dendritic cells as key targets for immunomodulation by Vitamin D receptor ligands. J. Steroid Biochem. Mol. Biol., 2004, 89-90(1-5), 437-441.
[http://dx.doi.org/10.1016/j.jsbmb.2004.03.013] [PMID: 15225816]
[79]
Mayne, C.G.; Spanier, J.A.; Relland, L.M.; Williams, C.B.; Hayes, C.E. 1,25-Dihydroxyvitamin D3 acts directly on the T lymphocyte vitamin D receptor to inhibit experimental autoimmune encephalomyelitis. Eur. J. Immunol., 2011, 41(3), 822-832.
[http://dx.doi.org/10.1002/eji.201040632] [PMID: 21287548]
[80]
Smolders, J.; Thewissen, M.; Peelen, E.; Menheere, P.; Tervaert, J.W.; Damoiseaux, J.; Hupperts, R. Vitamin D status is positively correlated with regulatory T cell function in patients with multiple sclerosis. PLoS One, 2009, 4(8), e6635.
[http://dx.doi.org/10.1371/journal.pone.0006635] [PMID: 19675671]
[81]
Yuk, J.M.; Shin, D.M.; Lee, H.M.; Yang, C.S.; Jin, H.S.; Kim, K.K.; Lee, Z.W.; Lee, S.H.; Kim, J.M.; Jo, E.K. Vitamin D3 induces autophagy in human monocytes/macrophages via cathelicidin. Cell Host Microbe, 2009, 6(3), 231-243.
[http://dx.doi.org/10.1016/j.chom.2009.08.004] [PMID: 19748465]
[82]
Joshi, S.; Pantalena, L.C.; Liu, X.K.; Gaffen, S.L.; Liu, H.; Rohowsky-Kochan, C.; Ichiyama, K.; Yoshimura, A.; Steinman, L.; Christakos, S.; Youssef, S. 1,25-dihydroxyvitamin D(3) ameliorates Th17 autoimmunity via transcriptional modulation of interleukin-17A. Mol. Cell. Biol., 2011, 31(17), 3653-3669.
[http://dx.doi.org/10.1128/MCB.05020-11] [PMID: 21746882]
[83]
Zhou, L.; Lopes, J.E.; Chong, M.M.; Ivanov, I.I.; Min, R.; Victora, G.D.; Shen, Y.; Du, J.; Rubtsov, Y.P.; Rudensky, A.Y.; Ziegler, S.F.; Littman, D.R. TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function. Nature, 2008, 453(7192), 236-240.
[http://dx.doi.org/10.1038/nature06878] [PMID: 18368049]
[84]
Otvos, L., Jr. Antibacterial peptides and proteins with multiple cellular targets. J. Pept. Sci., 2005, 11(11), 697-706.
[http://dx.doi.org/10.1002/psc.698] [PMID: 16059966]
[85]
Wang, J.; Dou, X.; Song, J.; Lyu, Y.; Zhu, X.; Xu, L.; Li, W.; Shan, A. Antimicrobial peptides: Promising alternatives in the post feeding antibiotic era. Med. Res. Rev., 2019, 39(3), 831-859.
[http://dx.doi.org/10.1002/med.21542] [PMID: 30353555]
[86]
Lai, Y.; Gallo, R.L. AMPed up immunity: How antimicrobial peptides have multiple roles in immune defense. Trends Immunol., 2009, 30(3), 131-141.
[http://dx.doi.org/10.1016/j.it.2008.12.003] [PMID: 19217824]
[87]
Rook, G.A.; Steele, J.; Fraher, L.; Barker, S.; Karmali, R.; O’Riordan, J.; Stanford, J. Vitamin D3, gamma interferon, and control of proliferation of Mycobacterium tuberculosis by human monocytes. Immunology, 1986, 57(1), 159-163.
[PMID: 3002968]
[88]
Wang, T.T.; Nestel, F.P.; Bourdeau, V.; Nagai, Y.; Wang, Q.; Liao, J.; Tavera-Mendoza, L.; Lin, R.; Hanrahan, J.W.; Mader, S.; White, J.H. Cutting edge: 1,25-dihydroxyvitamin D3 is a direct inducer of antimicrobial peptide gene expression. J. Immunol., 2004, 173(5), 2909-2912.
[http://dx.doi.org/10.4049/jimmunol.173.5.2909] [PMID: 15322146]
[89]
Olmos-Ortiz, A.; García-Quiroz, J.; Avila, E.; Caldiño-Soto, F.; Halhali, A.; Larrea, F.; Díaz, L. Lipopolysaccharide and cAMP modify placental calcitriol biosynthesis reducing antimicrobial peptides gene expression. Am. J. Reprod. Immunol., 2018, 79(6), e12841.
[http://dx.doi.org/10.1111/aji.12841] [PMID: 29493045]
[90]
Schrumpf, J.A.; van Sterkenburg, M.A.; Verhoosel, R.M.; Zuyderduyn, S.; Hiemstra, P.S. Interleukin 13 exposure enhances vitamin D-mediated expression of the human cathelicidin antimicrobial peptide 18/LL-37 in bronchial epithelial cells. Infect. Immun., 2012, 80(12), 4485-4494.
[http://dx.doi.org/10.1128/IAI.06224-11] [PMID: 23045480]
[91]
Wu, W.K.; Sung, J.J.; To, K.F.; Yu, L.; Li, H.T.; Li, Z.J.; Chu, K.M.; Yu, J.; Cho, C.H. The host defense peptide LL-37 activates the tumor-suppressing bone morphogenetic protein signaling via inhibition of proteasome in gastric cancer cells. J. Cell. Physiol., 2010, 223(1), 178-186.
[http://dx.doi.org/10.1002/jcp.22026] [PMID: 20054823]
[92]
Yang, Y.H.; Wu, W.K.; Tai, E.K.; Wong, H.P.; Lam, E.K.; So, W.H.; Shin, V.Y.; Cho, C.H. The cationic host defense peptide rCRAMP promotes gastric ulcer healing in rats. J. Pharmacol. Exp. Ther., 2006, 318(2), 547-554.
[http://dx.doi.org/10.1124/jpet.106.102467] [PMID: 16670350]
[93]
Tai, E.K.; Wu, W.K.; Wong, H.P.; Lam, E.K.; Yu, L.; Cho, C.H. A new role for cathelicidin in ulcerative colitis in mice. Exp. Biol. Med. (Maywood), 2007, 232(6), 799-808.
[PMID: 17526772]
[94]
Gombart, A.F. The vitamin D-antimicrobial peptide pathway and its role in protection against infection. Future Microbiol., 2009, 4(9), 1151-1165.
[http://dx.doi.org/10.2217/fmb.09.87] [PMID: 19895218]
[95]
Hase, K.; Eckmann, L.; Leopard, J.D.; Varki, N.; Kagnoff, M.F. Cell differentiation is a key determinant of cathelicidin LL-37/human cationic antimicrobial protein 18 expression by human colon epithelium. Infect. Immun., 2002, 70(2), 953-963.
[http://dx.doi.org/10.1128/IAI.70.2.953-963.2002] [PMID: 11796631]
[96]
Schauber, J.; Dorschner, R.A.; Coda, A.B.; Büchau, A.S.; Liu, P.T.; Kiken, D.; Helfrich, Y.R.; Kang, S.; Elalieh, H.Z.; Steinmeyer, A.; Zügel, U.; Bikle, D.D.; Modlin, R.L.; Gallo, R.L. Injury enhances TLR2 function and antimicrobial peptide expression through a vitamin D-dependent mechanism. J. Clin. Invest., 2007, 117(3), 803-811.
[http://dx.doi.org/10.1172/JCI30142] [PMID: 17290304]
[97]
Adams, J.S.; Ren, S.; Liu, P.T.; Chun, R.F.; Lagishetty, V.; Gombart, A.F.; Borregaard, N.; Modlin, R.L.; Hewison, M. Vitamin d-directed rheostatic regulation of monocyte antibacterial responses. J. Immunol., 2009, 182(7), 4289-4295.
[http://dx.doi.org/10.4049/jimmunol.0803736] [PMID: 19299728]
[98]
Hansdottir, S.; Monick, M.M.; Hinde, S.L.; Lovan, N.; Look, D.C.; Hunninghake, G.W. Respiratory epithelial cells convert inactive vitamin D to its active form: potential effects on host defense. J. Immunol., 2008, 181(10), 7090-7099.
[http://dx.doi.org/10.4049/jimmunol.181.10.7090] [PMID: 18981129]
[99]
Bruns, H.; Büttner, M.; Fabri, M.; Mougiakakos, D.; Bittenbring, J.T.; Hoffmann, M.H.; Beier, F.; Pasemann, S.; Jitschin, R.; Hofmann, A.D.; Neumann, F.; Daniel, C.; Maurberger, A.; Kempkes, B.; Amann, K.; Mackensen, A.; Gerbitz, A. Vitamin D-dependent induction of cathelicidin in human macrophages results in cytotoxicity against high-grade B cell lymphoma. Sci. Transl. Med., 2015, 7(282), 282ra47.
[http://dx.doi.org/10.1126/scitranslmed.aaa3230] [PMID: 25855493]
[100]
Barlow, P.G.; Svoboda, P.; Mackellar, A.; Nash, A.A.; York, I.A.; Pohl, J.; Davidson, D.J.; Donis, R.O. Antiviral activity and increased host defense against influenza infection elicited by the human cathelicidin LL-37. PLoS One, 2011, 6(10), e25333.
[http://dx.doi.org/10.1371/journal.pone.0025333] [PMID: 22031815]
[101]
Gombart, A.F.; Borregaard, N.; Koeffler, H.P. Human cathelicidin antimicrobial peptide (CAMP) gene is a direct target of the vitamin D receptor and is strongly up-regulated in myeloid cells by 1,25-dihydroxyvitamin D3. FASEB J., 2005, 19(9), 1067-1077.
[http://dx.doi.org/10.1096/fj.04-3284com] [PMID: 15985530]
[102]
Okamoto, R.; Gery, S.; Kuwayama, Y.; Borregaard, N.; Ho, Q.; Alvarez, R.; Akagi, T.; Liu, G.Y.; Uskokovic, M.R.; Koeffler, H.P. Novel Gemini vitamin D3 analogs: large structure/function analysis and ability to induce antimicrobial peptide. Int. J. Cancer, 2014, 134(1), 207-217.
[http://dx.doi.org/10.1002/ijc.28328] [PMID: 23775785]
[103]
Chen, X.; Zou, X.; Qi, G.; Tang, Y.; Guo, Y.; Si, J.; Liang, L. Roles and mechanisms of human Cathelicidin LL-37 in cancer. Cell. Physiol. Biochem., 2018, 47(3), 1060-1073.
[http://dx.doi.org/10.1159/000490183] [PMID: 29843147]
[104]
Fabri, M.; Stenger, S.; Shin, D.M.; Yuk, J.M.; Liu, P.T.; Realegeno, S.; Lee, H.M.; Krutzik, S.R.; Schenk, M.; Sieling, P.A.; Teles, R.; Montoya, D.; Iyer, S.S.; Bruns, H.; Lewinsohn, D.M.; Hollis, B.W.; Hewison, M.; Adams, J.S.; Steinmeyer, A.; Zügel, U.; Cheng, G.; Jo, E.K.; Bloom, B.R.; Modlin, R.L. Vitamin D is required for IFN-gamma-mediated antimicrobial activity of human macrophages. Sci. Transl. Med., 2011, 3(104), 104ra102.
[http://dx.doi.org/10.1126/scitranslmed.3003045] [PMID: 21998409]
[105]
Lowry, M.B.; Guo, C.; Zhang, Y.; Fantacone, M.L.; Logan, I.E.; Campbell, Y.; Zhang, W.; Le, M.; Indra, A.K.; Ganguli-Indra, G.; Xie, J.; Gallo, R.L.; Koeffler, H.P.; Gombart, A.F. A mouse model for vitamin D-induced human cathelicidin antimicrobial peptide gene expression. J. Steroid Biochem. Mol. Biol., 2020, 198, 105552.
[http://dx.doi.org/10.1016/j.jsbmb.2019.105552] [PMID: 31783153]
[106]
Höck, A.D. Review: vitamin D3 deficiency results in dysfunctions of immunity with severe fatigue and depression in a variety of diseases. In Vivo, 2014, 28(1), 133-145.
[PMID: 24425848]
[107]
Zhang, T.; Zhang, H.; He, L.; Wang, Z.; Dong, W.; Sun, W.; Zhang, P. Potential use of 1-25-dihydroxyvitamin D in the diagnosis and treatment of papillary thyroid cancer. Med. Sci. Monit., 2018, 24, 1614-1623.
[http://dx.doi.org/10.12659/MSM.909544] [PMID: 29553126]
[108]
Bae, M.; Kim, H. Mini-review on the roles of vitamin C, vitamin D, and Selenium in the immune system against COVID-19. Molecules, 2020, 25(22), E5346.
[http://dx.doi.org/10.3390/molecules25225346] [PMID: 33207753]
[109]
Georgieva, V.; Kamolvit, W.; Herthelius, M.; Lüthje, P.; Brauner, A.; Chromek, M. Association between vitamin D, antimicrobial peptides and urinary tract infection in infants and young children. Acta Paediatr., 2019, 108(3), 551-556.
[http://dx.doi.org/10.1111/apa.14499] [PMID: 30003595]
[110]
Cannell, J.J.; Vieth, R.; Umhau, J.C.; Holick, M.F.; Grant, W.B.; Madronich, S.; Garland, C.F.; Giovannucci, E. Epidemic influenza and vitamin D. Epidemiol. Infect., 2006, 134(6), 1129-1140.
[http://dx.doi.org/10.1017/S0950268806007175] [PMID: 16959053]
[111]
Beard, J.A.; Bearden, A.; Striker, R. Vitamin D and the anti-viral state. J. Clin. Virol., 2011, 50(3), 194-200.
[http://dx.doi.org/10.1016/j.jcv.2010.12.006] [PMID: 21242105]
[112]
Uwitonze, A.M.; Murererehe, J.; Ineza, M.C.; Harelimana, E.I.; Nsabimana, U.; Uwambaye, P.; Gatarayiha, A.; Haq, A.; Razzaque, M.S. Effects of vitamin D status on oral health. J. Steroid Biochem. Mol. Biol., 2018, 175, 190-194.
[http://dx.doi.org/10.1016/j.jsbmb.2017.01.020] [PMID: 28161532]
[113]
Bayirli, B.A.; Öztürk, A.; Avci, B. Serum vitamin D concentration is associated with antimicrobial peptide level in periodontal diseases. Arch. Oral Biol., 2020, 117, 104827.
[http://dx.doi.org/10.1016/j.archoralbio.2020.104827] [PMID: 32673820]
[114]
O’Brien, K.M.; Sandler, D.P.; Xu, Z.; Kinyamu, H.K.; Taylor, J.A.; Weinberg, C.R. Vitamin D, DNA methylation, and breast cancer. Breast Cancer Res., 2018, 20(1), 70.
[http://dx.doi.org/10.1186/s13058-018-0994-y] [PMID: 29996894]
[115]
Karkeni, E.; Morin, S.O.; Bou Tayeh, B.; Goubard, A.; Josselin, E.; Castellano, R.; Fauriat, C.; Guittard, G.; Olive, D.; Nunès, J.A. Vitamin D controls tumor growth and CD8+ T cell infiltration in breast cancer. Front. Immunol., 2019, 10, 1307.
[http://dx.doi.org/10.3389/fimmu.2019.01307] [PMID: 31244851]
[116]
Muralidhar, S.; Filia, A.; Nsengimana, J.; Poźniak, J.; O’Shea, S.J.; Diaz, J.M.; Harland, M.; Randerson-Moor, J.A.; Reichrath, J.; Laye, J.P.; van der Weyden, L.; Adams, D.J.; Bishop, D.T.; Newton-Bishop, J. Vitamin D-VDR signaling inhibits Wnt/β-Catenin-mediated melanoma progression and promotes antitumor immunity. Cancer Res., 2019, 79(23), 5986-5998.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-3927] [PMID: 31690667]
[117]
Chauhan, S.; Dhawan, D.K.; Saini, A.; Preet, S. Antimicrobial peptides against colorectal cancer-a focused review. Pharmacol. Res., 2021, 167, 105529.
[http://dx.doi.org/10.1016/j.phrs.2021.105529] [PMID: 33675962]
[118]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin., 2020, 70(1), 7-30.
[http://dx.doi.org/10.3322/caac.21590] [PMID: 31912902]
[119]
Cho, C.H. Editorial. Curr. Med. Chem., 2017, 24(9), 850-851.
[http://dx.doi.org/10.2174/092986732409170503202712] [PMID: 28590890]
[120]
Song, Z.; Wu, Y.; Yang, J.; Yang, D.; Fang, X. Progress in the treatment of advanced gastric cancer. Tumour Biol., 2017, 39(7), 1010428317714626.
[http://dx.doi.org/10.1177/1010428317714626] [PMID: 28671042]
[121]
Karimi, P.; Islami, F.; Anandasabapathy, S.; Freedman, N.D.; Kamangar, F. Gastric cancer: descriptive epidemiology, risk factors, screening, and prevention. Cancer Epidemiol. Biomarkers Prev., 2014, 23(5), 700-713.
[http://dx.doi.org/10.1158/1055-9965.EPI-13-1057] [PMID: 24618998]
[122]
Garland, C.; Shekelle, R.B.; Barrett-Connor, E.; Criqui, M.H.; Rossof, A.H.; Paul, O. Dietary vitamin D and calcium and risk of colorectal cancer: a 19-year prospective study in men. Lancet, 1985, 1(8424), 307-309.
[http://dx.doi.org/10.1016/S0140-6736(85)91082-7] [PMID: 2857364]
[123]
Zeng, X.; Liao, A.J.; Tang, H.L.; Yi, L.; Xie, N.; Su, Q. Screening human gastric carcinoma-associated antigens by serologic proteome analysis. Chin. J. Cancer, 2007, 26(10), 1080-1084.
[124]
Zhou, L.; Zhang, X.; Chen, X.; Liu, L.; Lu, C.; Tang, X.; Shi, J.; Li, M.; Zhou, M.; Zhang, Z.; Xiao, L.; Yang, M. GC Glu416Asp and Thr420Lys polymorphisms contribute to gastrointestinal cancer susceptibility in a Chinese population. Int. J. Clin. Exp. Med., 2012, 5(1), 72-79.
[PMID: 22328951]
[125]
Li, M.; Li, L.; Zhang, L.; Hu, W.; Shen, J.; Xiao, Z.; Wu, X.; Chan, F.L.; Cho, C.H. 1,25-Dihydroxyvitamin D3 suppresses gastric cancer cell growth through VDR- and mutant p53-mediated induction of p21. Life Sci., 2017, 179, 88-97.
[http://dx.doi.org/10.1016/j.lfs.2017.04.021] [PMID: 28465245]
[126]
Bao, A.; Li, Y.; Tong, Y.; Zheng, H.; Wu, W.; Wei, C. Tumor-suppressive effects of 1, 25-dihydroxyvitamin D3 in gastric cancer cells. Hepatogastroenterology, 2013, 60(124), 943-948.
[PMID: 23298900]
[127]
Mizushina, Y.; Xu, X.; Murakami, C.; Okano, T.; Takemura, M.; Yoshida, H.; Sakaguchi, K. Selective inhibition of mammalian DNA polymerase alpha by vitamin D2 and D3. J. Pharmacol. Sci., 2003, 92(3), 283-290.
[http://dx.doi.org/10.1254/jphs.92.283] [PMID: 12890894]
[128]
Zhao, Y.; Cai, L.L.; Wang, H.L.; Shi, X.J.; Ye, H.M.; Song, P.; Huang, B.Q.; Tzeng, C.M. 1,25-Dihydroxyvitamin D3 affects gastric cancer progression by repressing BMP3 promoter methylation. OncoTargets Ther., 2019, 12, 2343-2353.
[http://dx.doi.org/10.2147/OTT.S195642] [PMID: 30992671]
[129]
Li, Q.; Li, Y.; Jiang, H.; Xiao, Z.; Wu, X.; Zhang, H.; Zhao, Y.; Du, F.; Chen, Y.; Wu, Z.; Li, J.; Hu, W.; Cho, C.H.; Shen, J.; Li, M. Vitamin D suppressed gastric cancer cell growth through downregulating CD44 expression in vitro and in vivo. Nutrition, 2021, 91-92, 111413.
[http://dx.doi.org/10.1016/j.nut.2021.111413] [PMID: 34450383]
[130]
Chang, S.; Gao, Z.; Yang, Y.; He, K.; Wang, X.; Wang, L.; Gao, N.; Li, H.; He, X.; Huang, C. miR-99b-3p is induced by vitamin D3 and contributes to its antiproliferative effects in gastric cancer cells by targeting HoxD3. Biol. Chem., 2019. [Epub ahead of print].
[http://dx.doi.org/10.1515/hsz-2019-0102] [PMID: 31287793]
[131]
Chang, S.; Gao, L.; Yang, Y.; Tong, D.; Guo, B.; Liu, L.; Li, Z.; Song, T.; Huang, C. miR-145 mediates the antiproliferative and gene regulatory effects of vitamin D3 by directly targeting E2F3 in gastric cancer cells. Oncotarget, 2015, 6(10), 7675-7685.
[http://dx.doi.org/10.18632/oncotarget.3048] [PMID: 25762621]
[132]
Zhang, L.; Wang, L.; Wu, X. Effects of 1,25(OH)(2)D(3) on SGC-7901 cell proliferation and tumor necrosis factor-α expression. Nan Fang Yi Ke Da Xue Xue Bao, 2012, 32(5), 710-713.
[PMID: 22588931]
[133]
Lu, C.; Yu, Y.; Li, L.; Yu, C.; Xu, P. Systematic review of the relationship of Helicobacter pylori infection with geographical latitude, average annual temperature and average daily sunshine. BMC Gastroenterol., 2018, 18(1), 50.
[http://dx.doi.org/10.1186/s12876-018-0779-x] [PMID: 29665777]
[134]
Yang, L.; He, X.; Li, L.; Lu, C. Effect of vitamin D on Helicobacter pylori infection and eradication: a meta-analysis. Helicobacter, 2019, 24(5), e12655.
[http://dx.doi.org/10.1111/hel.12655] [PMID: 31411799]
[135]
Tanida, N.; Sakagami, T.; Nakamura, Y.; Kawaura, A.; Hikasa, Y.; Shimoyama, T. Helicobacter pylori and gastric cancer. Nippon Geka Gakkai Zasshi, 1996, 97(4), 257-262.
[PMID: 8692140]
[136]
Hu, W.; Zhang, L.; Li, M.X.; Shen, J.; Liu, X.D.; Xiao, Z.G.; Wu, D.L.; Ho, I.H.T.; Wu, J.C.Y.; Cheung, C.K.Y.; Zhang, Y.C.; Lau, A.H.Y.; Ashktorab, H.; Smoot, D.T.; Fang, E.F.; Chan, M.T.V.; Gin, T.; Gong, W.; Wu, W.K.K.; Cho, C.H. Vitamin D3 activates the autolysosomal degradation function against Helicobacter pylori through the PDIA3 receptor in gastric epithelial cells. Autophagy, 2019, 15(4), 707-725.
[http://dx.doi.org/10.1080/15548627.2018.1557835] [PMID: 30612517]
[137]
Zhang, L.; Hu, W.; Cho, C.H.; Chan, F.K.; Yu, J.; Fitzgerald, J.R.; Cheung, C.K.; Xiao, Z.G.; Shen, J.; Li, L.F.; Li, M.X.; Wu, J.C.; Ling, T.K.; Chan, J.Y.; Ko, H.; Tse, G.; Ng, S.C.; Yu, S.; Wang, M.H.; Gin, T.; Ashktorab, H.; Smoot, D.T.; Wong, S.H.; Chan, M.T.; Wu, W.K. Reduced lysosomal clearance of autophagosomes promotes survival and colonization of Helicobacter pylori. J. Pathol., 2018, 244(4), 432-444.
[http://dx.doi.org/10.1002/path.5033] [PMID: 29327342]
[138]
Wu, W.K.; Wang, G.; Coffelt, S.B.; Betancourt, A.M.; Lee, C.W.; Fan, D.; Wu, K.; Yu, J.; Sung, J.J.; Cho, C.H. Emerging roles of the host defense peptide LL-37 in human cancer and its potential therapeutic applications. Int. J. Cancer, 2010, 127(8), 1741-1747.
[http://dx.doi.org/10.1002/ijc.25489] [PMID: 20521250]
[139]
To, K.K.; Ren, S.X.; Wong, C.C.; Cho, C.H. Reversal of ABCG2-mediated multidrug resistance by human cathelicidin and its analogs in cancer cells. Peptides, 2013, 40, 13-21.
[http://dx.doi.org/10.1016/j.peptides.2012.12.019] [PMID: 23274176]
[140]
Wnorowska, U.; Fiedoruk, K.; Piktel, E.; Prasad, S.V.; Sulik, M.; Janion, M.; Daniluk, T.; Savage, P.B.; Bucki, R. Nanoantibiotics containing membrane-active human cathelicidin LL-37 or synthetic ceragenins attached to the surface of magnetic nanoparticles as novel and innovative therapeutic tools: current status and potential future applications. J. Nanobiotechnol., 2020, 18(1), 3.
[http://dx.doi.org/10.1186/s12951-019-0566-z] [PMID: 31898542]
[141]
Martineau, A.R.; Wilkinson, K.A.; Newton, S.M.; Floto, R.A.; Norman, A.W.; Skolimowska, K.; Davidson, R.N.; Sørensen, O.E.; Kampmann, B.; Griffiths, C.J.; Wilkinson, R.J. IFN-gamma- and TNF-independent vitamin D-inducible human suppression of mycobacteria: the role of cathelicidin LL-37. J. Immunol., 2007, 178(11), 7190-7198.
[http://dx.doi.org/10.4049/jimmunol.178.11.7190] [PMID: 17513768]
[142]
Crane-Godreau, M.A.; Clem, K.J.; Payne, P.; Fiering, S. Vitamin D deficiency and air pollution exacerbate COVID-19 through suppression of antiviral peptide LL37. Front. Public Health, 2020, 8, 232.
[http://dx.doi.org/10.3389/fpubh.2020.00232] [PMID: 32671009]
[143]
Wu, W.K.; Cho, C.H.; Lee, C.W.; Wu, K.; Fan, D.; Yu, J.; Sung, J.J. Proteasome inhibition: a new therapeutic strategy to cancer treatment. Cancer Lett., 2010, 293(1), 15-22.
[http://dx.doi.org/10.1016/j.canlet.2009.12.002] [PMID: 20133049]
[144]
Zhou, A.; Li, L.; Zhao, G.; Min, L.; Liu, S.; Zhu, S.; Guo, Q.; Liu, C.; Zhang, S.; Li, P. Vitamin D3 inhibits Helicobacter pylori infection by activating the VitD3/VDR-CAMP pathway in mice. Front. Cell. Infect. Microbiol., 2020, 10, 566730.
[http://dx.doi.org/10.3389/fcimb.2020.566730] [PMID: 33194806]
[145]
Lee, J.E. Circulating levels of vitamin D, vitamin D receptor polymorphisms, and colorectal adenoma: a meta-analysis. Nutr. Res. Pract., 2011, 5(5), 464-470.
[http://dx.doi.org/10.4162/nrp.2011.5.5.464] [PMID: 22125685]
[146]
Yin, L.; Grandi, N.; Raum, E.; Haug, U.; Arndt, V.; Brenner, H. Meta-analysis: serum vitamin D and colorectal adenoma risk. Prev. Med., 2011, 53(1-2), 10-16.
[http://dx.doi.org/10.1016/j.ypmed.2011.05.013] [PMID: 21672549]
[147]
Hightower, J.M.; Dalessandri, K.M.; Pope, K.; Hernández, G.T. Low 25-Hydroxyvitamin D and Myofascial Pain: association of cancer, colon polyps, and tendon rupture. J. Am. Coll. Nutr., 2017, 36(6), 455-461.
[http://dx.doi.org/10.1080/07315724.2017.1320951] [PMID: 28682182]
[148]
Mohr, S.B.; Gorham, E.D.; Kim, J.; Hofflich, H.; Cuomo, R.E.; Garland, C.F. Could vitamin D sufficiency improve the survival of colorectal cancer patients? J. Steroid Biochem. Mol. Biol., 2015, 148, 239-244.
[http://dx.doi.org/10.1016/j.jsbmb.2014.12.010] [PMID: 25533386]
[149]
Takeshige, N.; Yin, G.; Ohnaka, K.; Kono, S.; Ueki, T.; Tanaka, M.; Maehara, Y.; Okamura, T.; Ikejiri, K.; Maekawa, T.; Yasunami, Y.; Takenaka, K.; Ichimiya, H.; Terasaka, R. Associations between vitamin D receptor (VDR) gene polymorphisms and colorectal cancer risk and effect modifications of dietary calcium and vitamin D in a Japanese population. Asian Pac. J. Cancer Prev., 2015, 16(5), 2019-2026.
[http://dx.doi.org/10.7314/APJCP.2015.16.5.2019] [PMID: 25773805]
[150]
Song, M.; Nishihara, R.; Wang, M.; Chan, A.T.; Qian, Z.R.; Inamura, K.; Zhang, X.; Ng, K.; Kim, S.A.; Mima, K.; Sukawa, Y.; Nosho, K.; Fuchs, C.S.; Giovannucci, E.L.; Wu, K.; Ogino, S. Plasma 25-hydroxyvitamin D and colorectal cancer risk according to tumour immunity status. Gut, 2016, 65(2), 296-304.
[http://dx.doi.org/10.1136/gutjnl-2014-308852] [PMID: 25591978]
[151]
Shabahang, M.; Buras, R.R.; Davoodi, F.; Schumaker, L.M.; Nauta, R.J.; Evans, S.R. 1,25-Dihydroxyvitamin D3 receptor as a marker of human colon carcinoma cell line differentiation and growth inhibition. Cancer Res., 1993, 53(16), 3712-3718.
[PMID: 8393379]
[152]
Wang, Y.; Zhu, J.; DeLuca, H.F. Where is the vitamin D receptor? Arch. Biochem. Biophys., 2012, 523(1), 123-133.
[http://dx.doi.org/10.1016/j.abb.2012.04.001] [PMID: 22503810]
[153]
Cross, H.S.; Bareis, P.; Hofer, H.; Bischof, M.G.; Bajna, E.; Kriwanek, S.; Bonner, E.; Peterlik, M. 25-Hydroxyvitamin D(3)-1alpha-hydroxylase and vitamin D receptor gene expression in human colonic mucosa is elevated during early cancerogenesis. Steroids, 2001, 66(3-5), 287-292.
[http://dx.doi.org/10.1016/S0039-128X(00)00153-7] [PMID: 11179736]
[154]
Matusiak, D.; Murillo, G.; Carroll, R.E.; Mehta, R.G.; Benya, R.V. Expression of vitamin D receptor and 25-hydroxyvitamin D3-1alpha-hydroxylase in normal and malignant human colon. Cancer Epidemiol. Biomarkers Prev., 2005, 14(10), 2370-2376.
[http://dx.doi.org/10.1158/1055-9965.EPI-05-0257] [PMID: 16214919]
[155]
Ramagopalan, S.V.; Heger, A.; Berlanga, A.J.; Maugeri, N.J.; Lincoln, M.R.; Burrell, A.; Handunnetthi, L.; Handel, A.E.; Disanto, G.; Orton, S.M.; Watson, C.T.; Morahan, J.M.; Giovannoni, G.; Ponting, C.P.; Ebers, G.C.; Knight, J.C. A ChIP-seq defined genome-wide map of vitamin D receptor binding: associations with disease and evolution. Genome Res., 2010, 20(10), 1352-1360.
[http://dx.doi.org/10.1101/gr.107920.110] [PMID: 20736230]
[156]
Meyer, M.B.; Goetsch, P.D.; Pike, J.W. VDR/RXR and TCF4/β-catenin cistromes in colonic cells of colorectal tumor origin: Impact on c-FOS and c-MYC gene expression. Mol. Endocrinol., 2012, 26(1), 37-51.
[http://dx.doi.org/10.1210/me.2011-1109] [PMID: 22108803]
[157]
Dou, R.; Ng, K.; Giovannucci, E.L.; Manson, J.E.; Qian, Z.R.; Ogino, S. Vitamin D and colorectal cancer: Molecular, epidemiological and clinical evidence. Br. J. Nutr., 2016, 115(9), 1643-1660.
[http://dx.doi.org/10.1017/S0007114516000696] [PMID: 27245104]
[158]
Kure, S.; Nosho, K.; Baba, Y.; Irahara, N.; Shima, K.; Ng, K.; Meyerhardt, J.A.; Giovannucci, E.L.; Fuchs, C.S.; Ogino, S. Vitamin D receptor expression is associated with PIK3CA and KRAS mutations in colorectal cancer. Cancer Epidemiol. Biomarkers Prev., 2009, 18(10), 2765-2772.
[http://dx.doi.org/10.1158/1055-9965.EPI-09-0490] [PMID: 19789368]
[159]
Klampfer, L. Vitamin D and colon cancer. World J. Gastrointest. Oncol., 2014, 6(11), 430-437.
[http://dx.doi.org/10.4251/wjgo.v6.i11.430] [PMID: 25400874]
[160]
Pálmer, H.G.; Sánchez-Carbayo, M.; Ordóñez-Morán, P.; Larriba, M.J.; Cordón-Cardó, C.; Muñoz, A. Genetic signatures of differentiation induced by 1alpha,25-dihydroxyvitamin D3 in human colon cancer cells. Cancer Res., 2003, 63(22), 7799-7806.
[PMID: 14633706]
[161]
Byers, S.; Shah, S. Vitamin D and the regulation of Wnt/beta-catenin signaling and innate immunity in colorectal cancer. Nutr. Rev., 2007, 65(8 Pt 2), S118-S120.
[http://dx.doi.org/10.1301/nr.2007.aug.S118-S120] [PMID: 17867386]
[162]
Chen, A.; Davis, B.H.; Sitrin, M.D.; Brasitus, T.A.; Bissonnette, M. Transforming growth factor-beta 1 signaling contributes to Caco-2 cell growth inhibition induced by 1,25(OH)(2)D(3). Am. J. Physiol. Gastrointest. Liver Physiol., 2002, 283(4), G864-G874.
[http://dx.doi.org/10.1152/ajpgi.00524.2001] [PMID: 12223346]
[163]
Dougherty, U.; Mustafi, R.; Sadiq, F.; Almoghrabi, A.; Mustafi, D.; Kreisheh, M.; Sundaramurthy, S.; Liu, W.; Konda, V.J.; Pekow, J.; Khare, S.; Hart, J.; Joseph, L.; Wyrwicz, A.; Karczmar, G.S.; Li, Y.C.; Bissonnette, M. The renin-angiotensin system mediates EGF receptor-vitamin d receptor cross-talk in colitis-associated colon cancer. Clin. Cancer Res., 2014, 20(22), 5848-5859.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-0209] [PMID: 25212605]
[164]
Christakos, S.; Dhawan, P.; Verstuyf, A.; Verlinden, L.; Carmeliet, G. Vitamin D: metabolism, molecular mechanism of action, and pleiotropic effects. Physiol. Rev., 2016, 96(1), 365-408.
[http://dx.doi.org/10.1152/physrev.00014.2015] [PMID: 26681795]
[165]
Alvarez-Díaz, S.; Valle, N.; Ferrer-Mayorga, G.; Lombardía, L.; Herrera, M.; Domínguez, O.; Segura, M.F.; Bonilla, F.; Hernando, E.; Muñoz, A. MicroRNA-22 is induced by vitamin D and contributes to its antiproliferative, antimigratory and gene regulatory effects in colon cancer cells. Hum. Mol. Genet., 2012, 21(10), 2157-2165.
[http://dx.doi.org/10.1093/hmg/dds031] [PMID: 22328083]
[166]
Padi, S.K.; Zhang, Q.; Rustum, Y.M.; Morrison, C.; Guo, B. MicroRNA-627 mediates the epigenetic mechanisms of vitamin D to suppress proliferation of human colorectal cancer cells and growth of xenograft tumors in mice. Gastroenterology, 2013, 145(2), 437-446.
[http://dx.doi.org/10.1053/j.gastro.2013.04.012] [PMID: 23619147]
[167]
van Harten-Gerritsen, A.S.; Balvers, M.G.; Witkamp, R.F.; Kampman, E.; van Duijnhoven, F.J. Vitamin D, Inflammation, and colorectal cancer progression: a review of mechanistic studies and future directions for epidemiological studies. Cancer Epidemiol. Biomarkers Prev., 2015, 24(12), 1820-1828.
[http://dx.doi.org/10.1158/1055-9965.EPI-15-0601] [PMID: 26396142]
[168]
Veldhoen, M.; Brucklacher-Waldert, V. Dietary influences on intestinal immunity. Nat. Rev. Immunol., 2012, 12(10), 696-708.
[http://dx.doi.org/10.1038/nri3299] [PMID: 23007570]
[169]
Bruce, D.; Cantorna, M.T. Intrinsic requirement for the vitamin D receptor in the development of CD8αα-expressing T cells. J. Immunol., 2011, 186(5), 2819-2825.
[http://dx.doi.org/10.4049/jimmunol.1003444] [PMID: 21270396]
[170]
Wada, K.; Tanaka, H.; Maeda, K.; Inoue, T.; Noda, E.; Amano, R.; Kubo, N.; Muguruma, K.; Yamada, N.; Yashiro, M.; Sawada, T.; Nakata, B.; Ohira, M.; Hirakawa, K. Vitamin D receptor expression is associated with colon cancer in ulcerative colitis. Oncol. Rep., 2009, 22(5), 1021-1025.
[PMID: 19787215]
[171]
Tuomela, J.M.; Sandholm, J.A.; Kaakinen, M.; Hayden, K.L.; Haapasaari, K.M.; Jukkola-Vuorinen, A.; Kauppila, J.H.; Lehenkari, P.P.; Harris, K.W.; Graves, D.E.; Selander, K.S. Telomeric G-quadruplex-forming DNA fragments induce TLR9-mediated and LL-37-regulated invasion in breast cancer cells in vitro. Breast Cancer Res. Treat., 2016, 155(2), 261-271.
[http://dx.doi.org/10.1007/s10549-016-3683-5] [PMID: 26780557]
[172]
Lim, R.; Lappas, M.; Riley, C.; Borregaard, N.; Moller, H.J.; Ahmed, N.; Rice, G.E. Investigation of human cationic antimicrobial protein-18 (hCAP-18), lactoferrin and CD163 as potential biomarkers for ovarian cancer. J. Ovarian Res., 2013, 6(1), 5.
[http://dx.doi.org/10.1186/1757-2215-6-5] [PMID: 23339669]
[173]
American Association for Cancer Research. Correction: Host immune defense peptide LL-37 activates caspase-independent apoptosis and suppresses colon cancer. Cancer Res., 2015, 75(17), 3684.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-1867] [PMID: 26286477]
[174]
Ren, S.X.; Cheng, A.S.; To, K.F.; Tong, J.H.; Li, M.S.; Shen, J.; Wong, C.C.; Zhang, L.; Chan, R.L.; Wang, X.J.; Ng, S.S.; Chiu, L.C.; Marquez, V.E.; Gallo, R.L.; Chan, F.K.; Yu, J.; Sung, J.J.; Wu, W.K.; Cho, C.H. Host immune defense peptide LL-37 activates caspase-independent apoptosis and suppresses colon cancer. Cancer Res., 2012, 72(24), 6512-6523.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-2359] [PMID: 23100468]
[175]
Cheng, M.; Ho, S.; Yoo, J.H.; Tran, D.H.; Bakirtzi, K.; Su, B.; Tran, D.H.; Kubota, Y.; Ichikawa, R.; Koon, H.W. Cathelicidin suppresses colon cancer development by inhibition of cancer associated fibroblasts. Clin. Exp. Gastroenterol., 2014, 8, 13-29.
[PMID: 25565877]
[176]
Kuroda, K.; Fukuda, T.; Krstic-Demonacos, M.; Demonacos, C.; Okumura, K.; Isogai, H.; Hayashi, M.; Saito, K.; Isogai, E. miR-663a regulates growth of colon cancer cells, after administration of antimicrobial peptides, by targeting CXCR4-p21 pathway. BMC Cancer, 2017, 17(1), 33.
[http://dx.doi.org/10.1186/s12885-016-3003-9] [PMID: 28061765]
[177]
Bessler, H.; Djaldetti, M. 1α,25-Dihydroxyvitamin D3 modulates the interaction between immune and colon cancer cells. Biomed. Pharmacother., 2012, 66(6), 428-432.
[http://dx.doi.org/10.1016/j.biopha.2012.06.005] [PMID: 22795808]
[178]
Hsu, J.Y.; Feldman, D.; McNeal, J.E.; Peehl, D.M. Reduced 1alpha-hydroxylase activity in human prostate cancer cells correlates with decreased susceptibility to 25-hydroxyvitamin D3-induced growth inhibition. Cancer Res., 2001, 61(7), 2852-2856.
[PMID: 11306457]
[179]
Swami, S.; Krishnan, A.V.; Wang, J.Y.; Jensen, K.; Horst, R.; Albertelli, M.A.; Feldman, D. Dietary vitamin D3 and 1,25-dihydroxyvitamin D3 (calcitriol) exhibit equivalent anticancer activity in mouse xenograft models of breast and prostate cancer. Endocrinology, 2012, 153(6), 2576-2587.
[http://dx.doi.org/10.1210/en.2011-1600] [PMID: 22454149]
[180]
Zehnder, D.; Bland, R.; Williams, M.C.; McNinch, R.W.; Howie, A.J.; Stewart, P.M.; Hewison, M. Extrarenal expression of 25-hydroxyvitamin d(3)-1 alpha-hydroxylase. J. Clin. Endocrinol. Metab., 2001, 86(2), 888-894.
[PMID: 11158062]
[181]
Cross, H.S.; Bises, G.; Lechner, D.; Manhardt, T.; Kállay, E. The Vitamin D endocrine system of the gut--its possible role in colorectal cancer prevention. J. Steroid Biochem. Mol. Biol., 2005, 97(1-2), 121-128.
[http://dx.doi.org/10.1016/j.jsbmb.2005.06.005] [PMID: 16081282]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy