Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Detection of Melanogenesis and Anti-Apoptosis-Associated Melanoma Factors: Array CGH and PPI Mapping Integrating Study

Author(s): Shang-Jun Yin, Guo-Ying Qian, Jun-Mo Yang, Jinhyuk Lee* and Yong-Doo Park*

Volume 28, Issue 12, 2021

Published on: 26 November, 2021

Page: [1408 - 1424] Pages: 17

DOI: 10.2174/0929866528666211105112927

Price: $65

Abstract

Background: We investigated melanogenesis- and anti-apoptosis-related melanoma factors in melanoma cells (TXM1, TXM18, A375P, and A375SM).

Objective: To find melanoma associated hub factor, high-throughput screening-based techniques integrating with bioinformatics were investigated.

Methods: Array CGH analysis was conducted with a commercial system. Total genomic DNAs prepared individually from each cell line with control DNA were properly labeled with Cy3-dCTP and Cy5-dCTP and hybridizations and subsequently performed data treatment by the log2 green (G; test) to red (R; reference) fluorescence ratios (G/R). Gain or loss of copy number was judged by spots with log2-transformed ratios. PPI mapping analysis of detected candidate genes based on the array CGH results was conducted using the human interactome in the STRING database. Energy minimization and a short Molecular Dynamics (MD) simulation using the implicit solvation model in CHARMM were performed to analyze the interacting residues between YWHAZ and YWHAB.

Results: Three genes (BMP-4, BFGF, LEF-1) known to be involved in melanogenesis were found to lose chromosomal copy numbers, and Chr. 6q23.3 was lost in all tested cell lines. Ten hub genes (CTNNB1, PEX13, PEX14, PEX5, IFNG, EXOSC3, EXOSC1, EXOSC8, UBC, and PEX10) were predicted to be functional interaction factors in the network of the 6q23.3 locus. The apoptosis-associated genes E2F1, p50, BCL2L1, and BIRC7 gained, and FGF2 lost chromosomal copy numbers in the tested melanoma cell lines. YWHAB, which gained chromosomal copy numbers, was predicted to be the most important hub protein in melanoma cells. Molecular dynamics simulations for binding YWHAB and YWHAZ were conducted, and the complex was predicted to be energetically and structurally stable through its 3 hydrogen-bond patterns. The number of interacting residues is 27.

Conclusion: Our study compares genome-wide screening interactomics predictions for melanoma factors and offers new information for understanding melanogenesis- and anti-apoptosis-associated mechanisms in melanoma. Especially, YWHAB was newly detected as a core factor in melanoma cells.

Keywords: Melanoma, array CGH, PPI mapping, molecular dynamics simulation, YWHAB, melanogenesis.

Graphical Abstract
[1]
Slominski, A.; Wortsman, J.; Carlson, A.J.; Matsuoka, L.Y.; Balch, C.M.; Mihm, M.C. Malignant melanoma. Arch. Pathol. Lab. Med., 2001, 125(10), 1295-1306.
[http://dx.doi.org/10.5858/2001-125-1295-MM] [PMID: 11570904]
[2]
Hussein, M.R.; Haemel, A.K.; Wood, G.S. Apoptosis and melanoma: molecular mechanisms. J. Pathol., 2003, 199(3), 275-288.
[http://dx.doi.org/10.1002/path.1300] [PMID: 12579529]
[3]
Salpietro, V.; Manole, A.; Efthymiou, S.; Houlden, H. A review of copy number variants in inherited neuropathies. Curr. Genomics, 2018, 19(6), 412-419.
[http://dx.doi.org/10.2174/1389202919666180330153316] [PMID: 30258273]
[4]
Colaianni, V.; Mazzei, R.; Cavallaro, S. Copy number variations and stroke. Neurol. Sci., 2016, 37(12), 1895-1904.
[http://dx.doi.org/10.1007/s10072-016-2658-y] [PMID: 27393281]
[5]
Wiesner, T.; Kutzner, H.; Cerroni, L.; Mihm, M.C., Jr; Busam, K.J.; Murali, R. Genomic aberrations in spitzoid melanocytic tumours and their implications for diagnosis, prognosis and therapy. Pathology, 2016, 48(2), 113-131.
[http://dx.doi.org/10.1016/j.pathol.2015.12.007] [PMID: 27020384]
[6]
Ylstra, B.; van den Ijssel, P.; Carvalho, B.; Brakenhoff, R.H.; Meijer, G.A. BAC to the future! or oligonucleotides: A perspective for micro array comparative genomic hybridization (array CGH). Nucleic Acids Res., 2006, 34(2), 445-450.
[http://dx.doi.org/10.1093/nar/gkj456] [PMID: 16439806]
[7]
Miecznikowski, J.C.; Gaile, D.P.; Liu, S.; Shepherd, L.; Nowak, N. A new normalizing algorithm for BAC CGH arrays with quality control metrics. J. Biomed. Biotechnol., 2011, 2011, 860732.
[http://dx.doi.org/10.1155/2011/860732]
[8]
Yin, S.J.; Lee, J.R.; Hahn, M.J.; Yang, J.M.; Qian, G.Y.; Park, Y.D. Tyrosinase-mediated melanogenesis in melanoma cells: Array comparative genome hybridization integrating proteomics and bioinformatics studies. Int. J. Biol. Macromol., 2021, 170, 150-163.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.12.146] [PMID: 33359255]
[9]
Soengas, M.S.; Lowe, S.W. Apoptosis and melanoma chemoresistance. Oncogene, 2003, 22(20), 3138-3151.
[http://dx.doi.org/10.1038/sj.onc.1206454] [PMID: 12789290]
[10]
Sarkar, D.; Leung, E.Y.; Baguley, B.C.; Finlay, G.J.; Askarian-Amiri, M.E. Epigenetic regulation in human melanoma: PAST and future. Epigenetics, 2015, 10(2), 103-121.
[http://dx.doi.org/10.1080/15592294.2014.1003746] [PMID: 25587943]
[11]
Czyz, M. HGF/c-MET signaling in melanocytes and melanoma. Int. J. Mol. Sci., 2018, 19(12), 3844.
[http://dx.doi.org/10.3390/ijms19123844] [PMID: 30513872]
[12]
Shtivelman, E.; Davies, M.Q.; Hwu, P.; Yang, J.; Lotem, M.; Oren, M.; Flaherty, K.T.; Fisher, D.E. Pathways and therapeutic targets in melanoma. Oncotarget, 2014, 5(7), 1701-1752.
[http://dx.doi.org/10.18632/oncotarget.1892] [PMID: 24743024]
[13]
Anastas, J.N.; Kulikauskas, R.M.; Tamir, T.; Rizos, H.; Long, G.V.; von Euw, E.M.; Yang, P.T.; Chen, H.W.; Haydu, L.; Toroni, R.A.; Lucero, O.M.; Chien, A.J.; Moon, R.T. WNT5A enhances resistance of melanoma cells to targeted BRAF inhibitors. J. Clin. Invest., 2014, 124(7), 2877-2890.
[http://dx.doi.org/10.1172/JCI70156] [PMID: 24865425]
[14]
Charles, E.M.; Rehm, M. Key regulators of apoptosis execution as biomarker candidates in melanoma. Mol. Cell. Oncol., 2014, 1(3), e964037.
[http://dx.doi.org/10.4161/23723548.2014.964037] [PMID: 27308353]
[15]
Mattia, G.; Puglisi, R.; Ascione, B.; Malorni, W.; Carè, A.; Matarrese, P. Cell death-based treatments of melanoma: Conventional treatments and new therapeutic strategies. Cell Death Dis., 2018, 9(2), 112.
[http://dx.doi.org/10.1038/s41419-017-0059-7] [PMID: 29371600]
[16]
Broussard, L.; Howland, A.; Ryu, S.; Song, K.; Norris, D.; Armstrong, C.A.; Song, P.I. Melanoma cell death mechanisms. Chonnam. Med. J., 2018, 54(3), 135-142.
[http://dx.doi.org/10.4068/cmj.2018.54.3.135] [PMID: 30288368]
[17]
Cho, Y.L.; Bae, S.; Koo, M.S.; Kim, K.M.; Chun, H.J.; Kim, C.K.; Ro, D.Y.; Kim, J.H.; Lee, C.H.; Kim, Y.W.; Ahn, W.S. Array comparative genomic hybridization analysis of uterine leiomyosarcoma. Gynecol. Oncol., 2005, 99(3), 545-551.
[http://dx.doi.org/10.1016/j.ygyno.2005.07.017] [PMID: 16125217]
[18]
Szklarczyk, D.; Morris, J.H.; Cook, H.; Kuhn, M.; Wyder, S.; Simonovic, M.; Santos, A.; Doncheva, N.T.; Roth, A.; Bork, P.; Jensen, L.J.; von Mering, C. The STRING database in 2017: Quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res., 2017, 45(D1), D362-D368.
[http://dx.doi.org/10.1093/nar/gkw937] [PMID: 27924014]
[19]
Yang, X.; Lee, W.H.; Sobott, F.; Papagrigoriou, E.; Robinson, C.V.; Grossmann, J.G.; Sundström, M.; Doyle, D.A.; Elkins, J.M. Structural basis for protein-protein interactions in the 14-3-3 protein family. Proc. Natl. Acad. Sci. USA, 2006, 103(46), 17237-17242.
[http://dx.doi.org/10.1073/pnas.0605779103] [PMID: 17085597]
[20]
Toleman, C.A.; Schumacher, M.A.; Yu, S.H.; Zeng, W.; Cox, N.J.; Smith, T.J.; Soderblom, E.J.; Wands, A.M.; Kohler, J.J.; Boyce, M. Structural basis of O-GlcNAc recognition by mammalian 14-3-3 proteins. Proc. Natl. Acad. Sci. USA, 2018, 115(23), 5956-5961.
[http://dx.doi.org/10.1073/pnas.1722437115] [PMID: 29784830]
[21]
Karlberg, T.; Hornyak, P.; Pinto, A.F.; Milanova, S.; Ebrahimi, M.; Lindberg, M.; Püllen, N.; Nordström, A.; Löverli, E.; Caraballo, R.; Wong, E.V.; Näreoja, K.; Thorsell, A.G.; Elofsson, M.; De La Cruz, E.M.; Björkegren, C.; Schüler, H. 14-3-3 proteins activate Pseudomonas exotoxins-S and -T by chaperoning a hydrophobic surface. Nat. Commun., 2018, 9(1), 3785.
[http://dx.doi.org/10.1038/s41467-018-06194-1] [PMID: 30224724]
[22]
Kubota, A.; Stegeman, J.J.; Goldstone, J.V.; Nelson, D.R.; Kim, E.Y.; Tanabe, S.; Iwata, H. Cytochrome P450 CYP2 genes in the common cormorant: Evolutionary relationships with 130 diapsid CYP2 clan sequences and chemical effects on their expression. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2011, 153(3), 280-289.
[http://dx.doi.org/10.1016/j.cbpc.2010.11.006] [PMID: 21130899]
[23]
Obsil, T.; Ghirlando, R.; Klein, D.C.; Ganguly, S.; Dyda, F. Crystal structure of the 14-3-3zeta: Serotonin N-acetyltransferase complex a role for scaffolding in enzyme regulation. Cell, 2001, 105, 257-267.
[http://dx.doi.org/10.1016/S0092-8674(01)00316-6]
[24]
Ding, S.; Zhou, R.; Zhu, Y. Structure of the 14-3-3ζ-LKB1 fusion protein provides insight into a novel ligand-binding mode of 14-3-3. Acta Crystallogr. F Struct. Biol. Commun., 2015, 71(Pt 9), 1114-1119.
[http://dx.doi.org/10.1107/S2053230X15012595] [PMID: 26323294]
[25]
Zhang, Y.; Skolnick, J. TM-align: A protein structure alignment algorithm based on the TM-score. Nucleic Acids Res., 2005, 33(7), 2302-2309.
[http://dx.doi.org/10.1093/nar/gki524] [PMID: 15849316]
[26]
D’Mello, S.A.; Finlay, G.J.; Baguley, B.C.; Askarian-Amiri, M.E. Signaling pathways in melanogenesis. Int. J. Mol. Sci., 2016, 17(7), 1144.
[http://dx.doi.org/10.3390/ijms17071144] [PMID: 27428965]
[27]
Videira, I.F.; Moura, D.F.; Magina, S. Mechanisms regulating melanogenesis. An. Bras. Dermatol., 2013, 88(1), 76-83.
[http://dx.doi.org/10.1590/S0365-05962013000100009] [PMID: 23539007]
[28]
Hida, T.; Kamiya, T.; Kawakami, A.; Ogino, J.; Sohma, H.; Uhara, H.; Jimbow, K. Elucidation of melanogenesis cascade for identifying pathophysiology and therapeutic approach of pigmentary disorders and melanoma. Int. J. Mol. Sci., 2020, 21(17), 6129.
[http://dx.doi.org/10.3390/ijms21176129] [PMID: 32854423]
[29]
Slominski, A.; Tobin, D.J.; Shibahara, S.; Wortsman, J. Melanin pigmentation in mammalian skin and its hormonal regulation. Physiol. Rev., 2004, 84(4), 1155-1228.
[http://dx.doi.org/10.1152/physrev.00044.2003] [PMID: 15383650]
[30]
Ohbayashi, N.; Fukuda, M. Recent advances in understanding the molecular basis of melanogenesis in melanocytes. F1000Res, 2020, 9, F1000 Faculty Rev-608.
[http://dx.doi.org/10.12688/f1000research.24625.1] [PMID: 32595944]
[31]
Yamaguchi, Y.; Hearing, V.J. Physiological factors that regulate skin pigmentation. Biofactors, 2009, 35(2), 193-199.
[http://dx.doi.org/10.1002/biof.29] [PMID: 19449448]
[32]
Nasti, T.H.; Timares, L. MC1R, eumelanin and pheomelanin: Their role in determining the susceptibility to skin cancer. Photochem. Photobiol., 2015, 91(1), 188-200.
[http://dx.doi.org/10.1111/php.12335] [PMID: 25155575]
[33]
Labeur, M.; Páez-Pereda, M.; Haedo, M.; Arzt, E.; Stalla, G.K. Pituitary tumors: Cell type-specific roles for BMP-4. Mol. Cell. Endocrinol., 2010, 326(1-2), 85-88.
[http://dx.doi.org/10.1016/j.mce.2010.04.006] [PMID: 20398728]
[34]
Meng, X.; Zhu, P.; Li, N.; Hu, J.; Wang, S.; Pang, S.; Wang, J. Expression of BMP-4 in papillary thyroid carcinoma and its correlation with tumor invasion and progression. Pathol. Res. Pract., 2017, 213(4), 359-363.
[http://dx.doi.org/10.1016/j.prp.2017.01.008] [PMID: 28214211]
[35]
Gul, S.; Murad, S.; Ehsan, N.; Bloodsworth, P.; Sultan, A.; Faheem, M. Transcriptional up-regulation of BMP-4 and BMPR-II genes in the peripheral blood of breast cancer patients: A pilot study. Cancer Biomark., 2015, 15(5), 551-557.
[http://dx.doi.org/10.3233/CBM-150494] [PMID: 26406943]
[36]
Yokoyama, Y.; Watanabe, T.; Tamura, Y.; Hashizume, Y.; Miyazono, K.; Ehata, S. Autocrine BMP-4 signaling is a therapeutic target in colorectal cancer. Cancer Res., 2017, 77(15), 4026-4038.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-0112] [PMID: 28611046]
[37]
Rothhammer, T.; Braig, S.; Bosserhoff, A.K. Bone morphogenetic proteins induce expression of metalloproteinases in melanoma cells and fibroblasts. Eur. J. Cancer, 2008, 44(16), 2526-2534.
[http://dx.doi.org/10.1016/j.ejca.2008.07.029] [PMID: 18774289]
[38]
Akl, M.R.; Nagpal, P.; Ayoub, N.M.; Tai, B.; Prabhu, S.A.; Capac, C.M.; Gliksman, M.; Goy, A.; Suh, K.S. Molecular and clinical significance of fibroblast growth factor 2 (FGF2/bFGF) in malignancies of solid and hematological cancers for personalized therapies. Oncotarget, 2016, 7(28), 44735-44762.
[http://dx.doi.org/10.18632/oncotarget.8203] [PMID: 27007053]
[39]
Bremnes, R.M.; Camps, C.; Sirera, R. Angiogenesis in non-small cell lung cancer: The prognostic impact of neoangiogenesis and the cytokines VEGF and bFGF in tumours and blood. Lung Cancer, 2006, 51(2), 143-158.
[http://dx.doi.org/10.1016/j.lungcan.2005.09.005] [PMID: 16360975]
[40]
Paolino, G.; Corsetti, P.; Moliterni, E.; Corsetti, S.; Didona, D.; Albanesi, M.; Mattozzi, C.; Lido, P.; Calvieri, S. Mast cells and cancer. G. Ital. Dermatol. Venereol., 2019, 154(6), 650-668.
[http://dx.doi.org/10.23736/S0392-0488.17.05818-7] [PMID: 29192477]
[41]
Ch’ng, S.; Wallis, R.A.; Yuan, L.; Davis, P.F.; Tan, S.T. Mast cells and cutaneous malignancies. Mod. Pathol., 2006, 19(1), 149-159.
[http://dx.doi.org/10.1038/modpathol.3800474] [PMID: 16258517]
[42]
Albino, A.P. Genes involved in melanoma susceptibility and progression. Curr. Opin. Oncol., 1995, 7(2), 162-169.
[http://dx.doi.org/10.1097/00001622-199503000-00012] [PMID: 7538793]
[43]
Westphal, D.; Glitza Oliva, I.C.; Niessner, H. Molecular insights into melanoma brain metastases. Cancer, 2017, 123(S11), 2163-2175.
[http://dx.doi.org/10.1002/cncr.30594] [PMID: 28543697]
[44]
Reiland, J.; Kempf, D.; Roy, M.; Denkins, Y.; Marchetti, D. FGF2 binding, signaling, and angiogenesis are modulated by heparanase in metastatic melanoma cells. Neoplasia, 2006, 8(7), 596-606.
[http://dx.doi.org/10.1593/neo.06244] [PMID: 16867222]
[45]
Gandhirajan, R.K.; Poll-Wolbeck, S.J.; Gehrke, I.; Kreuzer, K.A. Wnt/β-catenin/LEF-1 signaling in chronic lymphocytic leukemia (CLL): A target for current and potential therapeutic options. Curr. Cancer Drug Targets, 2010, 10(7), 716-727.
[http://dx.doi.org/10.2174/156800910793605794] [PMID: 20578984]
[46]
Mohindra, S.; Sakr, H.; Sturgis, C.; Chute, D.J. LEF-1 is a sensitive marker of cribriform morular variant of papillary thyroid carcinoma. Head Neck Pathol., 2018, 12(4), 455-462.
[http://dx.doi.org/10.1007/s12105-017-0873-3] [PMID: 29243023]
[47]
Bilodeau, E.A.; Acquafondata, M.; Barnes, E.L.; Seethala, R.R. A comparative analysis of LEF-1 in odontogenic and salivary tumors. Hum. Pathol., 2015, 46(2), 255-259.
[http://dx.doi.org/10.1016/j.humpath.2014.10.018] [PMID: 25497834]
[48]
Wang, M.; Zhang, C. Low LEF1 expression is a biomarker of early T-cell precursor, an aggressive subtype of T-cell lymphoblastic leukemia. PLoS One, 2020, 15(5), e0232520.
[http://dx.doi.org/10.1371/journal.pone.0232520] [PMID: 32401815]
[49]
Chi, K.; Li, Y.; Xu, L.; Wang, X. A novel recurrent copy number loss region on 6q23.3 in MDS-related myeloid malignancy patients with stable survival conditions. Leuk. Lymphoma, 2017, 58(10), 2470-2479.
[http://dx.doi.org/10.1080/10428194.2017.1292357] [PMID: 28394181]
[50]
Tsuchida, N.; Kirino, Y.; Soejima, Y.; Onodera, M.; Arai, K.; Tamura, E.; Ishikawa, T.; Kawai, T.; Uchiyama, T.; Nomura, S.; Kobayashi, D.; Taguri, M.; Mitsuhashi, S.; Mizuguchi, T.; Takata, A.; Miyake, N.; Nakajima, H.; Miyatake, S.; Matsumoto, N. Haploinsufficiency of A20 caused by a novel nonsense variant or entire deletion of TNFAIP3 is clinically distinct from Behçet’s disease. Arthritis Res. Ther., 2019, 21(1), 137.
[http://dx.doi.org/10.1186/s13075-019-1928-5] [PMID: 31164164]
[51]
Ottesen, A.M.; Kirchhoff, M.; Rajpert De-Meyts, E.; Maahr, J.; Gerdes, T.; Rose, H.; Lundsteen, C.; Petersen, P.M.; Philip, J.; Skakkebaek, N.E. Detection of chromosomal aberrations in seminomatous germ cell tumours using comparative genomic hybridization. Genes Chromosomes Cancer, 1997, 20(4), 412-418.
[http://dx.doi.org/10.1002/(SICI)1098-2264(199712)20:4<412::AID-GCC14>3.0.CO;2-O] [PMID: 9408759]
[52]
Knoll, S.; Emmrich, S.; Pützer, B.M. The E2F1-miRNA cancer progression network. Adv. Exp. Med. Biol., 2013, 774, 135-147.
[http://dx.doi.org/10.1007/978-94-007-5590-1_8] [PMID: 23377972]
[53]
Alla, V.; Engelmann, D.; Niemetz, A.; Pahnke, J.; Schmidt, A.; Kunz, M.; Emmrich, S.; Steder, M.; Koczan, D.; Pützer, B.M. E2F1 in melanoma progression and metastasis. J. Natl. Cancer Inst., 2010, 102(2), 127-133.
[http://dx.doi.org/10.1093/jnci/djp458] [PMID: 20026813]
[54]
Rocca, M.S.; Benna, C.; Mocellin, S.; Rossi, C.R.; Msaki, A.; Di Nisio, A.; Opocher, G.; Foresta, C. E2F1 germline copy number variations and melanoma susceptibility. J. Transl. Med., 2019, 17(1), 181.
[http://dx.doi.org/10.1186/s12967-019-1933-0] [PMID: 31142321]
[55]
Vonderheide, R.H. CD40 agonist antibodies in cancer immunotherapy. Annu. Rev. Med., 2020, 71, 47-58.
[http://dx.doi.org/10.1146/annurev-med-062518-045435] [PMID: 31412220]
[56]
Ma, J.; Usui, Y.; Kezuka, T.; Okunuki, Y.; Zhang, L.; An, X.; Mizota, A.; Goto, H. Costimulatory molecule expression on human uveal melanoma cells: Functional analysis of CD40 and B7-H1. Exp. Eye Res., 2012, 96(1), 98-106.
[http://dx.doi.org/10.1016/j.exer.2011.12.014] [PMID: 22200489]
[57]
Pirozzi, G.; Lombari, V.; Zanzi, D.; Ionna, F.; Lombardi, M.L.; Errico, S.; Ruggiero, G.; Manzo, C. CD40 expressed on human melanoma cells mediates T cell co-stimulation and tumor cell growth. Int. Immunol., 2000, 12(6), 787-795.
[http://dx.doi.org/10.1093/intimm/12.6.787] [PMID: 10837406]
[58]
Janumyan, Y.M.; Sansam, C.G.; Chattopadhyay, A.; Cheng, N.; Soucie, E.L.; Penn, L.Z.; Andrews, D.; Knudson, C.M.; Yang, E. Bcl-xL/Bcl-2 coordinately regulates apoptosis, cell cycle arrest and cell cycle entry. EMBO J., 2003, 22(20), 5459-5470.
[http://dx.doi.org/10.1093/emboj/cdg533] [PMID: 14532118]
[59]
Trisciuoglio, D.; Tupone, M.G.; Desideri, M.; Di Martile, M.; Gabellini, C.; Buglioni, S.; Pallocca, M.; Alessandrini, G.; D’Aguanno, S.; Del Bufalo, D. BCL-XL overexpression promotes tumor progression-associated properties. Cell Death Dis., 2017, 8(12), 3216.
[http://dx.doi.org/10.1038/s41419-017-0055-y] [PMID: 29238043]
[60]
Meyer, S.; Fuchs, T.J.; Bosserhoff, A.K.; Hofstädter, F.; Pauer, A.; Roth, V.; Buhmann, J.M.; Moll, I.; Anagnostou, N.; Brandner, J.M.; Ikenberg, K.; Moch, H.; Landthaler, M.; Vogt, T.; Wild, P.J. A seven-marker signature and clinical outcome in malignant melanoma: A large-scale tissue-microarray study with two independent patient cohorts. PLoS One, 2012, 7(6), e38222.
[http://dx.doi.org/10.1371/journal.pone.0038222] [PMID: 22685558]
[61]
Vucic, D.; Stennicke, H.R.; Pisabarro, M.T.; Salvesen, G.S.; Dixit, V.M. ML-IAP, a novel inhibitor of apoptosis that is preferentially expressed in human melanomas. Curr. Biol., 2000, 10(21), 1359-1366.
[http://dx.doi.org/10.1016/S0960-9822(00)00781-8] [PMID: 11084335]
[62]
Zhou, J.; Yuen, N.K.; Zhan, Q.; Velazquez, E.F.; Murphy, G.F.; Giobbie-Hurder, A.; Hodi, F.S. Immunity to the melanoma inhibitor of apoptosis protein (ML-IAP; livin) in patients with malignant melanoma. Cancer Immunol. Immunother., 2012, 61(5), 655-665.
[http://dx.doi.org/10.1007/s00262-011-1124-1] [PMID: 22033581]
[63]
Dynek, J.N.; Chan, S.M.; Liu, J.; Zha, J.; Fairbrother, W.J.; Vucic, D. Microphthalmia-associated transcription factor is a critical transcriptional regulator of melanoma inhibitor of apoptosis in melanomas. Cancer Res., 2008, 68(9), 3124-3132.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-6622] [PMID: 18451137]
[64]
Wang, T.; Zheng, X.; Li, R.; Liu, X.; Wu, J.; Zhong, X.; Zhang, W.; Liu, Y.; He, X.; Liu, W.; Wang, H.; Zeng, H. Integrated bioinformatic analysis reveals YWHAB as a novel diagnostic biomarker for idiopathic pulmonary arterial hypertension. J. Cell. Physiol., 2019, 234(5), 6449-6462.
[http://dx.doi.org/10.1002/jcp.27381] [PMID: 30317584]
[65]
Hu, X.; Bao, M.; Huang, J.; Zhou, L.; Zheng, S. Identification and validation of novel biomarkers for diagnosis and prognosis of hepatocellular carcinoma. Front. Oncol., 2020, 10, 541479.
[http://dx.doi.org/10.3389/fonc.2020.541479] [PMID: 33102213]
[66]
Zhou, M.; Haque, R.U.; Dammer, E.B.; Duong, D.M.; Ping, L.; Johnson, E.C.B.; Lah, J.J.; Levey, A.I.; Seyfried, N.T. Targeted mass spectrometry to quantify brain-derived cerebrospinal fluid biomarkers in Alzheimer’s disease. Clin. Proteomics, 2020, 17, 19.
[http://dx.doi.org/10.1186/s12014-020-09285-8] [PMID: 32514259]
[67]
Singh, A.N.; Sharma, N. Quantitative SWATH-based proteomic profiling for identification of mechanism-driven diagnostic biomarkers conferring in the progression of metastatic prostate cancer. Front. Oncol., 2020, 10, 493.
[http://dx.doi.org/10.3389/fonc.2020.00493] [PMID: 32322560]
[68]
Ahluwalia, P.; Mondal, A.K.; Bloomer, C.; Fulzele, S.; Jones, K.; Ananth, S.; Gahlay, G.K.; Heneidi, S.; Rojiani, A.M.; Kota, V.; Kolhe, R. Identification and clinical validation of a novel 4 gene-signature with prognostic utility in colorectal cancer. Int. J. Mol. Sci., 2019, 20(15), 3818.
[http://dx.doi.org/10.3390/ijms20153818] [PMID: 31387239]
[69]
Uchida, S.; Kuma, A.; Ohtsubo, M.; Shimura, M.; Hirata, M.; Nakagama, H.; Matsunaga, T.; Ishizaka, Y.; Yamashita, K. Binding of 14-3-3beta but not 14-3-3sigma controls the cytoplasmic localization of CDC25B: binding site preferences of 14-3-3 subtypes and the subcellular localization of CDC25B. J. Cell Sci., 2004, 117(Pt 14), 3011-3020.
[http://dx.doi.org/10.1242/jcs.01086] [PMID: 15173315]
[70]
Petri, M.K.; Koch, P.; Stenzinger, A.; Kuchelmeister, K.; Nestler, U.; Paradowska, A.; Steger, K.; Brobeil, A.; Viard, M.; Wimmer, M. PTPIP51, a positive modulator of the MAPK/Erk pathway, is upregulated in glioblastoma and interacts with 14-3-3β and PTP1B in situ. Histol. Histopathol., 2011, 26(12), 1531-1543.
[http://dx.doi.org/10.14670/HH-26.1531] [PMID: 21972092]
[71]
Segura, M.F.; Hanniford, D.; Menendez, S.; Reavie, L.; Zou, X.; Alvarez-Diaz, S.; Zakrzewski, J.; Blochin, E.; Rose, A.; Bogunovic, D.; Polsky, D.; Wei, J.; Lee, P.; Belitskaya-Levy, I.; Bhardwaj, N.; Osman, I.; Hernando, E. Aberrant miR-182 expression promotes melanoma metastasis by repressing FOXO3 and microphthalmia-associated transcription factor. Proc. Natl. Acad. Sci. USA, 2009, 106(6), 1814-1819.
[http://dx.doi.org/10.1073/pnas.0808263106] [PMID: 19188590]
[72]
Yu, X.; Zheng, H.; Chan, M.T.V.; Wu, W.K.K. NOVA1 acts as an oncogene in melanoma via regulating FOXO3a expression. J. Cell. Mol. Med., 2018, 22(5), 2622-2630.
[http://dx.doi.org/10.1111/jcmm.13527] [PMID: 29498217]
[73]
Yan, F.; Liao, R.; Farhan, M.; Wang, T.; Chen, J.; Wang, Z.; Little, P.J.; Zheng, W. Elucidating the role of the FoxO3a transcription factor in the IGF-1-induced migration and invasion of uveal melanoma cancer cells. Biomed. Pharmacother., 2016, 84, 1538-1550.
[http://dx.doi.org/10.1016/j.biopha.2016.11.027] [PMID: 27881235]
[74]
Shridhar, V.; Staub, J.; Huntley, B.; Cliby, W.; Jenkins, R.; Pass, H.I.; Hartmann, L.; Smith, D.I. A novel region of deletion on chromosome 6q23.3 spanning less than 500 Kb in high grade invasive epithelial ovarian cancer. Oncogene, 1999, 18(26), 3913-3918.
[http://dx.doi.org/10.1038/sj.onc.1202756] [PMID: 10445856]
[75]
Honma, K.; Tsuzuki, S.; Nakagawa, M.; Karnan, S.; Aizawa, Y.; Kim, W.S.; Kim, Y.D.; Ko, Y.H.; Seto, M. TNFAIP3 is the target gene of chromosome band 6q23.3-q24.1 loss in ocular adnexal marginal zone B cell lymphoma. Genes Chromosomes Cancer, 2008, 47(1), 1-7.
[http://dx.doi.org/10.1002/gcc.20499] [PMID: 17886247]
[76]
Shang, S.; Hua, F.; Hu, Z.W. The regulation of β-catenin activity and function in cancer: therapeutic opportunities. Oncotarget, 2017, 8(20), 33972-33989.
[http://dx.doi.org/10.18632/oncotarget.15687] [PMID: 28430641]
[77]
Braggio, D.; Zewdu, A.; Londhe, P.; Yu, P.; Lopez, G.; Batte, K.; Koller, D.; Costas Casal de Faria, F.; Casadei, L.; Strohecker, A.M.; Lev, D.; Pollock, R.E. β-catenin S45F mutation results in apoptotic resistance. Oncogene, 2020, 39(34), 5589-5600.
[http://dx.doi.org/10.1038/s41388-020-1382-5] [PMID: 32651460]
[78]
Newell, F.; Kong, Y.; Wilmott, J.S.; Johansson, P.A.; Ferguson, P.M.; Cui, C.; Li, Z.; Kazakoff, S.H.; Burke, H.; Dodds, T.J.; Patch, A.M.; Nones, K.; Tembe, V.; Shang, P.; van der Weyden, L.; Wong, K.; Holmes, O.; Lo, S.; Leonard, C.; Wood, S.; Xu, Q.; Rawson, R.V.; Mukhopadhyay, P.; Dummer, R.; Levesque, M.P.; Jönsson, G.; Wang, X.; Yeh, I.; Wu, H.; Joseph, N.; Bastian, B.C.; Long, G.V.; Spillane, A.J.; Shannon, K.F.; Thompson, J.F.; Saw, R.P.M.; Adams, D.J.; Si, L.; Pearson, J.V.; Hayward, N.K.; Waddell, N.; Mann, G.J.; Guo, J.; Scolyer, R.A. Whole-genome landscape of mucosal melanoma reveals diverse drivers and therapeutic targets. Nat. Commun., 2019, 10(1), 3163.
[http://dx.doi.org/10.1038/s41467-019-11107-x] [PMID: 31320640]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy