Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Mini-Review Article

State-of-the-Art: Exosomes in Colorectal Cancer

Author(s): Yan Dang, Shutian Zhang*, Yongjun Wang, Guiping Zhao, Chuyan Chen and Wei Jiang

Volume 22, Issue 1, 2022

Published on: 27 January, 2022

Page: [2 - 17] Pages: 16

DOI: 10.2174/1568009621666211110094442

Price: $65

Abstract

Colorectal cancer (CRC) has a high prevalence and mortality rate globally. To date, the progression mechanisms of CRC are still elusive. Exosomes (~100 nm in diameter) correspond to a subset of extracellular vesicles formed by an array of cancerous cells and stromal cells. These particular nanovesicles carry and transmit bioactive molecules, like proteins, lipids, and genetic materials, which mediate the crosstalk between cancer cells and the microenvironment. Accumulating evidence has shown the decisive functions of exosomes in the development, metastasis, and therapy resistance of CRC. Furthermore, some recent studies have also revealed the abilities of exosomes to function as either biomarkers or therapeutic targets for CRC. This review focuses on the specific mechanisms of exosomes in regulating CRC progression and summarizes the potential clinical applications of exosomes in the diagnosis and therapy of CRC.

Keywords: Colorectal cancer, exosomes, tumorigenesis, metastasis, therapy resistance, biomarkers.

Graphical Abstract
[1]
Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2021. CA Cancer J. Clin., 2021, 71(1), 7-33.
[http://dx.doi.org/10.3322/caac.21654] [PMID: 33433946]
[2]
Arnold, M.; Sierra, M.S.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global patterns and trends in colorectal cancer incidence and mortality. Gut, 2017, 66(4), 683-691.
[http://dx.doi.org/10.1136/gutjnl-2015-310912] [PMID: 26818619]
[3]
Keum, N.; Giovannucci, E. Global burden of colorectal cancer: emerging trends, risk factors and prevention strategies. Nat. Rev. Gastroenterol. Hepatol., 2019, 16(12), 713-732.
[http://dx.doi.org/10.1038/s41575-019-0189-8] [PMID: 31455888]
[4]
Maida, M.; Macaluso, F.S.; Ianiro, G.; Mangiola, F.; Sinagra, E.; Hold, G.; Maida, C.; Cammarota, G.; Gasbarrini, A.; Scarpulla, G. Screening of colorectal cancer: present and future. Expert Rev. Anticancer Ther., 2017, 17(12), 1131-1146.
[http://dx.doi.org/10.1080/14737140.2017.1392243] [PMID: 29022408]
[5]
Cocucci, E.; Meldolesi, J. Ectosomes and exosomes: Shedding the confusion between extracellular vesicles. Trends Cell Biol., 2015, 25(6), 364-372.
[http://dx.doi.org/10.1016/j.tcb.2015.01.004] [PMID: 25683921]
[6]
Meldolesi, J. Exosomes and ectosomes in intercellular communication. Curr. Biol., 2018, 28(8), R435-R444.
[http://dx.doi.org/10.1016/j.cub.2018.01.059] [PMID: 29689228]
[7]
Kalluri, R. The biology and function of exosomes in cancer. J. Clin. Invest., 2016, 126(4), 1208-1215.
[http://dx.doi.org/10.1172/JCI81135] [PMID: 27035812]
[8]
Kosaka, N.; Kogure, A.; Yamamoto, T.; Urabe, F.; Usuba, W.; Prieto-Vila, M.; Ochiya, T. Exploiting the message from cancer: The diagnostic value of extracellular vesicles for clinical applications. Exp. Mol. Med., 2019, 51(3), 1-9.
[http://dx.doi.org/10.1038/s12276-019-0219-1] [PMID: 30872565]
[9]
Mathieu, M.; Martin-Jaular, L.; Lavieu, G.; Théry, C. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat. Cell Biol., 2019, 21(1), 9-17.
[http://dx.doi.org/10.1038/s41556-018-0250-9] [PMID: 30602770]
[10]
Kalluri, R.; LeBleu, V.S. The biology, function, and biomedical applications of exosomes. Science, 2020, 367(6478), eaau6977.
[http://dx.doi.org/10.1126/science.aau6977] [PMID: 32029601]
[11]
Pegtel, D.M.; Gould, S.J. Exosomes. Annu. Rev. Biochem., 2019, 88, 487-514.
[http://dx.doi.org/10.1146/annurev-biochem-013118-111902] [PMID: 31220978]
[12]
Mulvey, H.E.; Chang, A.; Adler, J.; Del Tatto, M.; Perez, K.; Quesenberry, P.J.; Chatterjee, D. Extracellular vesicle-mediated phenotype switching in malignant and non-malignant colon cells. BMC Cancer, 2015, 15, 571.
[http://dx.doi.org/10.1186/s12885-015-1568-3] [PMID: 26231887]
[13]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[14]
Abdouh, M.; Floris, M.; Gao, Z-H.; Arena, V.; Arena, M.; Arena, G.O. Colorectal cancer-derived extracellular vesicles induce transformation of fibroblasts into colon carcinoma cells. J. Exp. Clin. Cancer Res., 2019, 38(1), 257.
[http://dx.doi.org/10.1186/s13046-019-1248-2] [PMID: 31200749]
[15]
Elewaily, M.I.; Elsergany, A.R. Emerging role of exosomes and exosomal microRNA in cancer: Pathophysiology and clinical potential. J. Cancer Res. Clin. Oncol., 2021, 147(3), 637-648.
[http://dx.doi.org/10.1007/s00432-021-03534-5] [PMID: 33511427]
[16]
Minciacchi, V.R.; Freeman, M.R.; Di Vizio, D. Extracellular vesicles in cancer: Exosomes, microvesicles and the emerging role of large oncosomes. Semin. Cell Dev. Biol., 2015, 40, 41-51.
[http://dx.doi.org/10.1016/j.semcdb.2015.02.010] [PMID: 25721812]
[17]
Möller, A.; Lobb, R.J. The evolving translational potential of small extracellular vesicles in cancer. Nat. Rev. Cancer, 2020, 20(12), 697-709.
[http://dx.doi.org/10.1038/s41568-020-00299-w] [PMID: 32958932]
[18]
Johnstone, R.M.; Adam, M.; Hammond, J.R.; Orr, L.; Turbide, C. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J. Biol. Chem., 1987, 262(19), 9412-9420.
[http://dx.doi.org/10.1016/S0021-9258(18)48095-7] [PMID: 3597417]
[19]
Hessvik, N.P.; Llorente, A. Current knowledge on exosome biogenesis and release. Cell. Mol. Life Sci., 2018, 75(2), 193-208.
[http://dx.doi.org/10.1007/s00018-017-2595-9] [PMID: 28733901]
[20]
Doyle, L.M.; Wang, M.Z. Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells, 2019, 8(7), E727.
[http://dx.doi.org/10.3390/cells8070727] [PMID: 31311206]
[21]
Colombo, M.; Moita, C.; van Niel, G.; Kowal, J.; Vigneron, J.; Benaroch, P.; Manel, N.; Moita, L.F.; Théry, C.; Raposo, G. Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. J. Cell Sci., 2013, 126(Pt 24), 5553-5565.
[http://dx.doi.org/10.1242/jcs.128868] [PMID: 24105262]
[22]
Juan, T.; Fürthauer, M. Biogenesis and function of ESCRT-dependent extracellular vesicles. Semin. Cell Dev. Biol., 2018, 74, 66-77.
[http://dx.doi.org/10.1016/j.semcdb.2017.08.022] [PMID: 28807885]
[23]
Jan, A.T.; Rahman, S.; Khan, S.; Tasduq, S.A.; Choi, I. Biology, pathophysiological role, and clinical implications of exosomes: A critical appraisal. Cells, 2019, 8(2), E99.
[http://dx.doi.org/10.3390/cells8020099] [PMID: 30699987]
[24]
Baietti, M.F.; Zhang, Z.; Mortier, E.; Melchior, A.; Degeest, G.; Geeraerts, A.; Ivarsson, Y.; Depoortere, F.; Coomans, C.; Vermeiren, E.; Zimmermann, P.; David, G. Syndecan-syntenin-ALIX regulates the biogenesis of exosomes. Nat. Cell Biol., 2012, 14(7), 677-685.
[http://dx.doi.org/10.1038/ncb2502] [PMID: 22660413]
[25]
Villarroya-Beltri, C.; Baixauli, F.; Mittelbrunn, M.; Fernández-Delgado, I.; Torralba, D.; Moreno-Gonzalo, O.; Baldanta, S.; Enrich, C.; Guerra, S.; Sánchez-Madrid, F. ISGylation controls exosome secretion by promoting lysosomal degradation of MVB proteins. Nat. Commun., 2016, 7, 13588.
[http://dx.doi.org/10.1038/ncomms13588] [PMID: 27882925]
[26]
van Niel, G.; D’Angelo, G.; Raposo, G. Shedding light on the cell biology of extracellular vesicles. Nat. Rev. Mol. Cell Biol., 2018, 19(4), 213-228.
[http://dx.doi.org/10.1038/nrm.2017.125] [PMID: 29339798]
[27]
Ostrowski, M.; Carmo, N.B.; Krumeich, S.; Fanget, I.; Raposo, G.; Savina, A.; Moita, C.F.; Schauer, K.; Hume, A.N.; Freitas, R.P.; Goud, B.; Benaroch, P.; Hacohen, N.; Fukuda, M.; Desnos, C.; Seabra, M.C.; Darchen, F.; Amigorena, S.; Moita, L.F.; Thery, C. Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol, 2010, 12(1), 19-30.
[http://dx.doi.org/10.1038/ncb2000]
[28]
Granger, E.; McNee, G.; Allan, V.; Woodman, P. The role of the cytoskeleton and molecular motors in endosomal dynamics. Semin. Cell Dev. Biol., 2014, 31, 20-29.
[http://dx.doi.org/10.1016/j.semcdb.2014.04.011] [PMID: 24727350]
[29]
Abels, E.R.; Breakefield, X.O. Introduction to extracellular vesicles: Biogenesis, RNA cargo selection, content, release, and uptake. Cell. Mol. Neurobiol., 2016, 36(3), 301-312.
[http://dx.doi.org/10.1007/s10571-016-0366-z] [PMID: 27053351]
[30]
Mulcahy, L.A.; Pink, R.C.; Carter, D.R. Routes and mechanisms of extracellular vesicle uptake. J. Extracell. Vesicles, 2014, 3, 3.
[http://dx.doi.org/10.3402/jev.v3.24641] [PMID: 25143819]
[31]
Hui, L.; Chen, Y. Tumor microenvironment: Sanctuary of the devil. Cancer Lett., 2015, 368(1), 7-13.
[http://dx.doi.org/10.1016/j.canlet.2015.07.039] [PMID: 26276713]
[32]
Hida, K.; Maishi, N.; Annan, D.A.; Hida, Y. Contribution of tumor endothelial cells in cancer progression. Int. J. Mol. Sci., 2018, 19(5), E1272.
[http://dx.doi.org/10.3390/ijms19051272] [PMID: 29695087]
[33]
Cirri, P.; Chiarugi, P. Cancer associated fibroblasts: The dark side of the coin. Am. J. Cancer Res., 2011, 1(4), 482-497.
[PMID: 21984967]
[34]
Bhome, R.; Goh, R.W.; Bullock, M.D.; Pillar, N.; Thirdborough, S.M.; Mellone, M.; Mirnezami, R.; Galea, D.; Veselkov, K.; Gu, Q.; Underwood, T.J.; Primrose, J.N.; De Wever, O.; Shomron, N.; Sayan, A.E.; Mirnezami, A.H. Exosomal microRNAs derived from colorectal cancer-associated fibroblasts: Role in driving cancer progression. Aging (Albany NY), 2017, 9(12), 2666-2694.
[http://dx.doi.org/10.18632/aging.101355] [PMID: 29283887]
[35]
Huang, Z.; Yang, M.; Li, Y.; Yang, F.; Feng, Y. Exosomes Derived from hypoxic colorectal cancer cells transfer Wnt4 to normoxic cells to elicit a prometastatic phenotype. Int. J. Biol. Sci., 2018, 14(14), 2094-2102.
[http://dx.doi.org/10.7150/ijbs.28288] [PMID: 30585272]
[36]
Wang, Y.; Yin, K.; Tian, J.; Xia, X.; Ma, J.; Tang, X.; Xu, H.; Wang, S. Granulocytic myeloid-derived suppressor cells promote the stemness of colorectal cancer cells through exosomal S100A9. Adv. Sci. (Weinh.), 2019, 6(18), 1901278.
[http://dx.doi.org/10.1002/advs.201901278] [PMID: 31559140]
[37]
de la Cruz-López, K.G.; Castro-Muñoz, L.J.; Reyes-Hernández, D.O.; García-Carrancá, A.; Manzo-Merino, J. Lactate in the regulation of tumor microenvironment and therapeutic approaches. Front. Oncol., 2019, 9, 1143.
[http://dx.doi.org/10.3389/fonc.2019.01143] [PMID: 31737570]
[38]
Logozzi, M.; Spugnini, E.; Mizzoni, D.; Di Raimo, R.; Fais, S. Extracellular acidity and increased exosome release as key phenotypes of malignant tumors. Cancer Metastasis Rev., 2019, 38(1-2), 93-101.
[http://dx.doi.org/10.1007/s10555-019-09783-8] [PMID: 30715644]
[39]
Tian, X.P.; Wang, C.Y.; Jin, X.H.; Li, M.; Wang, F.W.; Huang, W.J.; Yun, J.P.; Xu, R.H.; Cai, Q.Q.; Xie, D. Acidic microenvironment up-regulates exosomal miR-21 and miR-10b in early-stage hepatocellular carcinoma to promote cancer cell proliferation and metastasis. Theranostics, 2019, 9(7), 1965-1979.
[http://dx.doi.org/10.7150/thno.30958] [PMID: 31037150]
[40]
Zhang, Z.; Xing, T.; Chen, Y.; Xiao, J. Exosome-mediated miR-200b promotes colorectal cancer proliferation upon TGF-β1 exposure. Biomed. Pharmacother., 2018, 106, 1135-1143.
[41]
Hu, X.; Mu, Y.; Liu, J.; Mu, X.; Gao, F.; Chen, L.; Wu, H.; Wu, H.; Liu, W.; Zhao, Y. Exosomes derived from hypoxic colorectal cancer cells transfer miR-410-3p to regulate tumor progression. J. Cancer, 2020, 11(16), 4724-4735.
[http://dx.doi.org/10.7150/jca.33232] [PMID: 32626519]
[42]
Luan, Y.; Li, X.; Luan, Y.; Zhao, R.; Li, Y.; Liu, L.; Hao, Y.; Oleg Vladimir, B.; Jia, L. Circulating lncRNA UCA1 promotes malignancy of colorectal cancer via the miR-143/MYO6 axis. Mol. Ther. Nucleic Acids, 2020, 19, 790-803.
[http://dx.doi.org/10.1016/j.omtn.2019.12.009] [PMID: 31955010]
[43]
Shang, A.; Gu, C.; Wang, W.; Wang, X.; Sun, J.; Zeng, B.; Chen, C.; Chang, W.; Ping, Y.; Ji, P.; Wu, J.; Quan, W.; Yao, Y.; Zhou, Y.; Sun, Z.; Li, D. Exosomal circPACRGL promotes progression of colorectal cancer via the miR-142-3p/miR-506-3p- TGF-β1 axis. Mol. Cancer, 2020, 19(1), 117.
[http://dx.doi.org/10.1186/s12943-020-01235-0] [PMID: 32713345]
[44]
Wang, B.; Wang, Y.; Yan, Z.; Sun, Y.; Su, C. Colorectal cancer cell-derived exosomes promote proliferation and decrease apoptosis by activating the ERK pathway. Int. J. Clin. Exp. Pathol., 2019, 12(7), 2485-2495.
[PMID: 31934075]
[45]
Xu, Y.; Shen, L.; Li, F.; Yang, J.; Wan, X.; Ouyang, M. microRNA-16-5p-containing exosomes derived from bone marrow-derived mesenchymal stem cells inhibit proliferation, migration, and invasion, while promoting apoptosis of colorectal cancer cells by downregulating ITGA2. J. Cell. Physiol., 2019, 234(11), 21380-21394.
[http://dx.doi.org/10.1002/jcp.28747] [PMID: 31102273]
[46]
Folkman, J. Role of angiogenesis in tumor growth and metastasis. Semin. Oncol., 2002, 29(6)(Suppl. 16), 15-18.
[http://dx.doi.org/10.1016/S0093-7754(02)70065-1] [PMID: 12516034]
[47]
Hu, H.Y.; Yu, C.H.; Zhang, H.H.; Zhang, S.Z.; Yu, W.Y.; Yang, Y.; Chen, Q. Exosomal miR-1229 derived from colorectal cancer cells promotes angiogenesis by targeting HIPK2. Int. J. Biol. Macromol., 2019, 132, 470-477.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.03.221] [PMID: 30936013]
[48]
Shang, A.; Wang, X.; Gu, C.; Liu, W.; Sun, J.; Zeng, B.; Chen, C.; Ji, P.; Wu, J.; Quan, W.; Yao, Y.; Wang, W.; Sun, Z.; Li, D. Exosomal miR-183-5p promotes angiogenesis in colorectal cancer by regulation of FOXO1. Aging (Albany NY), 2020, 12(9), 8352-8371.
[http://dx.doi.org/10.18632/aging.103145] [PMID: 32364530]
[49]
Yoon, Y.J.; Kim, D.K.; Yoon, C.M.; Park, J.; Kim, Y.K.; Roh, T.Y.; Gho, Y.S. Egr-1 activation by cancer-derived extracellular vesicles promotes endothelial cell migration via ERK1/2 and JNK signaling pathways. PLoS One, 2014, 9(12), e115170.
[http://dx.doi.org/10.1371/journal.pone.0115170] [PMID: 25502753]
[50]
Han, L.; Lam, E.W.; Sun, Y. Extracellular vesicles in the tumor microenvironment: old stories, but new tales. Mol. Cancer, 2019, 18(1), 59.
[http://dx.doi.org/10.1186/s12943-019-0980-8] [PMID: 30925927]
[51]
Hong, B.S.; Cho, J.H.; Kim, H.; Choi, E.J.; Rho, S.; Kim, J.; Kim, J.H.; Choi, D.S.; Kim, Y.K.; Hwang, D.; Gho, Y.S. Colorectal cancer cell-derived microvesicles are enriched in cell cycle-related mRNAs that promote proliferation of endothelial cells. BMC Genomics, 2009, 10, 556.
[http://dx.doi.org/10.1186/1471-2164-10-556] [PMID: 19930720]
[52]
Huang, Z.; Feng, Y. Exosomes derived from hypoxic colorectal cancer cells promote angiogenesis through Wnt4-induced β- catenin signaling in endothelial cells. Oncol. Res., 2017, 25(5), 651-661.
[http://dx.doi.org/10.3727/096504016X14752792816791] [PMID: 27712599]
[53]
Lamouille, S.; Xu, J.; Derynck, R. Molecular mechanisms of epithelial-mesenchymal transition. Nat. Rev. Mol. Cell Biol., 2014, 15(3), 178-196.
[http://dx.doi.org/10.1038/nrm3758] [PMID: 24556840]
[54]
Liu, H.; Liu, Y.; Sun, P.; Leng, K.; Xu, Y.; Mei, L.; Han, P.; Zhang, B.; Yao, K.; Li, C.; Bai, J.; Cui, B. Colorectal cancer-derived exosomal miR-106b-3p promotes metastasis by down-regulating DLC-1 expression. Clin Sci. (London, England: 1979), 2020, 134(4), 419-434.
[55]
Zhang, X.; Bai, J.; Yin, H.; Long, L.; Zheng, Z.; Wang, Q.; Chen, F.; Yu, X.; Zhou, Y. Exosomal miR-1255b-5p targets human telomerase reverse transcriptase in colorectal cancer cells to suppress epithelial-to-mesenchymal transition. Mol. Oncol., 2020, 14(10), 2589-2608.
[http://dx.doi.org/10.1002/1878-0261.12765] [PMID: 32679610]
[56]
Hu, J.L.; Wang, W.; Lan, X.L.; Zeng, Z.C.; Liang, Y.S.; Yan, Y.R.; Song, F.Y.; Wang, F.F.; Zhu, X.H.; Liao, W.J.; Liao, W.T.; Ding, Y.Q.; Liang, L. CAFs secreted exosomes promote metastasis and chemotherapy resistance by enhancing cell stemness and epithelial-mesenchymal transition in colorectal cancer. Mol. Cancer, 2019, 18(1), 91.
[http://dx.doi.org/10.1186/s12943-019-1019-x] [PMID: 31064356]
[57]
Zhou, L.; Li, J.; Tang, Y.; Yang, M. Exosomal LncRNA LINC00659 transferred from cancer-associated fibroblasts promotes colorectal cancer cell progression via miR-342-3p/ANXA2 axis. J. Transl. Med., 2021, 19(1), 8.
[http://dx.doi.org/10.1186/s12967-020-02648-7] [PMID: 33407563]
[58]
Li, T.; Wan, Y.; Su, Z.; Li, J.; Han, M.; Zhou, C. Mesenchymal stem cell-derived exosomal microrna-3940-5p inhibits colorectal cancer metastasis by targeting integrin α6. Dig. Dis. Sci., 2021, 66(6), 1916-1927.
[http://dx.doi.org/10.1007/s10620-020-06458-1]
[59]
Liu, Y.; Cao, X. Characteristics and Significance of the Pre-metastatic Niche. Cancer Cell, 2016, 30(5), 668-681.
[http://dx.doi.org/10.1016/j.ccell.2016.09.011] [PMID: 27846389]
[60]
Zeng, Z.; Li, Y.; Pan, Y.; Lan, X.; Song, F.; Sun, J.; Zhou, K.; Liu, X.; Ren, X.; Wang, F.; Hu, J.; Zhu, X.; Yang, W.; Liao, W.; Li, G.; Ding, Y.; Liang, L. Cancer-derived exosomal miR-25-3p promotes pre-metastatic niche formation by inducing vascular permeability and angiogenesis. Nat. Commun., 2018, 9(1), 5395.
[http://dx.doi.org/10.1038/s41467-018-07810-w] [PMID: 30568162]
[61]
Shao, Y.; Chen, T.; Zheng, X.; Yang, S.; Xu, K.; Chen, X.; Xu, F.; Wang, L.; Shen, Y.; Wang, T.; Zhang, M.; Hu, W.; Ye, C.; Yu, X.; Shao, J.; Zheng, S. Colorectal cancer-derived small extracellular vesicles establish an inflammatory premetastatic niche in liver metastasis. Carcinogenesis, 2018, 39(11), 1368-1379.
[http://dx.doi.org/10.1093/carcin/bgy115] [PMID: 30184100]
[62]
Wang, X.; Ding, X.; Nan, L.; Wang, Y.; Wang, J.; Yan, Z.; Zhang, W.; Sun, J.; Zhu, W.; Ni, B.; Dong, S.; Yu, L. Investigation of the roles of exosomes in colorectal cancer liver metastasis. Oncol. Rep., 2015, 33(5), 2445-2453.
[http://dx.doi.org/10.3892/or.2015.3843] [PMID: 25760247]
[63]
Hoshino, A.; Costa-Silva, B.; Shen, T.L.; Rodrigues, G.; Hashimoto, A.; Tesic Mark, M.; Molina, H.; Kohsaka, S.; Di Giannatale, A.; Ceder, S.; Singh, S.; Williams, C.; Soplop, N.; Uryu, K.; Pharmer, L.; King, T.; Bojmar, L.; Davies, A.E.; Ararso, Y.; Zhang, T.; Zhang, H.; Hernandez, J.; Weiss, J.M.; Dumont-Cole, V.D.; Kramer, K.; Wexler, L.H.; Narendran, A.; Schwartz, G.K.; Healey, J.H.; Sandstrom, P.; Labori, K.J.; Kure, E.H.; Grandgenett, P.M.; Hollingsworth, M.A.; de Sousa, M.; Kaur, S.; Jain, M.; Mallya, K.; Batra, S.K.; Jarnagin, W.R.; Brady, M.S.; Fodstad, O.; Muller, V.; Pantel, K.; Minn, A.J.; Bissell, M.J.; Garcia, B.A.; Kang, Y.; Rajasekhar, V.K.; Ghajar, C.M.; Matei, I.; Peinado, H.; Bromberg, J.; Lyden, D. Tumour exosome integrins determine organotropic metastasis. Nature, 2015, 527(7578), 329-335.
[http://dx.doi.org/10.1038/nature15756] [PMID: 26524530]
[64]
Ji, Q.; Zhou, L.; Sui, H.; Yang, L.; Wu, X.; Song, Q.; Jia, R.; Li, R.; Sun, J.; Wang, Z.; Liu, N.; Feng, Y.; Sun, X.; Cai, G.; Feng, Y.; Cai, J.; Cao, Y.; Cai, G.; Wang, Y.; Li, Q. Primary tumors release ITGBL1-rich extracellular vesicles to promote distal metastatic tumor growth through fibroblast-niche formation. Nat. Commun., 2020, 11(1), 1211.
[http://dx.doi.org/10.1038/s41467-020-14869-x] [PMID: 32139701]
[65]
Jiang, K.; Chen, H.; Fang, Y.; Chen, L.; Zhong, C.; Bu, T.; Dai, S.; Pan, X.; Fu, D.; Qian, Y.; Wei, J.; Ding, K. Exosomal ANGPTL1 attenuates colorectal cancer liver metastasis by regulating Kupffer cell secretion pattern and impeding MMP9 induced vascular leakiness. J. Exp. Clin. Cancer Res., 2021, 40(1), 21.
[http://dx.doi.org/10.1186/s13046-020-01816-3] [PMID: 33413536]
[66]
Jiang, X.; Wang, J.; Deng, X.; Xiong, F.; Ge, J.; Xiang, B.; Wu, X.; Ma, J.; Zhou, M.; Li, X.; Li, Y.; Li, G.; Xiong, W.; Guo, C.; Zeng, Z. Role of the tumor microenvironment in PD-L1/PD-1-mediated tumor immune escape. Mol. Cancer, 2019, 18(1), 10.
[http://dx.doi.org/10.1186/s12943-018-0928-4] [PMID: 30646912]
[67]
Friedrich, M.; Jasinski-Bergner, S.; Lazaridou, M.F.; Subbarayan, K.; Massa, C.; Tretbar, S.; Mueller, A.; Handke, D.; Biehl, K.; Bukur, J.; Donia, M.; Mandelboim, O.; Seliger, B. Tumor-induced escape mechanisms and their association with resistance to checkpoint inhibitor therapy. Cancer Immunol. Immunother., 2019, 68(10), 1689-1700.
[http://dx.doi.org/10.1007/s00262-019-02373-1] [PMID: 31375885]
[68]
Huber, V.; Fais, S.; Iero, M.; Lugini, L.; Canese, P.; Squarcina, P.; Zaccheddu, A.; Colone, M.; Arancia, G.; Gentile, M.; Seregni, E.; Valenti, R.; Ballabio, G.; Belli, F.; Leo, E.; Parmiani, G.; Rivoltini, L. Human colorectal cancer cells induce T-cell death through release of proapoptotic microvesicles: Role in immune escape. Gastroenterology, 2005, 128(7), 1796-1804.
[http://dx.doi.org/10.1053/j.gastro.2005.03.045] [PMID: 15940614]
[69]
Yamada, N.; Kuranaga, Y.; Kumazaki, M.; Shinohara, H.; Taniguchi, K.; Akao, Y. Colorectal cancer cell-derived extracellular vesicles induce phenotypic alteration of T cells into tumor- growth supporting cells with transforming growth factor-β1-mediated suppression. Oncotarget, 2016, 7(19), 27033-27043.
[http://dx.doi.org/10.18632/oncotarget.7041] [PMID: 27081032]
[70]
Valenti, R.; Huber, V.; Filipazzi, P.; Pilla, L.; Sovena, G.; Villa, A.; Corbelli, A.; Fais, S.; Parmiani, G.; Rivoltini, L. Human tumor-released microvesicles promote the differentiation of myeloid cells with transforming growth factor-beta-mediated suppressive activity on T lymphocytes. Cancer Res., 2006, 66(18), 9290-9298.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-1819] [PMID: 16982774]
[71]
Yahaya, M.A.F.; Lila, M.A.M.; Ismail, S.; Zainol, M.; Afizan, N.A.R.N.M. Tumour-Associated Macrophages (TAMs) in colon cancer and how to reeducate them. J. Immunol. Res., 2019, 2019, 2368249.
[http://dx.doi.org/10.1155/2019/2368249] [PMID: 30931335]
[72]
Cooks, T.; Pateras, I.S.; Jenkins, L.M.; Patel, K.M.; Robles, A.I.; Morris, J.; Forshew, T.; Appella, E.; Gorgoulis, V.G.; Harris, C.C. Mutant p53 cancers reprogram macrophages to tumor supporting macrophages via exosomal miR-1246. Nat. Commun., 2018, 9(1), 771.
[http://dx.doi.org/10.1038/s41467-018-03224-w] [PMID: 29472616]
[73]
Takano, Y.; Masuda, T.; Iinuma, H.; Yamaguchi, R.; Sato, K.; Tobo, T.; Hirata, H.; Kuroda, Y.; Nambara, S.; Hayashi, N.; Iguchi, T.; Ito, S.; Eguchi, H.; Ochiya, T.; Yanaga, K.; Miyano, S.; Mimori, K. Circulating exosomal microRNA-203 is associated with metastasis possibly via inducing tumor-associated macrophages in colorectal cancer. Oncotarget, 2017, 8(45), 78598-78613.
[http://dx.doi.org/10.18632/oncotarget.20009] [PMID: 29108252]
[74]
Liang, Z.X.; Liu, H.S.; Wang, F.W.; Xiong, L.; Zhou, C.; Hu, T.; He, X.W.; Wu, X.J.; Xie, D.; Wu, X.R.; Lan, P. LncRNA RPPH1 promotes colorectal cancer metastasis by interacting with TUBB3 and by promoting exosomes-mediated macrophage M2 polarization. Cell Death Dis., 2019, 10(11), 829.
[http://dx.doi.org/10.1038/s41419-019-2077-0] [PMID: 31685807]
[75]
Wang, D.; Wang, X.; Si, M.; Yang, J.; Sun, S.; Wu, H.; Cui, S.; Qu, X.; Yu, X. Exosome-encapsulated miRNAs contribute to CXCL12/CXCR4-induced liver metastasis of colorectal cancer by enhancing M2 polarization of macrophages. Cancer Lett., 2020, 474, 36-52.
[http://dx.doi.org/10.1016/j.canlet.2020.01.005] [PMID: 31931030]
[76]
Yang, C.; Dou, R.; Wei, C.; Liu, K.; Shi, D.; Zhang, C.; Liu, Q.; Wang, S.; Xiong, B. Tumor-derived exosomal microRNA-106b-5p activates EMT-cancer cell and M2-subtype TAM interaction to facilitate CRC metastasis. Mol. Ther., 2021, 29(6), 2088-2107.
[77]
Daassi, D.; Mahoney, K.M.; Freeman, G.J. The importance of exosomal PDL1 in tumour immune evasion. Nat. Rev. Immunol., 2020, 20(4), 209-215.
[http://dx.doi.org/10.1038/s41577-019-0264-y] [PMID: 31965064]
[78]
Marin, J.J.; Sanchez de Medina, F.; Castaño, B.; Bujanda, L.; Romero, M.R.; Martinez-Augustin, O.; Moral-Avila, R.D.; Briz, O. Chemoprevention, chemotherapy, and chemoresistance in colorectal cancer. Drug Metab. Rev., 2012, 44(2), 148-172.
[http://dx.doi.org/10.3109/03602532.2011.638303] [PMID: 22497631]
[79]
Hu, Y.B.; Yan, C.; Mu, L.; Mi, Y.L.; Zhao, H.; Hu, H.; Li, X.L.; Tao, D.D.; Wu, Y.Q.; Gong, J.P.; Qin, J.C. Exosomal Wnt-induced dedifferentiation of colorectal cancer cells contributes to chemotherapy resistance. Oncogene, 2019, 38(11), 1951-1965.
[http://dx.doi.org/10.1038/s41388-018-0557-9] [PMID: 30390075]
[80]
Ren, J.; Ding, L.; Zhang, D.; Shi, G.; Xu, Q.; Shen, S.; Wang, Y.; Wang, T.; Hou, Y. Carcinoma-associated fibroblasts promote the stemness and chemoresistance of colorectal cancer by transferring exosomal lncRNA H19. Theranostics, 2018, 8(14), 3932-3948.
[http://dx.doi.org/10.7150/thno.25541] [PMID: 30083271]
[81]
Deng, X.; Ruan, H.; Zhang, X.; Xu, X.; Zhu, Y.; Peng, H.; Zhang, X.; Kong, F.; Guan, M. Long noncoding RNA CCAL transferred from fibroblasts by exosomes promotes chemoresistance of colorectal cancer cells. Int. J. Cancer, 2020, 146(6), 1700-1716.
[http://dx.doi.org/10.1002/ijc.32608] [PMID: 31381140]
[82]
Zhang, Q.; Liu, R.X.; Chan, K.W.; Hu, J.; Zhang, J.; Wei, L.; Tan, H.; Yang, X.; Liu, H. Exosomal transfer of p-STAT3 promotes acquired 5-FU resistance in colorectal cancer cells. J. Exp. Clin. Cancer Res., 2019, 38(1), 320.
[83]
Xu, Y.; Zhu, M. Novel exosomal miR-46146 transfer oxaliplatin chemoresistance in colorectal cancer. Clin. Transl Oncol., 2020, 22(7), 1105-1116.
[84]
Wang, X.; Zhang, H.; Yang, H.; Bai, M.; Ning, T.; Deng, T.; Liu, R.; Fan, Q.; Zhu, K.; Li, J.; Zhan, Y.; Ying, G.; Ba, Y. Exosome-delivered circRNA promotes glycolysis to induce chemoresistance through the miR-122-PKM2 axis in colorectal cancer. Mol. Oncol., 2020, 14(3), 539-555.
[http://dx.doi.org/10.1002/1878-0261.12629] [PMID: 31901148]
[85]
Hon, K.W.; Ab-Mutalib, N.S.; Abdullah, N.M.A.; Jamal, R.; Abu, N. Extracellular Vesicle-derived circular RNAs confers chemoresistance in colorectal cancer. Sci. Rep., 2019, 9(1), 16497.
[http://dx.doi.org/10.1038/s41598-019-53063-y] [PMID: 31712601]
[86]
Misale, S.; Di Nicolantonio, F.; Sartore-Bianchi, A.; Siena, S.; Bardelli, A. Resistance to anti-EGFR therapy in colorectal cancer: from heterogeneity to convergent evolution. Cancer Discov., 2014, 4(11), 1269-1280.
[http://dx.doi.org/10.1158/2159-8290.CD-14-0462] [PMID: 25293556]
[87]
Bian, Z.; Jin, L.; Zhang, J.; Yin, Y.; Quan, C.; Hu, Y.; Feng, Y.; Liu, H.; Fei, B.; Mao, Y.; Zhou, L.; Qi, X.; Huang, S.; Hua, D.; Xing, C.; Huang, Z. LncRNA-UCA1 enhances cell proliferation and 5-fluorouracil resistance in colorectal cancer by inhibiting miR-204-5p. Sci. Rep., 2016, 6, 23892.
[http://dx.doi.org/10.1038/srep23892] [PMID: 27046651]
[88]
Yang, Y.N.; Zhang, R.; Du, J.W.; Yuan, H.H.; Li, Y.J.; Wei, X.L.; Du, X.X.; Jiang, S.L.; Han, Y. Predictive role of UCA1-containing exosomes in cetuximab-resistant colorectal cancer. Cancer Cell Int., 2018, 18, 164.
[http://dx.doi.org/10.1186/s12935-018-0660-6] [PMID: 30377411]
[89]
Zhang, S.; Zhang, Y.; Qu, J.; Che, X.; Fan, Y.; Hou, K.; Guo, T.; Deng, G.; Song, N.; Li, C.; Wan, X.; Qu, X.; Liu, Y. Exosomes promote cetuximab resistance via the PTEN/Akt pathway in colon cancer cells. Braz. J. Med. Biol. Res., 2017, 51(1), e6472.
[http://dx.doi.org/10.1590/1414-431x20176472] [PMID: 29160412]
[90]
Imperiale, T.F.; Ransohoff, D.F.; Itzkowitz, S.H.; Turnbull, B.A.; Ross, M.E. Fecal DNA versus fecal occult blood for colorectal- cancer screening in an average-risk population. N. Engl. J. Med., 2004, 351(26), 2704-2714.
[http://dx.doi.org/10.1056/NEJMoa033403] [PMID: 15616205]
[91]
Issa, I.A.; Noureddine, M. Colorectal cancer screening: An updated review of the available options. World J. Gastroenterol., 2017, 23(28), 5086-5096.
[http://dx.doi.org/10.3748/wjg.v23.i28.5086] [PMID: 28811705]
[92]
Lech, G.; Słotwiński, R.; Słodkowski, M.; Krasnodębski, I.W. Colorectal cancer tumour markers and biomarkers: Recent therapeutic advances. World J. Gastroenterol., 2016, 22(5), 1745-1755.
[http://dx.doi.org/10.3748/wjg.v22.i5.1745] [PMID: 26855534]
[93]
Sun, B.; Li, Y.; Zhou, Y.; Ng, T.K.; Zhao, C.; Gan, Q.; Gu, X.; Xiang, J. Circulating exosomal CPNE3 as a diagnostic and prognostic biomarker for colorectal cancer. J. Cell. Physiol., 2019, 234(2), 1416-1425.
[http://dx.doi.org/10.1002/jcp.26936] [PMID: 30078189]
[94]
Duffy, M.J. Carcinoembryonic antigen as a marker for colorectal cancer: Is it clinically useful? Clin. Chem., 2001, 47(4), 624-630.
[http://dx.doi.org/10.1093/clinchem/47.4.624] [PMID: 11274010]
[95]
Wu, J.; Liu, T.; Rios, Z.; Mei, Q.; Lin, X.; Cao, S. Heat shock proteins and cancer. Trends Pharmacol. Sci., 2017, 38(3), 226-256.
[http://dx.doi.org/10.1016/j.tips.2016.11.009] [PMID: 28012700]
[96]
Campanella, C.; Rappa, F.; Sciumè, C.; Marino Gammazza, A.; Barone, R.; Bucchieri, F.; David, S.; Curcurù, G.; Caruso Bavisotto, C.; Pitruzzella, A.; Geraci, G.; Modica, G.; Farina, F.; Zummo, G.; Fais, S.; Conway de Macario, E.; Macario, A.J.L.; Cappello, F. Heat shock protein 60 levels in tissue and circulating exosomes in human large bowel cancer before and after ablative surgery. Cancer, 2015, 121(18), 3230-3239.
[http://dx.doi.org/10.1002/cncr.29499] [PMID: 26060090]
[97]
Li, J.; Chen, Y.; Guo, X.; Zhou, L.; Jia, Z.; Peng, Z.; Tang, Y.; Liu, W.; Zhu, B.; Wang, L.; Ren, C. GPC1 exosome and its regulatory miRNAs are specific markers for the detection and target therapy of colorectal cancer. J. Cell. Mol. Med., 2017, 21(5), 838-847.
[http://dx.doi.org/10.1111/jcmm.12941] [PMID: 28233416]
[98]
Tian, Y.; Ma, L.; Gong, M.; Su, G.; Zhu, S.; Zhang, W.; Wang, S.; Li, Z.; Chen, C.; Li, L.; Wu, L.; Yan, X. Protein profiling and sizing of extracellular vesicles from colorectal cancer patients via flow cytometry. ACS Nano, 2018, 12(1), 671-680.
[http://dx.doi.org/10.1021/acsnano.7b07782] [PMID: 29300458]
[99]
Ogata-Kawata, H.; Izumiya, M.; Kurioka, D.; Honma, Y.; Yamada, Y.; Furuta, K.; Gunji, T.; Ohta, H.; Okamoto, H.; Sonoda, H.; Watanabe, M.; Nakagama, H.; Yokota, J.; Kohno, T.; Tsuchiya, N.; Tsuchiya, N. Circulating exosomal microRNAs as biomarkers of colon cancer. PLoS One, 2014, 9(4), e92921.
[http://dx.doi.org/10.1371/journal.pone.0092921] [PMID: 24705249]
[100]
Karimi, N.; Ali Hosseinpour Feizi, M.; Safaralizadeh, R.; Hashemzadeh, S.; Baradaran, B.; Shokouhi, B.; Teimourian, S. Serum overexpression of miR-301a and miR-23a in patients with colorectal cancer. J. Chin. Med. Assoc., 2019, 82(3), 215-220.
[http://dx.doi.org/10.1097/JCMA.0000000000000031] [PMID: 30913118]
[101]
Zhao, Y.J.; Song, X.; Niu, L.; Tang, Y.; Song, X.; Xie, L. Circulating exosomal miR-150-5p and miR-99b-5p as diagnostic biomarkers for colorectal cancer. Front. Oncol., 2019, 9, 1129.
[http://dx.doi.org/10.3389/fonc.2019.01129] [PMID: 31750241]
[102]
Zou, S.L.; Chen, Y.L.; Ge, Z.Z.; Qu, Y.Y.; Cao, Y.; Kang, Z.X. Downregulation of serum exosomal miR-150-5p is associated with poor prognosis in patients with colorectal cancer. Dis. Markers, 2019, 26(1), 69-77.
[http://dx.doi.org/10.3233/CBM-190156] [PMID: 31306108]
[103]
Wang, J.; Yan, F.; Zhao, Q.; Zhan, F.; Wang, R.; Wang, L.; Zhang, Y.; Huang, X. Circulating exosomal miR-125a-3p as a novel biomarker for early-stage colon cancer. Sci. Rep., 2017, 7(1), 4150.
[http://dx.doi.org/10.1038/s41598-017-04386-1] [PMID: 28646161]
[104]
Min, L.; Zhu, S.; Chen, L.; Liu, X.; Wei, R.; Zhao, L.; Yang, Y.; Zhang, Z.; Kong, G.; Li, P.; Zhang, S. Evaluation of circulating small extracellular vesicles derived miRNAs as biomarkers of early colon cancer: A comparison with plasma total miRNAs. J. Extracell. Vesicles, 2019, 8(1), 1643670.
[http://dx.doi.org/10.1080/20013078.2019.1643670] [PMID: 31448068]
[105]
Fu, F.; Jiang, W.; Zhou, L.; Chen, Z. Circulating exosomal miR-17-5p and miR-92a-3p predict pathologic stage and grade of colorectal cancer. Transl. Oncol., 2018, 11(2), 221-232.
[http://dx.doi.org/10.1016/j.tranon.2017.12.012] [PMID: 29367070]
[106]
Yan, S.; Jiang, Y.; Liang, C.; Cheng, M.; Jin, C.; Duan, Q.; Xu, D.; Yang, L.; Zhang, X.; Ren, B.; Jin, P. Exosomal miR-6803-5p as potential diagnostic and prognostic marker in colorectal cancer. J. Cell. Biochem., 2018, 119(5), 4113-4119.
[http://dx.doi.org/10.1002/jcb.26609] [PMID: 29240249]
[107]
Tsukamoto, M.; Iinuma, H.; Yagi, T.; Matsuda, K.; Hashiguchi, Y. Circulating exosomal MicroRNA-21 as a biomarker in each tumor stage of colorectal cancer. Oncology, 2017, 92(6), 360-370.
[http://dx.doi.org/10.1159/000463387] [PMID: 28376502]
[108]
Liu, L.; Meng, T.; Yang, X.H.; Sayim, P.; Lei, C.; Jin, B.; Ge, L.; Wang, H.J. Prognostic and predictive value of long non-coding RNA GAS5 and mircoRNA-221 in colorectal cancer and their effects on colorectal cancer cell proliferation, migration and invasion. Dis. Markers, 2018, 22(2), 283-299.
[http://dx.doi.org/10.3233/CBM-171011] [PMID: 29630521]
[109]
Zhao, Y.; Du, T.; Du, L.; Li, P.; Li, J.; Duan, W.; Wang, Y.; Wang, C. Long noncoding RNA LINC02418 regulates MELK expression by acting as a ceRNA and may serve as a diagnostic marker for colorectal cancer. Cell Death Dis., 2019, 10(8), 568.
[http://dx.doi.org/10.1038/s41419-019-1804-x] [PMID: 31358735]
[110]
Barbagallo, C.; Brex, D.; Caponnetto, A.; Cirnigliaro, M.; Scalia, M.; Magnano, A.; Caltabiano, R.; Barbagallo, D.; Biondi, A.; Cappellani, A.; Basile, F.; Di Pietro, C.; Purrello, M.; Ragusa, M. LncRNA UCA1, Upregulated in CRC Biopsies and downregulated in serum exosomes, controls mRNA expression by RNA-RNA interactions. Mol. Ther. Nucleic Acids, 2018, 12, 229-241.
[http://dx.doi.org/10.1016/j.omtn.2018.05.009] [PMID: 30195762]
[111]
Wang, L.; Duan, W.; Yan, S.; Xie, Y.; Wang, C. Circulating long non-coding RNA colon cancer-associated transcript 2 protected by exosome as a potential biomarker for colorectal cancer. Biomed. Pharmacother., 2019, 113, 108758.
[http://dx.doi.org/10.1016/j.biopha.2019.108758] [PMID: 30877883]
[112]
Liu, T.; Zhang, X.; Gao, S.; Jing, F.; Yang, Y.; Du, L.; Zheng, G.; Li, P.; Li, C.; Wang, C. Exosomal long noncoding RNA CRNDE-h as a novel serum-based biomarker for diagnosis and prognosis of colorectal cancer. Oncotarget, 2016, 7(51), 85551-85563.
[http://dx.doi.org/10.18632/oncotarget.13465] [PMID: 27888803]
[113]
Hu, D.; Zhan, Y.; Zhu, K.; Bai, M.; Han, J.; Si, Y.; Zhang, H.; Kong, D. Plasma exosomal long non-coding RNAs serve as biomarkers for early detection of colorectal cancer. Cell. Physiol. Biochem., 2018, 51(6), 2704-2715.
[http://dx.doi.org/10.1159/000495961] [PMID: 30562751]
[114]
Pan, B.; Qin, J.; Liu, X.; He, B.; Wang, X.; Pan, Y.; Sun, H.; Xu, T.; Xu, M.; Chen, X.; Xu, X.; Zeng, K.; Sun, L.; Wang, S. Identification of serum exosomal hsa-circ-0004771 as a novel diagnostic biomarker of colorectal cancer. Front. Genet., 2019, 10, 1096.
[http://dx.doi.org/10.3389/fgene.2019.01096] [PMID: 31737058]
[115]
Lai, C.P.; Mardini, O.; Ericsson, M.; Prabhakar, S.; Maguire, C.; Chen, J.W.; Tannous, B.A.; Breakefield, X.O. Dynamic biodistribution of extracellular vesicles in vivo using a multimodal imaging reporter. ACS Nano, 2014, 8(1), 483-494.
[http://dx.doi.org/10.1021/nn404945r] [PMID: 24383518]
[116]
Xitong, D.; Xiaorong, Z. Targeted therapeutic delivery using engineered exosomes and its applications in cardiovascular diseases. Gene, 2016, 575(2 Pt 2), 377-384.
[http://dx.doi.org/10.1016/j.gene.2015.08.067] [PMID: 26341056]
[117]
Jang, S.C.; Kim, O.Y.; Yoon, C.M.; Choi, D.S.; Roh, T.Y.; Park, J.; Nilsson, J.; Lötvall, J.; Kim, Y.K.; Gho, Y.S. Bioinspired exosome-mimetic nanovesicles for targeted delivery of chemotherapeutics to malignant tumors. ACS Nano, 2013, 7(9), 7698-7710.
[http://dx.doi.org/10.1021/nn402232g] [PMID: 24004438]
[118]
Liang, G.; Zhu, Y.; Ali, D.J.; Tian, T.; Xu, H.; Si, K.; Sun, B.; Chen, B.; Xiao, Z. Engineered exosomes for targeted co-delivery of miR-21 inhibitor and chemotherapeutics to reverse drug resistance in colon cancer. J. Nanobiotechnology, 2020, 18(1), 10.
[http://dx.doi.org/10.1186/s12951-019-0563-2] [PMID: 31918721]
[119]
Dai, S.; Wei, D.; Wu, Z.; Zhou, X.; Wei, X.; Huang, H.; Li, G.; Phase, I. Phase I clinical trial of autologous ascites-derived exosomes combined with GM-CSF for colorectal cancer. Mol. Ther., 2008, 16(4), 782-790.
[http://dx.doi.org/10.1038/mt.2008.1] [PMID: 18362931]
[120]
Kuslich, C.; Poste, G.; Klass, M. Diagnostic methods using exosomes. GB2463401, 2010.
[121]
Ohta, H.; Okamoto, H.; Sonoda, H.; Ochiya, T. Method for detecting colon cancer. US2016047812A1, 2016.
[122]
Cao, B.; Zhao, L. Application of p-ERK of exosome in preparation of colorectal cancer diagnosis product. CN107271672, 2017.
[123]
Simpson, R. J.; Chen, M. Biomarkers of colorectal cancer. WO2019144183A1, 2019.
[124]
Min, L.; Kong, G.; Zhu, S.; Liu, X.; Zhao, L.; Chen, S.; Zhang, S. Exosome miRNA marker for colorectal cancer diagnosis and diagnosis kit. CN109439749, 2019.
[125]
Zhang, L.; Liu, H.; Ning, S.; Li, J. Combination of plasma exosome circRNA as marker for diagnosing colorectal cancer. CN111518902A, 2020.
[126]
Zhu, S.; Min, L.; Kong, G.; Liu, X.; Zhang, S. Exosome RNA molecular marker combination used for early diagnosis of colorectal cancer and application of exosome RNA molecular marker combination used for early diagnosis of colorectal cancer. CN111455052A, 2020.
[127]
Wang, C. Colorectal cancer diagnosis biomarker and application thereof. CN111778330A, 2020.
[128]
Xiao, X.; Tong, K.; Huang, L.; Zhang, S. Application of exosome membrane proteins as diagnostic markers of colon cancer and early diagnosis kit for colon cancer. CN112379096A, 2021.
[129]
Xie, L.; Song, X. Kit for early warning of colorectal cancer metastasis. CN110468209A, 2019.
[130]
Zhang, L.; Liu, H.; Ning, S.; Li, J. Plasma exosome circRNA serving as marker for diagnosing liver metastasis of colorectal cancer. CN111518902A, 2020.
[131]
Yao, J.; Dai, J.; Geng, P.; Du, W. Serum miRNA combination for colon cancer metastasis prediction, probe combination and application thereof. CN106282360A, 2019.
[132]
Subramanian, S.; Zhao, X. Tumor cell-derived exosomes and method of treating colorectal cancer. US2021220456A1, 2021.
[133]
Nakamura, Y.; Tsunoda, T.; Shida, M.; Fujioka, T.; Osawa, R. Peptide vaccines for cancers expressing mphosph1 or DEPDC1 polypeptides. WO2008047473A1, 2008.
[134]
Osawa, R.; Tsunoda, T. TEM8 peptides and vaccines comprising the same. AU2008238739A1, 2013.
[135]
Yokomine, K.; Nakamura, Y.; Nishimura, Y.; Tsunoda, T. FOXM1 peptide and medicinal agent comprising the same. AU2008290049B2, 2013.
[136]
Nishimura, Y.; Tsunoda, T.; Imai, K.; Nakamura, Y. CDH3 peptide and medicinal agent comprising the same. AU2008290060B2, 2014.
[137]
Tsunoda, T.; Ohsawa, R. MELK epitope peptides and vaccines containing the same. AU2009277811B2, 2015.
[138]
Tsunoda, T.; Ohsawa, R.; Yoshimura, S.; Watanabe, T.; Nakamura, Y.; Furukawa, Y. NEIL3 peptides and vaccines including the same. AU2010225997B2, 2016.
[139]
Mao, F.; Wang, J.; Wang, R.; Yan, Y.; Zhang, X.; Qian, H.; Xu, W. Application of stem cell exosome in preparation of drug for resisting colitis deterioration. CN111759862A, 2020.
[140]
Niazi, K.; Curcio, F. Cancer stem cell exosomes. US20200046766A1, 2020.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy