Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Review Article

阿尔茨海默病中的星形胶质细胞反应性:促进修复的治疗机遇

卷 19, 期 1, 2022

页: [1 - 15] 页: 15

弟呕挨: 10.2174/1567205018666211029164106

价格: $65

Open Access Journals Promotions 2
摘要

星形胶质细胞在神经退行性疾病中的重要性正在迅速攀升,尤其是在阿尔茨海默病 (AD) 中,淀粉样蛋白-β 斑块周围的反应性星形胶质细胞以及活化的小胶质细胞显着存在。反应性星形胶质细胞增生,暗示星形胶质细胞的形态和分子转变,似乎先于神经变性,表明在疾病发展中的作用。单细胞转录组学最近表明,来自 AD 大脑的星形胶质细胞与“正常”健康的星形胶质细胞不同,在神经递质循环(包括谷氨酸和 GABA)等领域表现出失调,并且体内平衡功能受损。然而,最近的数据表明,淀粉样变性小鼠模型中星形胶质细胞的消融导致淀粉样蛋白病理学增加、炎症特征恶化和突触密度降低,表明星形胶质细胞介导神经保护作用。因此,在一系列药物和干细胞移植研究的支持下,针对星形胶质细胞的干预可能对 AD 具有巨大潜力的想法已经出现,这些研究已成功地在 AD 小鼠模型中显示出治疗效果。在本文中,我们回顾了关于星形胶质细胞在 AD 大脑中的作用和概况的最新报告,以及如何在动物模型中操纵星形胶质细胞为使用增强星形胶质细胞功能的治疗作为 AD 的未来治疗途径铺平了道路。

关键词: 星形胶质细胞、神经胶质细胞、阿尔茨海默病、β-淀粉样蛋白、神经保护作用、上皮层

Next »
[1]
von Bartheld CS, Bahney J, Herculano-Houzel S. The search for true numbers of neurons and glial cells in the human brain: A review of 150 years of cell counting. J Comp Neurol 2016; 524(18): 3865-95.
[http://dx.doi.org/10.1002/cne.24040] [PMID: 27187682]
[2]
Lenhossek MV. Zur kenntnis der neuroglia des menschlichen ruck-enmarkes. Verh Anat Ges 1891; 5: 193-22.
[3]
Deiters OFK. Untersuchungen über Gehirn und Rückenmark des Menschen und der Säugethiere. Braunschweig: Vieweg 1865.
[http://dx.doi.org/10.5962/bhl.title.61884]
[4]
Yu YB, Li YQ. Enteric glial cells and their role in the intestinal epithelial barrier. World J Gastroenterol 2014; 20(32): 11273-80.
[http://dx.doi.org/10.3748/wjg.v20.i32.11273] [PMID: 25170211]
[5]
Oberheim NA, Wang X, Goldman S, Nedergaard M. Astrocytic complexity distinguishes the human brain. Trends Neurosci 2006; 29(10): 547-53.
[http://dx.doi.org/10.1016/j.tins.2006.08.004] [PMID: 16938356]
[6]
Ben Haim L, Rowitch DH. Functional diversity of astrocytes in neural circuit regulation. Nat Rev Neurosci 2017; 18(1): 31-41.
[http://dx.doi.org/10.1038/nrn.2016.159] [PMID: 27904142]
[7]
Masuda T, Sankowski R, Staszewski O, Prinz M. Microglia heterogeneity in the single-cell era. Cell Rep 2020; 30(5): 1271-81.
[http://dx.doi.org/10.1016/j.celrep.2020.01.010] [PMID: 32023447]
[8]
Little AR, O’Callagha JP. Astrogliosis in the adult and developing CNS: Is there a role for proinflammatory cytokines? Neurotoxicology 2001; 22(5): 607-18.
[http://dx.doi.org/10.1016/S0161-813X(01)00032-8] [PMID: 11770882]
[9]
Ridet JL, Malhotra SK, Privat A, Gage FH. Reactive astrocytes: Cellular and molecular cues to biological function. Trends Neurosci 1997; 20(12): 570-7.
[http://dx.doi.org/10.1016/S0166-2236(97)01139-9] [PMID: 9416670]
[10]
Eddleston M, Mucke L. Molecular profile of reactive astrocytes--implications for their role in neurologic disease. Neuroscience 1993; 54(1): 15-36.
[http://dx.doi.org/10.1016/0306-4522(93)90380-X] [PMID: 8515840]
[11]
Sofroniew MV. Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci 2009; 32(12): 638-47.
[http://dx.doi.org/10.1016/j.tins.2009.08.002] [PMID: 19782411]
[12]
Liddelow SA, Barres BA. Reactive Astrocytes: Production, Function, and Therapeutic Potential. Immunity 2017; 46(6): 957-67.
[http://dx.doi.org/10.1016/j.immuni.2017.06.006] [PMID: 28636962]
[13]
Escartin C, Galea E, Lakatos A, et al. Reactive astrocyte nomenclature, definitions, and future directions. Nat Neurosci 2021; 24(3): 312-25.
[http://dx.doi.org/10.1038/s41593-020-00783-4] [PMID: 33589835]
[14]
Oberheim NA, Goldman SA, Nedergaard M. Heterogeneity of astrocytic form and function. Methods Mol Biol 2012; 814: 23-45.
[http://dx.doi.org/10.1007/978-1-61779-452-0_3] [PMID: 22144298]
[15]
Magnusson JP, Frisén J. Stars from the darkest night: Unlocking the neurogenic potential of astrocytes in different brain regions. Development 2016; 143(7): 1075-86.
[http://dx.doi.org/10.1242/dev.133975] [PMID: 27048686]
[16]
Kang J, Jiang L, Goldman SA, Nedergaard M. Astrocyte-mediated potentiation of inhibitory synaptic transmission. Nat Neurosci 1998; 1(8): 683-92.
[http://dx.doi.org/10.1038/3684] [PMID: 10196584]
[17]
Blomstrand F, Aberg ND, Eriksson PS, Hansson E, Rönnbäck L. Extent of intercellular calcium wave propagation is related to gap junction permeability and level of connexin-43 expression in astrocytes in primary cultures from four brain regions. Neuroscience 1999; 92(1): 255-65.
[http://dx.doi.org/10.1016/S0306-4522(98)00738-6] [PMID: 10392848]
[18]
Parri HR, Gould TM, Crunelli V. Spontaneous astrocytic Ca2+ oscillations in situ drive NMDAR-mediated neuronal excitation. Nat Neurosci 2001; 4(8): 803-12.
[http://dx.doi.org/10.1038/90507] [PMID: 11477426]
[19]
Cornell-Bell AH, Finkbeiner SM, Cooper MS, Smith SJ. Glutamate induces calcium waves in cultured astrocytes: Long-range glial signaling. Science 1990; 247(4941): 470-3.
[http://dx.doi.org/10.1126/science.1967852] [PMID: 1967852]
[20]
Verkhratsky A, Orkand RK, Kettenmann H. Glial calcium: Homeostasis and signaling function. Physiol Rev 1998; 78(1): 99-141.
[http://dx.doi.org/10.1152/physrev.1998.78.1.99] [PMID: 9457170]
[21]
Scemes E, Giaume C. Astrocyte calcium waves: What they are and what they do. Glia 2006; 54(7): 716-25.
[http://dx.doi.org/10.1002/glia.20374] [PMID: 17006900]
[22]
Tabernero A, Medina JM, Giaume C. Glucose metabolism and proliferation in glia: Role of astrocytic gap junctions. J Neurochem 2006; 99(4): 1049-61.
[http://dx.doi.org/10.1111/j.1471-4159.2006.04088.x] [PMID: 16899068]
[23]
Kang SJ, Cho SH, Park K, Yi J, Yoo SJ, Shin KS. Expression of Kir2.1 channels in astrocytes under pathophysiological conditions. Mol Cells 2008; 25(1): 124-30.
[PMID: 18319624]
[24]
Simard M, Arcuino G, Takano T, Liu QS, Nedergaard M. Signaling at the gliovascular interface. J Neurosci 2003; 23(27): 9254-62.
[http://dx.doi.org/10.1523/JNEUROSCI.23-27-09254.2003] [PMID: 14534260]
[25]
Zonta M, Angulo MC, Gobbo S, et al. Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nat Neurosci 2003; 6(1): 43-50.
[http://dx.doi.org/10.1038/nn980] [PMID: 12469126]
[26]
Mulligan SJ, MacVicar BA. Calcium transients in astrocyte endfeet cause cerebrovascular constrictions. Nature 2004; 431(7005): 195-9.
[http://dx.doi.org/10.1038/nature02827] [PMID: 15356633]
[27]
Takano T, Tian GF, Peng W, et al. Astrocyte-mediated control of cerebral blood flow. Nat Neurosci 2006; 9(2): 260-7.
[http://dx.doi.org/10.1038/nn1623] [PMID: 16388306]
[28]
Iadecola C, Nedergaard M. Glial regulation of the cerebral microvasculature. Nat Neurosci 2007; 10(11): 1369-76.
[http://dx.doi.org/10.1038/nn2003] [PMID: 17965657]
[29]
Fuller S, Steele M, Münch G. Activated astroglia during chronic inflammation in Alzheimer’s disease-do they neglect their neurosupportive roles? Mutat Res 2010; 690(1-2): 40-9.
[http://dx.doi.org/10.1016/j.mrfmmm.2009.08.016] [PMID: 19748514]
[30]
Batiuk MY, Martirosyan A, Wahis J, et al. Identification of region-specific astrocyte subtypes at single cell resolution. Nat Commun 2020; 11(1): 1220.
[http://dx.doi.org/10.1038/s41467-019-14198-8] [PMID: 32139688]
[31]
Molofsky AV, Krencik R, Ullian EM, et al. Astrocytes and disease: A neurodevelopmental perspective. Genes Dev 2012; 26(9): 891-907.
[http://dx.doi.org/10.1101/gad.188326.112] [PMID: 22549954]
[32]
Burda JE, Sofroniew MV. Reactive gliosis and the multicellular response to CNS damage and disease. Neuron 2014; 81(2): 229-48.
[http://dx.doi.org/10.1016/j.neuron.2013.12.034] [PMID: 24462092]
[33]
Sloan SA, Barres BA. Mechanisms of astrocyte development and their contributions to neurodevelopmental disorders. Curr Opin Neurobiol 2014; 27: 75-81.
[http://dx.doi.org/10.1016/j.conb.2014.03.005] [PMID: 24694749]
[34]
McGeer EG, McGeer PL. Inflammatory processes in Alzheimer’s disease. Prog Neuropsychopharmacol Biol Psychiatry 2003; 27(5): 741-9.
[http://dx.doi.org/10.1016/S0278-5846(03)00124-6] [PMID: 12921904]
[35]
Alzheimer A. Die diagnostischen Schwierigkeiten in der Psychiatrie. Z Ges Neurol Psychiatr (Bucur) 1910; 1: 1-19.
[http://dx.doi.org/10.1007/BF02895916]
[36]
Medeiros R, LaFerla FM. Astrocytes: Conductors of the Alzheimer disease neuroinflammatory symphony. Exp Neurol 2013; 239: 133-8.
[http://dx.doi.org/10.1016/j.expneurol.2012.10.007] [PMID: 23063604]
[37]
Olabarria M, Noristani HN, Verkhratsky A, Rodríguez JJ. Concomitant astroglial atrophy and astrogliosis in a triple transgenic animal model of Alzheimer’s disease. Glia 2010; 58(7): 831-8.
[http://dx.doi.org/10.1002/glia.20967] [PMID: 20140958]
[38]
Norton WT, Aquino DA, Hozumi I, Chiu FC, Brosnan CF. Quantitative aspects of reactive gliosis: A review. Neurochem Res 1992; 17(9): 877-85.
[http://dx.doi.org/10.1007/BF00993263] [PMID: 1407275]
[39]
Ferrer I. Diversity of astroglial responses across human neurodegenerative disorders and brain aging. Brain Pathol 2017; 27(5): 645-74.
[http://dx.doi.org/10.1111/bpa.12538] [PMID: 28804999]
[40]
Galea E, Morrison W, Hudry E, et al. Topological analyses in APP/PS1 mice reveal that astrocytes do not migrate to amyloid-β plaques. Proc Natl Acad Sci USA 2015; 112(51): 15556-61.
[http://dx.doi.org/10.1073/pnas.1516779112] [PMID: 26644572]
[41]
Serrano-Pozo A, Gómez-Isla T, Growdon JH, Frosch MP, Hyman BT. A phenotypic change but not proliferation underlies glial responses in Alzheimer disease. Am J Pathol 2013; 182(6): 2332-44.
[http://dx.doi.org/10.1016/j.ajpath.2013.02.031] [PMID: 23602650]
[42]
Marlatt MW, Bauer J, Aronica E, et al. Proliferation in the Alzheimer hippocampus is due to microglia, not astroglia, and occurs at sites of amyloid deposition. Neural Plast 2014; 2014: 693851.
[http://dx.doi.org/10.1155/2014/693851] [PMID: 25215243]
[43]
Kamphuis W, Orre M, Kooijman L, Dahmen M, Hol EM. Differential cell proliferation in the cortex of the APPswePS1dE9 Alzheimer’s disease mouse model. Glia 2012; 60(4): 615-29.
[http://dx.doi.org/10.1002/glia.22295] [PMID: 22262260]
[44]
Baglietto-Vargas D, Sánchez-Mejias E, Navarro V, et al. Dual roles of Aβ in proliferative processes in an amyloidogenic model of Alzheimer’s disease. Sci Rep 2017; 7(1): 10085.
[http://dx.doi.org/10.1038/s41598-017-10353-7] [PMID: 28855626]
[45]
Li KY, Gong PF, Li JT, Xu NJ, Qin S. Morphological and molecular alterations of reactive astrocytes without proliferation in cerebral cortex of an APP/PS1 transgenic mouse model and Alzheimer’s patients. Glia 2020; 68(11): 2361-76.
[PMID: 32469469]
[46]
Ries M, Sastre M. Mechanisms of Aβ clearance and degradation by glial cells. Front Aging Neurosci 2016; 8: 160.
[http://dx.doi.org/10.3389/fnagi.2016.00160] [PMID: 27458370]
[47]
Gomez-Arboledas A, Davila JC, Sanchez-Mejias E, et al. Phagocytic clearance of presynaptic dystrophies by reactive astrocytes in Alzheimer’s disease. Glia 2018; 66(3): 637-53.
[http://dx.doi.org/10.1002/glia.23270] [PMID: 29178139]
[48]
Wyss-Coray T, Loike JD, Brionne TC, et al. Adult mouse astrocytes degrade amyloid-beta in vitro and in situ. Nat Med 2003; 9(4): 453-7.
[http://dx.doi.org/10.1038/nm838] [PMID: 12612547]
[49]
Bezprozvanny I. Calcium signaling and neurodegenerative diseases. Trends Mol Med 2009; 15(3): 89-100.
[http://dx.doi.org/10.1016/j.molmed.2009.01.001] [PMID: 19230774]
[50]
Kuchibhotla KV, Lattarulo CR, Hyman BT, Bacskai BJ. Synchronous hyperactivity and intercellular calcium waves in astrocytes in Alzheimer mice. Science 2009; 323(5918): 1211-5.
[http://dx.doi.org/10.1126/science.1169096] [PMID: 19251629]
[51]
Lee M, McGeer EG, McGeer PL. Mechanisms of GABA release from human astrocytes. Glia 2011; 59(11): 1600-11.
[http://dx.doi.org/10.1002/glia.21202] [PMID: 21748804]
[52]
Rossner S, Lange-Dohna C, Zeitschel U, Perez-Polo JR. Alzheimer’s disease beta-secretase BACE1 is not a neuron-specific enzyme. J Neurochem 2005; 92(2): 226-34.
[http://dx.doi.org/10.1111/j.1471-4159.2004.02857.x] [PMID: 15663471]
[53]
Frost GR, Li YM. The role of astrocytes in amyloid production and Alzheimer’s disease. Open Biol 2017; 7(12): 170228.
[http://dx.doi.org/10.1098/rsob.170228] [PMID: 29237809]
[54]
Johnson ECB, Dammer EB, Duong DM, et al. Large-scale proteomic analysis of Alzheimer’s disease brain and cerebrospinal fluid reveals early changes in energy metabolism associated with microglia and astrocyte activation. Nat Med 2020; 26(5): 769-80.
[http://dx.doi.org/10.1038/s41591-020-0815-6] [PMID: 32284590]
[55]
Mathys H, Davila-Velderrain J, Peng Z, et al. Single-cell transcriptomic analysis of Alzheimer’s disease. Nature 2019; 570(7761): 332-7.
[http://dx.doi.org/10.1038/s41586-019-1195-2] [PMID: 31042697]
[56]
Lau SF, Cao H, Fu AKY, Ip NY. Single-nucleus transcriptome analysis reveals dysregulation of angiogenic endothelial cells and neuroprotective glia in Alzheimer’s disease. Proc Natl Acad Sci USA 2020; 117(41): 25800-9.
[http://dx.doi.org/10.1073/pnas.2008762117] [PMID: 32989152]
[57]
Grubman A, Chew G, Ouyang JF, et al. A single-cell atlas of entorhinal cortex from individuals with Alzheimer’s disease reveals cell-type-specific gene expression regulation. Nat Neurosci 2019; 22(12): 2087-97.
[http://dx.doi.org/10.1038/s41593-019-0539-4] [PMID: 31768052]
[58]
Jo S, Yarishkin O, Hwang YJ, et al. GABA from reactive astrocytes impairs memory in mouse models of Alzheimer’s disease. Nat Med 2014; 20(8): 886-96.
[http://dx.doi.org/10.1038/nm.3639] [PMID: 24973918]
[59]
Orre M, Kamphuis W, Osborn LM, et al. Isolation of glia from Alzheimer’s mice reveals inflammation and dysfunction. Neurobiol Aging 2014; 35(12): 2746-60.
[http://dx.doi.org/10.1016/j.neurobiolaging.2014.06.004] [PMID: 25002035]
[60]
Pan J, Ma N, Yu B, Zhang W, Wan J. Transcriptomic profiling of microglia and astrocytes throughout aging. J Neuroinflam 2020; 17: 97.
[61]
Maragakis NJ, Rothstein JD. Mechanisms of Disease: Astrocytes in neurodegenerative disease. Nat Clin Pract Neurol 2006; 2(12): 679-89.
[http://dx.doi.org/10.1038/ncpneuro0355] [PMID: 17117171]
[62]
Lepekhin EA, Eliasson C, Berthold CH, Berezin V, Bock E, Pekny M. Intermediate filaments regulate astrocyte motility. J Neurochem 2001; 79(3): 617-25.
[http://dx.doi.org/10.1046/j.1471-4159.2001.00595.x] [PMID: 11701765]
[63]
Yoshida T, Tomozawa Y, Arisato T, Okamoto Y, Hirano H, Nakagawa M. The functional alteration of mutant GFAP depends on the location of the domain: Morphological and functional studies using astrocytoma-derived cells. J Hum Genet 2007; 52(4): 362-9.
[http://dx.doi.org/10.1007/s10038-007-0124-7] [PMID: 17318298]
[64]
Wilhelmsson U, Faiz M, de Pablo Y, et al. Astrocytes negatively regulate neurogenesis through the Jagged1-mediated Notch pathway. Stem Cells 2012; 30(10): 2320-9.
[http://dx.doi.org/10.1002/stem.1196] [PMID: 22887872]
[65]
Messing A, Head MW, Galles K, Galbreath EJ, Goldman JE, Brenner M. Fatal encephalopathy with astrocyte inclusions in GFAP transgenic mice. Am J Pathol 1998; 152(2): 391-8.
[PMID: 9466565]
[66]
Pekny M, Levéen P, Pekna M, et al. Mice lacking glial fibrillary acidic protein display astrocytes devoid of intermediate filaments but develop and reproduce normally. EMBO J 1995; 14(8): 1590-8.
[http://dx.doi.org/10.1002/j.1460-2075.1995.tb07147.x] [PMID: 7737111]
[67]
Xu K, Malouf AT, Messing A, Silver J. Glial fibrillary acidic protein is necessary for mature astrocytes to react to beta-amyloid. Glia 1999; 25(4): 390-403.
[http://dx.doi.org/10.1002/(SICI)1098-1136(19990215)25:4<390::AID-GLIA8>3.0.CO;2-7] [PMID: 10028921]
[68]
Pekny M, Pekna M. Astrocyte intermediate filaments in CNS pathologies and regeneration. J Pathol 2004; 204(4): 428-37.
[http://dx.doi.org/10.1002/path.1645] [PMID: 15495269]
[69]
Wilhelmsson U, Li L, Pekna M, et al. Absence of glial fibrillary acidic protein and vimentin prevents hypertrophy of astrocytic processes and improves post-traumatic regeneration. J Neurosci 2004; 24(21): 5016-21.
[http://dx.doi.org/10.1523/JNEUROSCI.0820-04.2004] [PMID: 15163694]
[70]
Pekny M, Johansson CB, Eliasson C, et al. Abnormal reaction to central nervous system injury in mice lacking glial fibrillary acidic protein and vimentin. J Cell Biol 1999; 145(3): 503-14.
[http://dx.doi.org/10.1083/jcb.145.3.503] [PMID: 10225952]
[71]
Kraft AW, Hu X, Yoon H, et al. Attenuating astrocyte activation accelerates plaque pathogenesis in APP/PS1 mice. FASEB J 2013; 27(1): 187-98.
[http://dx.doi.org/10.1096/fj.12-208660] [PMID: 23038755]
[72]
Kamphuis W, Kooijman L, Orre M, Stassen O, Pekny M, Hol EM. GFAP and vimentin deficiency alters gene expression in astrocytes and microglia in wild-type mice and changes the transcriptional response of reactive glia in mouse model for Alzheimer’s disease. Glia 2015; 63(6): 1036-56.
[http://dx.doi.org/10.1002/glia.22800] [PMID: 25731615]
[73]
Bush TG, Puvanachandra N, Horner CH, et al. Leukocyte infiltration, neuronal degeneration, and neurite outgrowth after ablation of scar-forming, reactive astrocytes in adult transgenic mice. Neuron 1999; 23(2): 297-308.
[http://dx.doi.org/10.1016/S0896-6273(00)80781-3] [PMID: 10399936]
[74]
Katsouri L, Birch AM, Renziehausen AWJ, et al. Ablation of reactive astrocytes exacerbates disease pathology in a model of Alzheimer’s disease. Glia 2020; 68(5): 1017-30.
[http://dx.doi.org/10.1002/glia.23759] [PMID: 31799735]
[75]
Nishimura RN, Santos D, Fu ST, Dwyer BE. Induction of cell death by L-alpha-aminoadipic acid exposure in cultured rat astrocytes: Relationship to protein synthesis. Neurotoxicology 2000; 21(3): 313-20.
[PMID: 10894121]
[76]
Davis N, Mota BC, Stead L, et al. Pharmacological ablation of astrocytes reduces Aβ degradation and synaptic connectivity in an ex vivo model of Alzheimer’s disease. J Neuroinflammation 2021; 18(1): 73.
[http://dx.doi.org/10.1186/s12974-021-02117-y] [PMID: 33731156]
[77]
Hoshi A, Yamamoto T, Shimizu K, et al. Characteristics of aquaporin expression surrounding senile plaques and cerebral amyloid angiopathy in Alzheimer disease. J Neuropathol Exp Neurol 2012; 71(8): 750-9.
[http://dx.doi.org/10.1097/NEN.0b013e3182632566] [PMID: 22805778]
[78]
Moftakhar P, Lynch MD, Pomakian JL, Vinters HV. Aquaporin expression in the brains of patients with or without cerebral amyloid angiopathy. J Neuropathol Exp Neurol 2010; 69(12): 1201-9.
[http://dx.doi.org/10.1097/NEN.0b013e3181fd252c] [PMID: 21107133]
[79]
Zheng JY, Sun J, Ji CM, et al. Selective deletion of apolipoprotein E in astrocytes ameliorates the spatial learning and memory deficits in Alzheimer’s disease (APP/PS1) mice by inhibiting TGF-β/Smad2/STAT3 signaling. Neurobiol Aging 2017; 54: 112-32.
[http://dx.doi.org/10.1016/j.neurobiolaging.2017.03.002] [PMID: 28366226]
[80]
Ceyzériat K, Ben Haim L, Denizot A, et al. Modulation of astrocyte reactivity improves functional deficits in mouse models of Alzheimer’s disease. Acta Neuropathol Commun 2018; 6(1): 104.
[http://dx.doi.org/10.1186/s40478-018-0606-1] [PMID: 30322407]
[81]
Ashrafian H, Zadeh EH, Khan RH. Review on Alzheimer’s disease: Inhibition of amyloid beta and tau tangle formation. Int J Biol Macromol 2021; 167: 382-94.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.11.192] [PMID: 33278431]
[82]
Lee HS, Ghetti A, Pinto-Duarte A, et al. Astrocytes contribute to gamma oscillations and recognition memory. Proc Natl Acad Sci USA 2014; 111(32): E3343-52.
[http://dx.doi.org/10.1073/pnas.1410893111] [PMID: 25071179]
[83]
Heppner FL, Ransohoff RM, Becher B. Immune attack: The role of inflammation in Alzheimer disease. Nat Rev Neurosci 2015; 16(6): 358-72.
[http://dx.doi.org/10.1038/nrn3880] [PMID: 25991443]
[84]
Rodríguez-Arellano JJ, Parpura V, Zorec R, Verkhratsky A. Astrocytes in physiological aging and Alzheimer’s disease. Neuroscience 2016; 323: 170-82.
[http://dx.doi.org/10.1016/j.neuroscience.2015.01.007] [PMID: 25595973]
[85]
Watts JC, Giles K, Grillo SK, Lemus A, DeArmond SJ, Prusiner SB. Bioluminescence imaging of Abeta deposition in bigenic mouse models of Alzheimer’s disease. Proc Natl Acad Sci USA 2011; 108(6): 2528-33.
[http://dx.doi.org/10.1073/pnas.1019034108] [PMID: 21262831]
[86]
Santello M, Toni N, Volterra A. Astrocyte function from information processing to cognition and cognitive impairment. Nat Neurosci 2019; 22(2): 154-66.
[http://dx.doi.org/10.1038/s41593-018-0325-8] [PMID: 30664773]
[87]
Siracusa R, Fusco R, Cuzzocrea S. Astrocytes: Role and Functions in Brain Pathologies. Front Pharmacol 2019; 10: 1114.
[http://dx.doi.org/10.3389/fphar.2019.01114] [PMID: 31611796]
[88]
Fukuyama R, Izumoto T, Fushiki S. The cerebrospinal fluid level of glial fibrillary acidic protein is increased in cerebrospinal fluid from Alzheimer’s disease patients and correlates with severity of dementia. Eur Neurol 2001; 46(1): 35-8.
[http://dx.doi.org/10.1159/000050753] [PMID: 11455181]
[89]
Ishiki A, Kamada M, Kawamura Y, et al. Glial fibrillar acidic protein in the cerebrospinal fluid of Alzheimer’s disease, dementia with Lewy bodies, and frontotemporal lobar degeneration. J Neurochem 2016; 136(2): 258-61.
[http://dx.doi.org/10.1111/jnc.13399] [PMID: 26485083]
[90]
Teitsdottir UD, Jonsdottir MK, Lund SH, Darreh-Shori T, Snaedal J, Petersen PH. Association of glial and neuronal degeneration markers with Alzheimer’s disease cerebrospinal fluid profile and cognitive functions. Alzheimers Res Ther 2020; 12(1): 92.
[http://dx.doi.org/10.1186/s13195-020-00657-8] [PMID: 32753068]
[91]
Chatterjee P, Pedrini S, Stoops E, et al. Plasma glial fibrillary acidic protein is elevated in cognitively normal older adults at risk of Alzheimer’s disease. Transl Psychiatry 2021; 11(1): 27.
[http://dx.doi.org/10.1038/s41398-020-01137-1] [PMID: 33431793]
[92]
Mattsson N, Cullen NC, Andreasson U, Zetterberg H, Blennow K. Association Between Longitudinal Plasma Neurofilament Light and Neurodegeneration in Patients With Alzheimer Disease. JAMA Neurol 2019; 76(7): 791-9.
[http://dx.doi.org/10.1001/jamaneurol.2019.0765] [PMID: 31009028]
[93]
Quiroz YT, Zetterberg H, Reiman EM, et al. Plasma neurofilament light chain in the presenilin 1 E280A autosomal dominant Alzheimer’s disease kindred: A cross-sectional and longitudinal cohort study. Lancet Neurol 2020; 19(6): 513-21.
[http://dx.doi.org/10.1016/S1474-4422(20)30137-X] [PMID: 32470423]
[94]
Yeh CY, Vadhwana B, Verkhratsky A, Rodríguez JJ. Early astrocytic atrophy in the entorhinal cortex of a triple transgenic animal model of Alzheimer’s disease. ASN Neuro 2011; 3(5): 271-9.
[http://dx.doi.org/10.1042/AN20110025] [PMID: 22103264]
[95]
Kulijewicz-Nawrot M, Verkhratsky A, Chvátal A, Syková E, Rodríguez JJ. Astrocytic cytoskeletal atrophy in the medial prefrontal cortex of a triple transgenic mouse model of Alzheimer’s disease. J Anat 2012; 221(3): 252-62.
[http://dx.doi.org/10.1111/j.1469-7580.2012.01536.x] [PMID: 22738374]
[96]
Kim JH, Lukowicz A, Qu W, Johnson A, Cvetanovic M. Astroglia contribute to the pathogenesis of spinocerebellar ataxia Type 1 (SCA1) in a biphasic, stage-of-disease specific manner. Glia 2018; 66(9): 1972-87.
[http://dx.doi.org/10.1002/glia.23451] [PMID: 30043530]
[97]
Pekny M, Pekna M. Astrocyte reactivity and reactive astrogliosis: Costs and benefits. Physiol Rev 2014; 94(4): 1077-98.
[http://dx.doi.org/10.1152/physrev.00041.2013] [PMID: 25287860]
[98]
Hynd MR, Scott HL, Dodd PR. Glutamate-mediated excitotoxicity and neurodegeneration in Alzheimer’s disease. Neurochem Int 2004; 45(5): 583-95.
[http://dx.doi.org/10.1016/j.neuint.2004.03.007] [PMID: 15234100]
[99]
Attwell D, Barbour B, Szatkowski M. Nonvesicular release of neurotransmitter. Neuron 1993; 11(3): 401-7.
[http://dx.doi.org/10.1016/0896-6273(93)90145-H] [PMID: 8104430]
[100]
Choi DW, Maulucci-Gedde M, Kriegstein AR. Glutamate neurotoxicity in cortical cell culture. J Neurosci 1987; 7(2): 357-68.
[http://dx.doi.org/10.1523/JNEUROSCI.07-02-00357.1987] [PMID: 2880937]
[101]
Furuta A, Rothstein JD, Martin LJ. Glutamate transporter protein subtypes are expressed differentially during rat CNS development. J Neurosci 1997; 17(21): 8363-75.
[http://dx.doi.org/10.1523/JNEUROSCI.17-21-08363.1997] [PMID: 9334410]
[102]
Furness DN, Dehnes Y, Akhtar AQ, et al. A quantitative assessment of glutamate uptake into hippocampal synaptic terminals and astrocytes: New insights into a neuronal role for excitatory amino acid transporter 2 (EAAT2). Neuroscience 2008; 157(1): 80-94.
[http://dx.doi.org/10.1016/j.neuroscience.2008.08.043] [PMID: 18805467]
[103]
Sharma A, Kazim SF, Larson CS, et al. Divergent roles of astrocytic versus neuronal EAAT2 deficiency on cognition and overlap with aging and Alzheimer’s molecular signatures. Proc Natl Acad Sci USA 2019; 116(43): 21800-11.
[http://dx.doi.org/10.1073/pnas.1903566116] [PMID: 31591195]
[104]
Zumkehr J, Rodriguez-Ortiz CJ, Cheng D, et al. Ceftriaxone ameliorates tau pathology and cognitive decline via restoration of glial glutamate transporter in a mouse model of Alzheimer’s disease. Neurobiol Aging 2015; 36(7): 2260-71.
[http://dx.doi.org/10.1016/j.neurobiolaging.2015.04.005] [PMID: 25964214]
[105]
Kobayashi E, Nakano M, Kubota K, et al. Activated forms of astrocytes with higher GLT-1 expression are associated with cognitive normal subjects with Alzheimer pathology in human brain. Sci Rep 2018; 8(1): 1712.
[http://dx.doi.org/10.1038/s41598-018-19442-7] [PMID: 29374250]
[106]
Rothstein JD, Patel S, Regan MR, et al. Beta-lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature 2005; 433(7021): 73-7.
[http://dx.doi.org/10.1038/nature03180] [PMID: 15635412]
[107]
Fan S, Xian X, Li L, et al. Ceftriaxone Improves Cognitive Function and Upregulates GLT-1-Related Glutamate-Glutamine Cycle in APP/PS1 Mice. J Alzheimers Dis 2018; 66(4): 1731-43.
[http://dx.doi.org/10.3233/JAD-180708] [PMID: 30452416]
[108]
Gao J, Liu L, Liu C, et al. GLT-1 Knockdown Inhibits Ceftriaxone-Mediated Improvements on Cognitive Deficits, and GLT-1 and xCT Expression and Activity in APP/PS1 AD Mice. Front Aging Neurosci 2020; 12: 580772.
[http://dx.doi.org/10.3389/fnagi.2020.580772] [PMID: 33132901]
[109]
Tong X, Ao Y, Faas GC, et al. Astrocyte Kir4.1 ion channel deficits contribute to neuronal dysfunction in Huntington’s disease model mice. Nat Neurosci 2014; 17(5): 694-703.
[http://dx.doi.org/10.1038/nn.3691] [PMID: 24686787]
[110]
Satoh J-I, Tabunoki H, Ishida T, Saito Y, Konno H, Arima K. Reactive astrocytes express the potassium channel Kir4.1 in active multiple sclerosis lesions. Clin Exp Neuroimmunol 2013; 4(1): 19-28.
[http://dx.doi.org/10.1111/cen3.12011]
[111]
Ohno Y, Tokudome K, Kunisawa N, et al. Role of astroglial Kir4.1 channels in the pathogenesis and treatment of epilepsy. Ther Targets Neurol Dis 2015; 2: e476.
[112]
Kinboshi M, Mukai T, Nagao Y, et al. Inhibition of Inwardly Rectifying Potassium (Kir) 4.1 Channels Facilitates Brain-Derived Neurotrophic Factor (BDNF) Expression in Astrocytes. Front Mol Neurosci 2017; 10: 408.
[http://dx.doi.org/10.3389/fnmol.2017.00408] [PMID: 29358904]
[113]
Zhao L, Gottesdiener AJ, Parmar M, et al. Intracerebral adeno-associated virus gene delivery of apolipoprotein E2 markedly reduces brain amyloid pathology in Alzheimer’s disease mouse models. Neurobiol Aging 2016; 44: 159-72.
[http://dx.doi.org/10.1016/j.neurobiolaging.2016.04.020] [PMID: 27318144]
[114]
Feng X, Eide FF, Jiang H, Reder AT. Adeno-associated viral vector-mediated ApoE expression in Alzheimer’s disease mice: Low CNS immune response, long-term expression, and astrocyte specificity. Front Biosci 2004; 9: 1540-6.
[http://dx.doi.org/10.2741/1323] [PMID: 14977565]
[115]
Khakh BS, Sofroniew MV. Diversity of astrocyte functions and phenotypes in neural circuits. Nat Neurosci 2015; 18(7): 942-52.
[http://dx.doi.org/10.1038/nn.4043] [PMID: 26108722]
[116]
Middeldorp J, Hol EM. GFAP in health and disease. Prog Neurobiol 2011; 93(3): 421-43.
[http://dx.doi.org/10.1016/j.pneurobio.2011.01.005] [PMID: 21219963]
[117]
Sofroniew MV, Vinters HV. Astrocytes: Biology and pathology. Acta Neuropathol 2010; 119(1): 7-35.
[http://dx.doi.org/10.1007/s00401-009-0619-8] [PMID: 20012068]
[118]
Merienne N, Le Douce J, Faivre E, Déglon N, Bonvento G. Efficient gene delivery and selective transduction of astrocytes in the mammalian brain using viral vectors. Front Cell Neurosci 2013; 7: 106.
[http://dx.doi.org/10.3389/fncel.2013.00106] [PMID: 23847471]
[119]
Jiao SS, Shen LL, Zhu C, et al. Brain-derived neurotrophic factor protects against tau-related neurodegeneration of Alzheimer’s disease. Transl Psychiatry 2016; 6(10): e907.
[http://dx.doi.org/10.1038/tp.2016.186] [PMID: 27701410]
[120]
de Pins B, Cifuentes-Díaz C, Farah AT, et al. Conditional BDNF Delivery from Astrocytes Rescues Memory Deficits, Spine Density, and Synaptic Properties in the 5xFAD Mouse Model of Alzheimer Disease. J Neurosci 2019; 39(13): 2441-58.
[http://dx.doi.org/10.1523/JNEUROSCI.2121-18.2019] [PMID: 30700530]
[121]
Pertusa M, García-Matas S, Mammeri H, et al. Expression of GDNF transgene in astrocytes improves cognitive deficits in aged rats. Neurobiol Aging 2008; 29(9): 1366-79.
[http://dx.doi.org/10.1016/j.neurobiolaging.2007.02.026] [PMID: 17399854]
[122]
Revilla S, Ursulet S, Álvarez-López MJ, et al. Lenti-GDNF gene therapy protects against Alzheimer’s disease-like neuropathology in 3xTg-AD mice and MC65 cells. CNS Neurosci Ther 2014; 20(11): 961-72.
[http://dx.doi.org/10.1111/cns.12312] [PMID: 25119316]
[123]
Furman JL, Sama DM, Gant JC, et al. Targeting astrocytes ameliorates neurologic changes in a mouse model of Alzheimer’s disease. J Neurosci 2012; 32(46): 16129-40.
[http://dx.doi.org/10.1523/JNEUROSCI.2323-12.2012] [PMID: 23152597]
[124]
Hudry E, Wu HY, Arbel-Ornath M, et al. Inhibition of the NFAT pathway alleviates amyloid β neurotoxicity in a mouse model of Alzheimer’s disease. J Neurosci 2012; 32(9): 3176-92.
[http://dx.doi.org/10.1523/JNEUROSCI.6439-11.2012] [PMID: 22378890]
[125]
Ruggiero DA, Regunathan S, Wang H, Milner TA, Reis DJ. Immunocytochemical localization of an imidazoline receptor protein in the central nervous system. Brain Res 1998; 780(2): 270-93.
[http://dx.doi.org/10.1016/S0006-8993(97)01203-1] [PMID: 9507161]
[126]
Regunathan S, Feinstein DL, Reis DJ. Expression of non-adrenergic imidazoline sites in rat cerebral cortical astrocytes. J Neurosci Res 1993; 34(6): 681-8.
[http://dx.doi.org/10.1002/jnr.490340611] [PMID: 8315666]
[127]
Regunathan S, Meeley MP, Reis DJ. Expression of non-adrenergic imidazoline sites in chromaffin cells and mitochondrial membranes of bovine adrenal medulla. Biochem Pharmacol 1993; 45(8): 1667-75.
[http://dx.doi.org/10.1016/0006-2952(93)90308-J] [PMID: 8387303]
[128]
Olmos G, Alemany R, Escriba PV, García-Sevilla JA. The effects of chronic imidazoline drug treatment on glial fibrillary acidic protein concentrations in rat brain. Br J Pharmacol 1994; 111(4): 997-1002.
[http://dx.doi.org/10.1111/j.1476-5381.1994.tb14842.x] [PMID: 8032628]
[129]
Mirzaei N, Mota BC, Birch AM, et al. Imidazoline ligand BU224 reverses cognitive deficits, reduces microgliosis and enhances synaptic connectivity in a mouse model of Alzheimer’s disease. Br J Pharmacol 2021; 178(3): 654-71.
[http://dx.doi.org/10.1111/bph.15312] [PMID: 33140839]
[130]
Griñán-Ferré C, Vasilopoulou F, Abás S, et al. Behavioral and Cognitive Improvement Induced by Novel Imidazoline I2 Receptor Ligands in Female SAMP8 Mice. Neurotherapeutics 2019; 16(2): 416-31.
[http://dx.doi.org/10.1007/s13311-018-00681-5] [PMID: 30460457]
[131]
Abás S, Rodríguez-Arévalo S, Bagán A, et al. Bicyclic α-Iminophosphonates as High Affinity Imidazoline I2 Receptor Ligands for Alzheimer’s Disease. J Med Chem 2020; 63(7): 3610-33.
[http://dx.doi.org/10.1021/acs.jmedchem.9b02080] [PMID: 32150414]
[132]
Vasilopoulou F, Griñán-Ferré C, Rodríguez-Arévalo S, et al. I2 imidazoline receptor modulation protects aged SAMP8 mice against cognitive decline by suppressing the calcineurin pathway. Geroscience 2021; 43(2): 965-83.
[http://dx.doi.org/10.1007/s11357-020-00281-2] [PMID: 33128688]
[133]
Vasilopoulou F, Rodríguez-Arévalo S, Bagán A, Escolano C, Griñán-Ferré C, Pallàs M. Disease-modifying treatment with I2 imidazoline receptor ligand LSL60101 in an Alzheimer’s disease mouse model: A comparative study with donepezil. Br J Pharmacol 2021; 178(15): 3017-33.
[http://dx.doi.org/10.1111/bph.15478] [PMID: 33817786]
[134]
Milhaud D, Fagni L, Bockaert J, Lafon-Cazal M. Imidazoline-induced neuroprotective effects result from blockade of NMDA receptor channels in neuronal cultures. Neuropharmacology 2000; 39(12): 2244-54.
[http://dx.doi.org/10.1016/S0028-3908(00)00085-X] [PMID: 10974308]
[135]
Han Z, Yang JL, Jiang SX, Hou ST, Zheng RY. Fast, non-competitive and reversible inhibition of NMDA-activated currents by 2-BFI confers neuroprotection. PLoS One 2013; 8(5): e64894.
[http://dx.doi.org/10.1371/journal.pone.0064894] [PMID: 23741413]
[136]
Jiang SX, Zheng RY, Zeng JQ, Li XL, Han Z, Hou ST. Reversible inhibition of intracellular calcium influx through NMDA receptors by imidazoline I(2) receptor antagonists. Eur J Pharmacol 2010; 629(1-3): 12-9.
[http://dx.doi.org/10.1016/j.ejphar.2009.11.063] [PMID: 19958763]
[137]
Casanovas A, Olmos G, Ribera J, Boronat MA, Esquerda JE, García-Sevilla JA. Induction of reactive astrocytosis and prevention of motoneuron cell death by the I(2)-imidazoline receptor ligand LSL 60101. Br J Pharmacol 2000; 130(8): 1767-76.
[http://dx.doi.org/10.1038/sj.bjp.0703485] [PMID: 10952664]
[138]
Sampedro-Piquero P, De Bartolo P, Petrosini L, Zancada-Menendez C, Arias JL, Begega A. Astrocytic plasticity as a possible mediator of the cognitive improvements after environmental enrichment in aged rats. Neurobiol Learn Mem 2014; 114: 16-25.
[http://dx.doi.org/10.1016/j.nlm.2014.04.002] [PMID: 24727294]
[139]
Rodríguez JJ, Terzieva S, Olabarria M, Lanza RG, Verkhratsky A. Enriched environment and physical activity reverse astrogliodegeneration in the hippocampus of AD transgenic mice. Cell Death Dis 2013; 4(6): e678.
[http://dx.doi.org/10.1038/cddis.2013.194] [PMID: 23788035]
[140]
Belaya I, Ivanova M, Sorvari A, et al. Astrocyte remodeling in the beneficial effects of long-term voluntary exercise in Alzheimer’s disease. J Neuroinflammation 2020; 17(1): 271.
[http://dx.doi.org/10.1186/s12974-020-01935-w] [PMID: 32933545]
[141]
Tapia-Rojas C, Aranguiz F, Varela-Nallar L, Inestrosa NC. Voluntary Running Attenuates Memory Loss, Decreases Neuropathological Changes and Induces Neurogenesis in a Mouse Model of Alzheimer’s Disease. Brain Pathol 2016; 26(1): 62-74.
[http://dx.doi.org/10.1111/bpa.12255] [PMID: 25763997]
[142]
Zhang J, Guo Y, Wang Y, Song L, Zhang R, Du Y. Long-term treadmill exercise attenuates Aβ burdens and astrocyte activation in APP/PS1 mouse model of Alzheimer’s disease. Neurosci Lett 2018; 666: 70-7.
[http://dx.doi.org/10.1016/j.neulet.2017.12.025] [PMID: 29246793]
[143]
Garaschuk O, Verkhratsky A. GABAergic astrocytes in Alzheimer’s disease. Aging (Albany NY) 2019; 11(6): 1602-4.
[http://dx.doi.org/10.18632/aging.101870] [PMID: 30877782]
[144]
Yoon BE, Woo J, Chun YE, et al. Glial GABA, synthesized by monoamine oxidase B, mediates tonic inhibition. J Physiol 2014; 592(22): 4951-68.
[http://dx.doi.org/10.1113/jphysiol.2014.278754] [PMID: 25239459]
[145]
Nakamura S, Kawamata T, Akiguchi I, Kameyama M, Nakamura N, Kimura H. Expression of monoamine oxidase B activity in astrocytes of senile plaques. Acta Neuropathol 1990; 80(4): 419-25.
[http://dx.doi.org/10.1007/BF00307697] [PMID: 2239154]
[146]
Saura J, Luque JM, Cesura AM, et al. Increased monoamine oxidase B activity in plaque-associated astrocytes of Alzheimer brains revealed by quantitative enzyme radioautography. Neuroscience 1994; 62(1): 15-30.
[http://dx.doi.org/10.1016/0306-4522(94)90311-5] [PMID: 7816197]
[147]
Wu Z, Guo Z, Gearing M, Chen G. Tonic inhibition in dentate gyrus impairs long-term potentiation and memory in an Alzheimer’s [corrected] disease model. Nat Commun 2014; 5: 4159.
[http://dx.doi.org/10.1038/ncomms5159] [PMID: 24923909]
[148]
Sano M, Ernesto C, Thomas RG, et al. A controlled trial of selegiline, alpha-tocopherol, or both as treatment for Alzheimer’s disease. The Alzheimer’s Disease Cooperative Study. N Engl J Med 1997; 336(17): 1216-22.
[http://dx.doi.org/10.1056/NEJM199704243361704] [PMID: 9110909]
[149]
Wilcock GK, Birks J, Whitehead A, Evans SJ. The effect of selegiline in the treatment of people with Alzheimer’s disease: A meta-analysis of published trials. Int J Geriatr Psychiatry 2002; 17(2): 175-83.
[http://dx.doi.org/10.1002/gps.545] [PMID: 11813282]
[150]
Park JH, Ju YH, Choi JW, et al. Newly developed reversible MAO-B inhibitor circumvents the shortcomings of irreversible inhibitors in Alzheimer’s disease. Sci Adv 2019; 5(3): eaav0316.
[http://dx.doi.org/10.1126/sciadv.aav0316] [PMID: 30906861]
[151]
Han X, Chen M, Wang F, et al. Forebrain engraftment by human glial progenitor cells enhances synaptic plasticity and learning in adult mice. Cell Stem Cell 2013; 12(3): 342-53.
[http://dx.doi.org/10.1016/j.stem.2012.12.015] [PMID: 23472873]
[152]
Ager RR, Davis JL, Agazaryan A, et al. Human neural stem cells improve cognition and promote synaptic growth in two complementary transgenic models of Alzheimer’s disease and neuronal loss. Hippocampus 2015; 25(7): 813-26.
[http://dx.doi.org/10.1002/hipo.22405] [PMID: 25530343]
[153]
Pihlaja R, Koistinaho J, Malm T, Sikkilä H, Vainio S, Koistinaho M. Transplanted astrocytes internalize deposited beta-amyloid peptides in a transgenic mouse model of Alzheimer’s disease. Glia 2008; 56(2): 154-63.
[http://dx.doi.org/10.1002/glia.20599] [PMID: 18004725]
[154]
Hampton DW, Webber DJ, Bilican B, Goedert M, Spillantini MG, Chandran S. Cell-mediated neuroprotection in a mouse model of human tauopathy. J Neurosci 2010; 30(30): 9973-83.
[http://dx.doi.org/10.1523/JNEUROSCI.0834-10.2010] [PMID: 20668182]
[155]
Esposito G, Sarnelli G, Capoccia E, et al. Autologous transplantation of intestine-isolated glia cells improves neuropathology and restores cognitive deficits in β amyloid-induced neurodegeneration. Sci Rep 2016; 6: 22605.
[http://dx.doi.org/10.1038/srep22605] [PMID: 26940982]
[156]
Chun H, Lee CJ. Reactive astrocytes in Alzheimer’s disease: A double-edged sword. Neurosci Res 2018; 126: 44-52.
[http://dx.doi.org/10.1016/j.neures.2017.11.012] [PMID: 29225140]
[157]
Lananna BV, McKee CA, King MW, et al. Chi3l1/YKL-40 is controlled by the astrocyte circadian clock and regulates neuroinflammation and Alzheimer’s disease pathogenesis. Sci Transl Med 2020; 12(574): eaax3519.
[http://dx.doi.org/10.1126/scitranslmed.aax3519] [PMID: 33328329]
[158]
Yoo ID, Park MW, Cha HW, et al. Elevated CLOCK and BMAL1 Contribute to the Impairment of Aerobic Glycolysis from Astrocytes in Alzheimer’s Disease. Int J Mol Sci 2020; 21(21): 7862.
[http://dx.doi.org/10.3390/ijms21217862] [PMID: 33114015]
[159]
Lananna BV, Nadarajah CJ, Izumo M, et al. Cell-Autonomous Regulation of Astrocyte Activation by the Circadian Clock Protein BMAL1. Cell Rep 2018; 25(1): 1-9.e5.
[http://dx.doi.org/10.1016/j.celrep.2018.09.015] [PMID: 30282019]
[160]
Barca-Mayo O, Pons-Espinal M, Follert P, Armirotti A, Berdondini L, De Pietri Tonelli D. Astrocyte deletion of Bmal1 alters daily locomotor activity and cognitive functions via GABA signalling. Nat Commun 2017; 8: 14336.
[http://dx.doi.org/10.1038/ncomms14336] [PMID: 28186121]
[161]
Barca-Mayo O, Boender AJ, Armirotti A, De Pietri Tonelli D. Deletion of astrocytic BMAL1 results in metabolic imbalance and shorter lifespan in mice. Glia 2020; 68(6): 1131-47.
[http://dx.doi.org/10.1002/glia.23764] [PMID: 31833591]
[162]
Silva I, Silva J, Ferreira R, Trigo D. Glymphatic system, AQP4, and their implications in Alzheimer’s disease. Neurol Res Pract 2021; 3(1): 5.
[http://dx.doi.org/10.1186/s42466-021-00102-7] [PMID: 33499944]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy