Review Article

SARS-CoV-2 感染和分子治疗的分子见解

卷 22, 期 7, 2022

发表于: 07 January, 2022

页: [621 - 639] 页: 19

弟呕挨: 10.2174/1566524021666211013121831

价格: $65

摘要

2019 年 12 月出现的冠状病毒病 (COVID-19) 是由严重急性呼吸系统综合症相关的冠状病毒 2 (SARS-CoV-2) 引起的。它在全球范围内的迅速传播带来了国际卫生紧急情况和寻求有效预防和治疗的紧急反应。这导致迫切需要说明 SARS-CoV-2 的分子发病机制、分子靶标或受体的鉴定以及抗病毒药物、抗体和疫苗的开发。在这项研究中,我们调查了当前对抗 SARS-CoV-2 感染的研究进展。基于已发表的研究结果,我们首先在分子水平上阐明了 SARS-CoV-2 病毒结构、潜在的病毒宿主细胞入侵、致病机制、主要病毒诱导的免疫反应和新出现的 SARS-CoV-2 变体.然后,我们专注于主要的基于病毒和宿主的潜在靶标,并根据 COVID-19 的药物开发策略对有效抑制分子进行了总结和分类,这些策略可以指导新药的识别和这一问题疾病的治疗。还介绍和讨论了目前抗体和疫苗的研究和开发。我们得出的结论是,主要的病毒进入途径——SARS-CoV-2 刺突蛋白与 ACE2 受体的相互作用在指导 COVID-19 治疗方法的开发中发挥了关键作用。在开发分子疗法时可以考虑四种主要策略,在迫切需要抗病毒药物的如此短的时间内,药物再利用可能是一种简单、快速和低成本的方法。此外,抗体和候选疫苗的快速开发取得了可喜的成果,但安全有效的 COVID-19 疫苗的大规模部署对于解决大流行危机仍然至关重要。随着病毒新变种的出现,必须密切评估这些疫苗和治疗的功效。最后,我们讨论了开发 COVID-19 分子疗法可能面临的挑战,并提出了一些潜在的未来努力。尽管文献有限,我们在这项工作中尝试对当前的 SARS-CoV-2 研究提供一个相对全面的概述,这有助于快速获取 COVID-19 的关键信息,并进一步推动这项重要研究以控制和减少大流行。

关键词: SARS-CoV-2、COVID-19、病毒分子、潜在靶点、分子抑制剂、抗体、疫苗。

[1]
Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020; 579(7798): 270-3.
[http://dx.doi.org/10.1038/s41586-020-2012-7] [PMID: 32015507]
[2]
Bogoch II, Watts A, Thomas-Bachli A, Huber C, Kraemer MUG, Khan K. Pneumonia of unknown aetiology in Wuhan, China: potential for international spread via commercial air travel. J Travel Med 2020; 27(2): taaa008.
[http://dx.doi.org/10.1093/jtm/taaa008] [PMID: 31943059]
[3]
Baek YA-O, Um J, Antigua KJC, et al. Development of a reverse transcription-loop-mediated isothermal amplification as a rapid early-detection method for novel SARS-CoV-2. Emerg Microbes Infect 2020; 9(1): 998-1007.
[4]
Shang J, Ye G, Shi K, et al. Structural basis of receptor recognition by SARS-CoV-2. Nature 2020; 581(7807): 221-4.
[http://dx.doi.org/10.1038/s41586-020-2179-y] [PMID: 32225175]
[5]
Choy KT, Wong AY, Kaewpreedee P, et al. Remdesivir, lopinavir, emetine, and homoharringtonine inhibit SARS-CoV-2 replication in vitro. Antiviral Res 2020; 178: 104786.
[http://dx.doi.org/10.1016/j.antiviral.2020.104786] [PMID: 32251767]
[6]
Cao B, Wang Y, Wen D, et al. A trial of Lopinavir-Ritonavir in adults hospitalized with severe covid-19. N Engl J Med 2020; 382(19): 1787-99.
[http://dx.doi.org/10.1056/NEJMoa2001282] [PMID: 32187464]
[7]
Gallus S, Clavenna A, Lugo A. Does hydroxychloroquine reduce mortality for COVID-19? Eur J Intern Med 2020; 82: 21-2.
[http://dx.doi.org/10.1016/j.ejim.2020.10.015] [PMID: 33127218]
[8]
Di Perri G. The rationale for low-molecular weight heparin (LMWH) use in SARS-CoV-2 infection. Infez Med 2020; 28: 52-6. 1124-9390.
[9]
U.S., F.D.A. FDA approves first treatment for COVID-19. 2020.
[10]
Hung IF, Lung KC, Tso EY, et al. Triple combination of interferon beta-1b, lopinavir-ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: an open-label, randomised, phase 2 trial. Lancet 2020; 395(10238): 1695-704.
[http://dx.doi.org/10.1016/S0140-6736(20)31042-4] [PMID: 32401715]
[11]
Du L, He Y, Zhou Y, et al. The spike protein of SARS-CoV-a target for vaccine and therapeutic development. Nat Rev Microbiol 2009; 7(3): 226-36.
[12]
Wang F, Kream RM, Stefano GB. An evidence based perspective on mRNA-SARS-CoV-2 vaccine development. Med Sci Monit 2020; 26: e924700.
[http://dx.doi.org/10.12659/MSM.924700] [PMID: 32366816]
[13]
Liu M, Wang T, Zhou Y, Zhao Y, Zhang Y, Li J. Potential role of ACE2 in coronavirus disease 2019 (COVID-19) prevention and management. J Transl Int Med 2020; 8(1): 9-19.
[http://dx.doi.org/10.2478/jtim-2020-0003] [PMID: 32435607]
[14]
Lundstrom K. Coronavirus pandemic-therapy and vaccines. Biomedicines 2020; 8(5): E109.
[http://dx.doi.org/10.3390/biomedicines8050109] [PMID: 32375268]
[15]
Jiang S, Hillyer C, Du L. Neutralizing antibodies against SARS-CoV-2 and other human coronaviruses. Trends Immunol 2020; 41(5): 355-9.
[http://dx.doi.org/10.1016/j.it.2020.03.007] [PMID: 32249063]
[16]
Astuti I. Ysrafil. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): An overview of viral structure and host response. Diabetes Metab Syndr 2020; 14(4): 407-12.
[http://dx.doi.org/10.1016/j.dsx.2020.04.020] [PMID: 32335367]
[17]
Yoshimoto FA-O. The proteins of severe acute respiratory syndrome coronavirus-2 (SARS CoV-2 or n-COV19), the cause of COVID-19. Protein J 2020; 39: 1875-8355.
[18]
Wu A, Peng Y, Huang B, et al. Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell Host Microbe 2020; 27(3): 325-8.
[http://dx.doi.org/10.1016/j.chom.2020.02.001] [PMID: 32035028]
[19]
Kundu IG, Radharani NNV, Yadav AS, et al. SARS-CoV-2: Origin, pathogenesis and Therapeutic Interventions. Coronaviruses 2021; 2(7): 1-15.
[http://dx.doi.org/10.2174/2666796701999201209144207]
[20]
Finkel Y, Mizrahi O, Nachshon A, et al. The coding capacity of SARS-CoV-2. Nature 2021; 125-30.
[PMID: 32906143]
[21]
Kandeel M, Al-Nazawi M. Virtual screening and repurposing of FDA approved drugs against COVID-19 main protease. Life Sci 2020; 251: 117627.
[http://dx.doi.org/10.1016/j.lfs.2020.117627] [PMID: 32251634]
[22]
Zhou Y, Hou Y, Shen J, et al. Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2. Cell Discov 2020; 6: 14.
[http://dx.doi.org/10.1038/s41421-020-0153-3]
[23]
Huang Y, Yang C, Xu XF, Xu W, Liu SW. Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19. Acta Pharmacol Sin 2020; 41(9): 1141-9.
[http://dx.doi.org/10.1038/s41401-020-0485-4] [PMID: 32747721]
[24]
Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 2020; 181(2): 281-292.e6.
[http://dx.doi.org/10.1016/j.cell.2020.02.058] [PMID: 32155444]
[25]
Coutard B, Valle C, de Lamballerie X, Canard B, Seidah NG, Decroly E. The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade. Antiviral Res 2020; 176: 104742.
[http://dx.doi.org/10.1016/j.antiviral.2020.104742] [PMID: 32057769]
[26]
Tang T, Bidon M, Jaimes JA, Whittaker GR, Daniel S. Coronavirus membrane fusion mechanism offers a potential target for antiviral development. Antiviral Res 2020; 178: 104792.
[http://dx.doi.org/10.1016/j.antiviral.2020.104792] [PMID: 32272173]
[27]
Schoeman D, Fielding BC. Coronavirus envelope protein: current knowledge. Virol J 2019; 16(1): 69.
[http://dx.doi.org/10.1186/s12985-019-1182-0] [PMID: 31133031]
[28]
Sarkar M, Saha S. Structural insight into the role of novel SARS-CoV-2 E protein: A potential target for vaccine development and other therapeutic strategies. PLoS One 2020; 15(8): e0237300.
[http://dx.doi.org/10.1371/journal.pone.0237300] [PMID: 32785274]
[29]
Neuman BW, Kiss G, Kunding AH, et al. A structural analysis of M protein in coronavirus assembly and morphology. J Struct Biol 2011; 174(1): 11-22.
[http://dx.doi.org/10.1016/j.jsb.2010.11.021] [PMID: 21130884]
[30]
Bianchi M, Benvenuto D, Giovanetti M, Angeletti S, Ciccozzi M, Pascarella S. Sars-CoV-2 envelope and membrane proteins: Structural differences linked to virus characteristics? BioMed Res Int 2020; 2020: 4389089.
[http://dx.doi.org/10.1155/2020/4389089] [PMID: 32596311]
[31]
Chang CK, Sue SC, Yu TH, et al. Modular organization of SARS coronavirus nucleocapsid protein. J Biomed Sci 2006; 13(1): 59-72.
[http://dx.doi.org/10.1007/s11373-005-9035-9] [PMID: 16228284]
[32]
Chellapandi P, Saranya S. Genomics insights of SARS-CoV- 2 (COVID-19) into target-based drug discovery. Medicinal chemistry research : an international journal for rapid communications on design and mechanisms of action of biologically active agents 2020; 1-15.
[33]
Schubert K, Karousis ED, Jomaa A, et al. Author correction: SARS-CoV-2 Nsp1 binds the ribosomal mRNA channel to inhibit translation. Nat Struct Mol Biol 2020; 27(11): 1094.
[http://dx.doi.org/10.1038/s41594-020-00533-x] [PMID: 33082564]
[34]
Davies JP, Almasy KM, Donald EFM, et al. Comparative multiplexed interactomics of SARS-CoV-2 and homologous coronavirus non-structural proteins identifies unique and shared host-cell dependencies. bioRxiv 2020.
[http://dx.doi.org/10.1101/2020.07.13.201517]
[35]
Littler DR, Gully BS, Colson RN, Rossjohn J. Crystal structure of the SARS-CoV-2 non-structural protein 9, Nsp9. iScience 2020; 23(7): 101258.
[http://dx.doi.org/10.1016/j.isci.2020.101258] [PMID: 32592996]
[36]
Wu C, Liu Y, Yang Y, et al. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm Sin B 2020; 10(5): 766-88.
[http://dx.doi.org/10.1016/j.apsb.2020.02.008] [PMID: 32292689]
[37]
Khailany RA, Safdar M, Ozaslan M. Genomic characterization of a novel SARS-CoV-2. Gene Rep 2020; 19: 100682.
[http://dx.doi.org/10.1016/j.genrep.2020.100682] [PMID: 32300673]
[38]
Michel CJ, Mayer C, Poch O, Thompson JD. Characterization of accessory genes in coronavirus genomes. Virol J 2020; 17(1): 131.
[http://dx.doi.org/10.1186/s12985-020-01402-1] [PMID: 32854725]
[39]
Fahmi M, Kubota Y, Ito M. Nonstructural proteins NS7b and NS8 are likely to be phylogenetically associated with evolution of 2019-nCoV. Infect Genet Evol 2020; 81: 1567-7257.
[40]
Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 2020; 395(10224): 565-74.
[http://dx.doi.org/10.1016/S0140-6736(20)30251-8] [PMID: 32007145]
[41]
Qi F, Qian S, Zhang S, Zhang Z. Single cell RNA sequencing of 13 human tissues identify cell types and receptors of human coronaviruses. Biochem Biophys Res Commun 2020; 526(1): 135-40.
[http://dx.doi.org/10.1016/j.bbrc.2020.03.044] [PMID: 32199615]
[42]
Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020; 181(2): 271-280.e8.
[http://dx.doi.org/10.1016/j.cell.2020.02.052] [PMID: 32142651]
[43]
Chen Y, Liu Q, Guo D. Emerging coronaviruses: Genome structure, replication, and pathogenesis. J Med Virol 2020; 92(4): 418-23.
[http://dx.doi.org/10.1002/jmv.25681] [PMID: 31967327]
[44]
Jin Z, Zhao Y, Sun Y, et al. Structural basis for the inhibition of SARS-CoV-2 main protease by antineoplastic drug carmofur. Nat Struct Mol Biol 2020; 27(6): 529-32.
[http://dx.doi.org/10.1038/s41594-020-0440-6] [PMID: 32382072]
[45]
Shin D, Mukherjee R, Grewe D, et al. Papain-like protease regulates SARS-CoV-2 viral spread and innate immunity. Nature 2020; 587(7835): 657-62.
[http://dx.doi.org/10.1038/s41586-020-2601-5] [PMID: 32726803]
[46]
He J, Tao H, Yan Y, Huang SY, Xiao Y. Molecular mechanism of evolution and human infection with SARS-CoV-2. Viruses 2020; 12(4): E428.
[http://dx.doi.org/10.3390/v12040428] [PMID: 32290077]
[47]
Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science 2020; 367(6485): 1444-8.
[http://dx.doi.org/10.1126/science.abb2762] [PMID: 32132184]
[48]
Hoffmann M, Schroeder S, Kleine-Weber H, Müller MA, Drosten C, Pöhlmann S. Nafamostat mesylate blocks activation of SARS-CoV-2: New treatment option for COVID-19. Antimicrob Agents Chemother 2020; 64(6): e00754-20.
[http://dx.doi.org/10.1128/AAC.00754-20] [PMID: 32312781]
[49]
Wan Y, Shang J, Graham R, Baric RS, Li F. Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus. J Virol 2020; 94(7): e00127-20.
[http://dx.doi.org/10.1128/JVI.00127-20] [PMID: 31996437]
[50]
Wrapp D, Wang N, Corbett KS, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 2020; 367(6483): 1260-3.
[http://dx.doi.org/10.1126/science.abb2507] [PMID: 32075877]
[51]
Xu X, Chen P, Wang J, et al. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Sci China Life Sci 2020; 63(3): 457-60.
[http://dx.doi.org/10.1007/s11427-020-1637-5] [PMID: 32009228]
[52]
Evans JP, Liu SL. Role of host factors in SARS-CoV-2 entry. J Biol Chem 2021; 297(1): 100847.
[http://dx.doi.org/10.1016/j.jbc.2021.100847] [PMID: 34058196]
[53]
Povlow A, Auerbach AJ. Acute cerebellar ataxia in COVID-19 infection: A case report. J Emerg Med 2020.
[http://dx.doi.org/10.1016/j.jemermed.2020.10.010] [PMID: 33208227]
[54]
Wang K, Chen W, Zhang Z, et al. CD147-spike protein is a novel route for SARS-CoV-2 infection to host cells. Signal Transduct Target Ther 2020; 5(1): 283.
[http://dx.doi.org/10.1038/s41392-020-00426-x] [PMID: 33277466]
[55]
Hussein HA, Walker LR, Abdel-Raouf UM, Desouky SA, Montasser AK, Akula SM. Beyond RGD: virus interactions with integrins. Arch Virol 2015; 160(11): 2669-81.
[http://dx.doi.org/10.1007/s00705-015-2579-8] [PMID: 26321473]
[56]
Sigrist CJ, Bridge A, Le Mercier P. A potential role for integrins in host cell entry by SARS-CoV-2. Antiviral Res 2020; 177: 104759.
[http://dx.doi.org/10.1016/j.antiviral.2020.104759] [PMID: 32130973]
[57]
Beddingfield BJ, Iwanaga N, Chapagain PP, et al. The integrin binding peptide, ATN-161, as a novel therapy for SARS-CoV-2 infection. JACC Basic Transl Sci 2021; 6(1): 1-8.
[http://dx.doi.org/10.1016/j.jacbts.2020.10.003]
[58]
Clarke NE, Fisher MJ, Porter KE, Lambert DW, Turner AJ. Angiotensin converting enzyme (ACE) and ACE2 bind integrins and ACE2 regulates integrin signalling. PLoS One 2012; 7(4): e34747.
[http://dx.doi.org/10.1371/journal.pone.0034747] [PMID: 22523556]
[59]
Lin Q, Keller RS, Weaver B, Zisman LS. Interaction of ACE2 and integrin beta1 in failing human heart. Biochim Biophys Acta 2004; 1689(3): 175-8.
[http://dx.doi.org/10.1016/j.bbadis.2004.05.005] [PMID: 15276642]
[60]
Plosa EJ, Benjamin JT, Sucre JM, et al. β1 Integrin regulates adult lung alveolar epithelial cell inflammation. JCI Insight 2020; 5(2): 129259.
[http://dx.doi.org/10.1172/jci.insight.129259] [PMID: 31873073]
[61]
Costela-Ruiz VJ, Illescas-Montes R, Puerta-Puerta JM, Ruiz C, Melguizo-Rodríguez L. SARS-CoV-2 infection: The role of cytokines in COVID-19 disease. Cytokine Growth Factor Rev 2020; 54: 62-75.
[http://dx.doi.org/10.1016/j.cytogfr.2020.06.001] [PMID: 32513566]
[62]
Kumar S, Nyodu R, Maurya VK, et al. Host immune response and immunobiology of human SARS-CoV-2 infection. Springer Singapore 2020; pp. 43-53.
[http://dx.doi.org/10.1007/978-981-15-4814-7_5]
[63]
Cox RJ, Brokstad KA. Not just antibodies: B cells and T cells mediate immunity to COVID-19. Nat Rev Immunol 2020; 20: 1474-741. [Electronic]
[64]
Kikkert M. Innate immune evasion by human respiratory RNA viruses. J Innate Immun 2020; 12(1): 4-20.
[http://dx.doi.org/10.1159/000503030] [PMID: 31610541]
[65]
Li X, Geng M, Peng Y, Meng L, Lu S. Molecular immune pathogenesis and diagnosis of COVID-19. J Pharm Anal 2020; 10(2): 102-8.
[http://dx.doi.org/10.1016/j.jpha.2020.03.001] [PMID: 32282863]
[66]
Kasuga Y, Zhu B, Jang KJ, Yoo JS. Innate immune sensing of coronavirus and viral evasion strategies. Exp Mol Med 2021; 53(5): 723-36.
[http://dx.doi.org/10.1038/s12276-021-00602-1] [PMID: 33953325]
[67]
Yazdanpanah F, Hamblin MR, Rezaei N. The immune system and COVID-19: Friend or foe? Life Sci 2020; 256: 117900.
[http://dx.doi.org/10.1016/j.lfs.2020.117900] [PMID: 32502542]
[68]
Dai W, Zhang B, Jiang XM, et al. Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease. Science 2020; 368(6497): 1331-5.
[http://dx.doi.org/10.1126/science.abb4489] [PMID: 32321856]
[69]
Ngo ST, Quynh Anh Pham N, Thi Le L, Pham DH, Vu VV. Computational determination of potential inhibitors of SARS-CoV-2 main protease. J Chem Inf Model 2020; 60(12): 5771-80.
[http://dx.doi.org/10.1021/acs.jcim.0c00491] [PMID: 32530282]
[70]
Rosa SGV, Santos WC. Clinical trials on drug repositioning for COVID-19 treatment. Rev Panam Salud Publica 2020; 44: e40.
[http://dx.doi.org/10.26633/RPSP.2020.40] [PMID: 32256547]
[71]
D’Ardes D, Boccatonda A, Rossi I, et al. COVID-19 and RAS: Unravelling an unclear relationship. Int J Mol Sci 2020; 21(8): E3003.
[http://dx.doi.org/10.3390/ijms21083003] [PMID: 32344526]
[72]
Lan J, Ge J, Yu J, et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 2020; 581(7807): 215-20.
[http://dx.doi.org/10.1038/s41586-020-2180-5] [PMID: 32225176]
[73]
Wu K, Peng G, Wilken M, Geraghty RJ, Li F. Mechanisms of host receptor adaptation by severe acute respiratory syndrome coronavirus. J Biol Chem 2012; 287(12): 8904-11.
[http://dx.doi.org/10.1074/jbc.M111.325803] [PMID: 22291007]
[74]
Yang XH, Deng W, Tong Z, et al. Mice transgenic for human angiotensin-converting enzyme 2 provide a model for SARS coronavirus infection. Comp Med 2007; 57(5): 450-9.
[PMID: 17974127]
[75]
Reynolds HR, Adhikari S, Pulgarin C, et al. Renin-angiotensin-aldosterone system inhibitors and risk of covid-19. N Engl J Med 2020; 382(25): 2441-8.
[http://dx.doi.org/10.1056/NEJMoa2008975] [PMID: 32356628]
[76]
Messerli FH, et al. Angiotensin-converting enzyme inhibitors in hypertension: To use or not to use? J Am Coll Cardiol 2018; 71: 1474-82. 1558-3597.
[77]
Hippisley-Cox J, Young D, Coupland C, et al. Risk of severe COVID-19 disease with ACE inhibitors and angiotensin receptor blockers: cohort study including 8.3 million people. Heart 2020; 106(19): 1503-11.
[http://dx.doi.org/10.1136/heartjnl-2020-317393] [PMID: 32737124]
[78]
Singh J, Rahman SA, Ehtesham NZ, Hira S, Hasnain SE. SARS-CoV-2 variants of concern are emerging in India. Nat Med 2021.
[http://dx.doi.org/10.1038/s41591-021-01397-4] [PMID: 34045737]
[79]
Wang P, Nair MS, Liu L, et al. Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7. Nature 2021; 593(7857): 130-5.
[http://dx.doi.org/10.1038/s41586-021-03398-2] [PMID: 33684923]
[80]
Galloway SE, Paul P, MacCannell DR, et al. Emergence of SARS-CoV-2 B.1.1.7 Lineage - United States, December 29, 2020-January 12, 2021. MMWR Morb Mortal Wkly Rep 2021; 70(3): 95-9.
[http://dx.doi.org/10.15585/mmwr.mm7003e2] [PMID: 33476315]
[81]
Kemp SA, Meng B. ATM Ferriera I, et al. Recurrent emergence and transmission of a SARS-CoV-2 spike deletion H69/V70. bioRxiv 2021.
[82]
Sasaki M, Uemura K, Sato A, et al. SARS-CoV-2 variants with mutations at the S1/S2 cleavage site are generated in vitro during propagation in TMPRSS2-deficient cells. PLoS Pathog 2021; 17(1): e1009233.
[http://dx.doi.org/10.1371/journal.ppat.1009233] [PMID: 33476327]
[83]
Wu K, Werner AP, Moliva JI, et al. mRNA-1273 vaccine induces neutralizing antibodies against spike mutants from global SARS-CoV-2 variants. bioRxiv 2021.
[84]
Davies NG, Jarvis CI, Edmunds WJ, Jewell NP, Diaz-Ordaz K, Keogh RH. Increased mortality in community-tested cases of SARS-CoV-2 lineage B.1.1.7. Nature 2021; 593(7858): 270-4.
[http://dx.doi.org/10.1038/s41586-021-03426-1] [PMID: 33723411]
[85]
Planas D, Bruel T, Grzelak L, et al. Sensitivity of infectious SARS-CoV-2 B.1.1.7 and B.1.351 variants to neutralizing antibodies. Nat Med 2021; 27(5): 917-24.
[http://dx.doi.org/10.1038/s41591-021-01318-5] [PMID: 33772244]
[86]
Khan A, Zia T, Suleman M, et al. Higher infectivity of the SARS-CoV-2 new variants is associated with K417N/T, E484K, and N501Y mutants: An insight from structural data. J Cell Physiol 2021; 236(10): 7045-57.
[http://dx.doi.org/10.1002/jcp.30367] [PMID: 33755190]
[87]
Mwenda M, Saasa N, Sinyange N, et al. Detection of B.1.351 SARS-CoV-2 variant strain - Zambia, December 2020. MMWR Morb Mortal Wkly Rep 2021; 70(8): 280-2.
[http://dx.doi.org/10.15585/mmwr.mm7008e2] [PMID: 33630820]
[88]
Feder KA, Pearlowitz M, Goode A, et al. Linked clusters of SARS-CoV-2 variant B.1.351 - Maryland, January-February 2021. MMWR Morb Mortal Wkly Rep 2021; 70(17): 627-31.
[http://dx.doi.org/10.15585/mmwr.mm7017a5] [PMID: 33914724]
[89]
Weisblum Y, Schmidt F, Zhang F, et al. Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants. eLife 2020; 9: 9.
[http://dx.doi.org/10.7554/eLife.61312] [PMID: 33112236]
[90]
Abu-Raddad LJ, Chemaitelly H, Butt AA. Effectiveness of the BNT162b2 covid-19 vaccine against the B.1.1.7 and B.1.351 variants. N Engl J Med 2021; 385(2): 187-9.
[http://dx.doi.org/10.1056/NEJMc2104974] [PMID: 33951357]
[91]
Naveca FG, Nascimento V, de Souza VC, et al. COVID-19 in Amazonas, Brazil, was driven by the persistence of endemic lineages and P.1 emergence. Nat Med 2021; 27(7): 1230-8.
[http://dx.doi.org/10.1038/s41591-021-01378-7] [PMID: 34035535]
[92]
Hirotsu Y, Omata M. Discovery of a SARS-CoV-2 variant from the P.1 lineage harboring K417T/E484K/N501Y mutations in Kofu, Japan. J Infect 2021; 82(6): 276-316.
[http://dx.doi.org/10.1016/j.jinf.2021.03.013] [PMID: 33766552]
[93]
Firestone MJ, Lorentz AJ, Meyer S, et al. First identified cases of SARS-CoV-2 variant P.1 in the United States - Minnesota, January 2021. MMWR Morb Mortal Wkly Rep 2021; 70(10): 346-7.
[http://dx.doi.org/10.15585/mmwr.mm7010e1] [PMID: 33705367]
[94]
Gupta RK. Will SARS-CoV-2 variants of concern affect the promise of vaccines? Nat Rev Immunol 2021; 21(6): 340-1.
[http://dx.doi.org/10.1038/s41577-021-00556-5] [PMID: 33927376]
[95]
Silva A, Xiao W, Wang Y, et al. Structure-activity relationship of RGD-containing cyclic octapeptide and αvβ3 integrin allows for rapid identification of a new peptide antagonist. Int J Mol Sci 2020; 21(9): E3076.
[http://dx.doi.org/10.3390/ijms21093076] [PMID: 32349271]
[96]
Shahverdi M, Darvish M. Therapeutic measures for the novel coronavirus: A review of current status and future perspective. Curr Mol Med 2020; 21(7): 562-72.
[PMID: 33272178]
[97]
Priyanka S, Manoj Kumar R, Vidya PW. SARS-CoV-2 and its predicted potential natural inhibitors: A review and perspective. Coronaviruses 2021; 2(5): 7-20.
[http://dx.doi.org/10.2174/2666796701999200831105801]
[98]
Li Z, Yang L, et al. Discovery of potential drugs for COVID-19 based on the connectivity map. Research Square 2020.
[http://dx.doi.org/10.21203/rs.2.24684/v1]
[99]
Senger MR, Evangelista TCS, Dantas RF, et al. COVID-19: molecular targets, drug repurposing and new avenues for drug discovery. Mem Inst Oswaldo Cruz 2020; 115: e200254.
[http://dx.doi.org/10.1590/0074-02760200254] [PMID: 33027420]
[100]
Devaux CA, Rolain JM, Colson P, et al. New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19? Int J Antimicrob Agents 2020; 55: 1872-7913.
[101]
Li G, De Clercq E. Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nat Rev Drug Discov 2020; 19(3): 149-50.
[http://dx.doi.org/10.1038/d41573-020-00016-0] [PMID: 32127666]
[102]
Sathyamoorthy N, Chintamaneni PK, Chinni S. Plausible role of combination of Chlorpromazine hydrochloride and Teicoplanin against COVID-19. Med Hypotheses 2020; 144: 110011.
[http://dx.doi.org/10.1016/j.mehy.2020.110011] [PMID: 32593831]
[103]
Baron SA, Devaux C, Colson P, Raoult D, Rolain JM. Teicoplanin: an alternative drug for the treatment of COVID-19? Int J Antimicrob Agents 2020; 55(4): 105944.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105944] [PMID: 32179150]
[104]
Xia S, Liu M, Wang C, et al. Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion. Cell Res 2020; 30(4): 343-55.
[http://dx.doi.org/10.1038/s41422-020-0305-x] [PMID: 32231345]
[105]
Decker JS, Menacho-Melgar R, Lynch MD. Low-cost, large-scale production of the anti-viral lectin griffithsin. Front Bioeng Biotechnol 2020; 8: 1020.
[http://dx.doi.org/10.3389/fbioe.2020.01020] [PMID: 32974328]
[106]
Gupta MA-O, Vemula S, Donde R, et al. In-silico approaches to detect inhibitors of the human severe acute respiratory syndrome coronavirus envelope protein ion channel. J Biomed Sci 2020; 15: 1538-0254.
[107]
de Lima Menezes G, da Silva RA. Identification of potential drugs against SARS-CoV-2 non-structural protein 1 (nsp1). J Biomol Struct Dyn 2020; 1-11.
[http://dx.doi.org/10.1080/07391102.2020.1792992] [PMID: 32657643]
[108]
Shah B, Modi P, Sagar SR. In silico studies on therapeutic agents for COVID-19: Drug repurposing approach. Life Sci 2020; 252: 117652.
[http://dx.doi.org/10.1016/j.lfs.2020.117652] [PMID: 32278693]
[109]
Matsuyama S, Kawase M, Nao N, et al. The inhaled steroid ciclesonide blocks SARS-CoV-2 RNA replication by targeting the viral replication-transcription complex in cultured cells. J Virol 2020; 95(1): e01648-20.
[http://dx.doi.org/10.1128/JVI.01648-20] [PMID: 33055254]
[110]
Tazikeh-Lemeski E, Moradi S, Raoufi R, Shahlaei M, Janlou MAM, Zolghadri S. Targeting SARS-COV-2 non-structural protein 16: a virtual drug repurposing study. J Biomol Struct Dyn 2020; 1-14.
[http://dx.doi.org/10.1080/07391102.2020.1779133] [PMID: 32573355]
[111]
Wang M, Cao R, Zhang L, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res 2020; 30(3): 269-71.
[http://dx.doi.org/10.1038/s41422-020-0282-0] [PMID: 32020029]
[112]
Pizzorno A, Padey B, Dubois J, et al. In vitro evaluation of antiviral activity of single and combined repurposable drugs against SARS-CoV-2. Antiviral Res 2020; 181: 104878.
[http://dx.doi.org/10.1016/j.antiviral.2020.104878] [PMID: 32679055]
[113]
Shannon A, Selisko B, Le NT, et al. Rapid incorporation of Favipiravir by the fast and permissive viral RNA polymerase complex results in SARS-CoV-2 lethal mutagenesis. Nat Commun 2020; 11(1): 4682.
[http://dx.doi.org/10.1038/s41467-020-18463-z] [PMID: 32943628]
[114]
Aranda-Abreu GE. Response to: Amantadine, COVID-19 and parkinsonism. Arch Med Res 2020; 51: 1873-5487.
[115]
Zhang L, Lin D, Kusov Y, et al. α-ketoamides as broad-spectrum inhibitors of coronavirus and enterovirus replication: Structure-based design, synthesis, and activity assessment. J Med Chem 2020; 63(9): 4562-78.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01828] [PMID: 32045235]
[116]
Zhang L, Lin D, Sun X, et al. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science 2020; 368(6489): 409-12.
[http://dx.doi.org/10.1126/science.abb3405] [PMID: 32198291]
[117]
Xu Z, et al. Nelfinavir was predicted to be a potential inhibitor of 2019-nCov main protease by an integrative approach combining homology modelling, molecular docking and binding free energy calculation. Cold Spring Harbor Laboratory 2020.
[http://dx.doi.org/10.1101/2020.01.27.921627]
[118]
Liu X, Wang XJ. Potential inhibitors against 2019-nCoV coronavirus M protease from clinically approved medicines. J Genet Genomics 2020; 47(2): 119-21.
[http://dx.doi.org/10.1016/j.jgg.2020.02.001] [PMID: 32173287]
[119]
Wang J. Fast identification of possible drug treatment of coronavirus disease-19 (COVID-19) through computational drug repurposing study. J Chem Inf Model 2020; 60(6): 3277-86.
[http://dx.doi.org/10.1021/acs.jcim.0c00179] [PMID: 32315171]
[120]
Adem S, et al. Identification of potent COVID-19 main protease (Mpro) inhibitors from natural polyphenols: An in silico strategy unveils a hope against corona. MDPI AG 2020.
[121]
Narkhede RR, Pise AV, Cheke RS, Shinde SD. Recognition of natural products as potential inhibitors of covid-19 main protease (Mpro): In-silico evidences. Nat Prod Bioprospect 2020; 10(5): 297-306.
[http://dx.doi.org/10.1007/s13659-020-00253-1] [PMID: 32557405]
[122]
Hall DC Jr, Ji HF. A search for medications to treat COVID-19 viain silico molecular docking models of the SARS-CoV-2 spike glycoprotein and 3CL protease. Travel Med Infect Dis 2020; 35: 1873-0442.
[123]
Chatterjee S, Maity A, Chowdhury S, Islam MA, Muttinini RK, Sen D. In silico analysis and identification of promising hits against 2019 novel coronavirus 3C-like main protease enzyme. J Biomol Struct Dyn 2020; 1-14.
[PMID: 32608329]
[124]
Hattori SI, Higashi-Kuwata N, Hayashi H, et al. A small molecule compound with an indole moiety inhibits the main protease of SARS-CoV-2 and blocks virus replication. Nat Commun 2021; 12(1): 668.
[http://dx.doi.org/10.1038/s41467-021-20900-6] [PMID: 33510133]
[125]
Vatansever EC, Yang KS, Drelich AK, et al. Bepridil is potent against SARS-CoV-2 in vitro. Proc Natl Acad Sci USA 2021; 118(10): e2012201118.
[http://dx.doi.org/10.1073/pnas.2012201118] [PMID: 33597253]
[126]
Petushkova AI, Zamyatnin AA Jr. Papain-like proteases as coronaviral drug targets: Current inhibitors, opportunities, and limitations. Pharmaceuticals (Basel) 2020; 13(10): 277.
[http://dx.doi.org/10.3390/ph13100277] [PMID: 32998368]
[127]
Weisberg E, Parent A, Yang PL, et al. Repurposing of kinase inhibitors for treatment of COVID-19. Pharm Res 2020; 37(9): 167.
[http://dx.doi.org/10.1007/s11095-020-02851-7] [PMID: 32778962]
[128]
Xu J, Shi PY, Li H, Zhou J. Broad spectrum antiviral agent niclosamide and its therapeutic potential. ACS Infect Dis 2020; 6(5): 909-15.
[http://dx.doi.org/10.1021/acsinfecdis.0c00052] [PMID: 32125140]
[129]
Del Amo J, Polo R, Moreno S, et al. Incidence and severity of COVID-19 in HIV-positive persons receiving antiretroviral therapy: A cohort study. Ann Intern Med 2020; 173(7): 536-41.
[http://dx.doi.org/10.7326/M20-3689] [PMID: 32589451]
[130]
Dastan F, et al. Thalidomide against coronavirus disease 2019 (COVID-19): A medicine with a thousand faces. Iran J Pharm Res 2020; 19: 1735-0328.
[131]
Xu X, Han M, Li T, et al. Effective treatment of severe COVID-19 patients with tocilizumab. Proc Natl Acad Sci USA 2020; 117(20): 10970-5.
[http://dx.doi.org/10.1073/pnas.2005615117] [PMID: 32350134]
[132]
Harrison C. Coronavirus puts drug repurposing on the fast track. Nat Biotechnol 2020; 38(4): 379-81.
[http://dx.doi.org/10.1038/d41587-020-00003-1] [PMID: 32205870]
[133]
Mahmoud DB, Shitu Z, Mostafa A. Drug repurposing of nitazoxanide: can it be an effective therapy for COVID-19? J Genet Eng Biotechnol 2020; 18(1): 35.
[http://dx.doi.org/10.1186/s43141-020-00055-5] [PMID: 32725286]
[134]
Xia S, Yan L, Xu W, et al. A pan-coronavirus fusion inhibitor targeting the HR1 domain of human coronavirus spike. Sci Adv 2019; 5(4): eaav4580.
[http://dx.doi.org/10.1126/sciadv.aav4580] [PMID: 30989115]
[135]
O’Keefe BR, Giomarelli B, Barnard DL, et al. Broad-spectrum in vitro activity and in vivo efficacy of the antiviral protein griffithsin against emerging viruses of the family Coronaviridae. J Virol 2010; 84(5): 2511-21.
[http://dx.doi.org/10.1128/JVI.02322-09] [PMID: 20032190]
[136]
Wang Y, Anirudhan V, Du R, Cui Q, Rong L. RNA-dependent RNA polymerase of SARS-CoV-2 as a therapeutic target. J Med Virol 2021; 93(1): 300-10.
[http://dx.doi.org/10.1002/jmv.26264] [PMID: 32633831]
[137]
Warren TK, Jordan R, Lo MK, et al. Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys. Nature 2016; 531(7594): 381-5.
[http://dx.doi.org/10.1038/nature17180] [PMID: 26934220]
[138]
Tchesnokov EP, Feng JY, Porter DP, Götte M. Mechanism of inhibition of ebola virus RNA-dependent RNA polymerase by Remdesivir. Viruses 2019; 11(4): E326.
[http://dx.doi.org/10.3390/v11040326] [PMID: 30987343]
[139]
Yin W, Mao C, Luan X, et al. Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir. Science 2020; 368(6498): 1499-504.
[http://dx.doi.org/10.1126/science.abc1560] [PMID: 32358203]
[140]
Beigel JH, Tomashek KM, Dodd LE. Remdesivir for the treatment of covid-19 - preliminary report. Reply N Engl J Med 2020; 383(10): 994.
[PMID: 32649078]
[141]
Westover JB, Mathis A, Taylor R, et al. Galidesivir limits Rift Valley fever virus infection and disease in Syrian golden hamsters. Antiviral Res 2018; 156: 38-45.
[http://dx.doi.org/10.1016/j.antiviral.2018.05.013] [PMID: 29864447]
[142]
Du YX, Chen XP. Favipiravir: Pharmacokinetics and concerns about clinical trials for 2019-nCoV infection. Clin Pharmacol Ther 2020; 108(2): 242-7.
[http://dx.doi.org/10.1002/cpt.1844] [PMID: 32246834]
[143]
Celik I, Erol M, Duzgun Z. In silico evaluation of potential inhibitory activity of remdesivir, favipiravir, ribavirin and galidesivir active forms on SARS-CoV-2 RNA polymerase. Mol Divers 2021; 1-14.
[PMID: 33765239]
[144]
Ueda M, Tanimoto T, Murayama A, Ozaki A, Kami M. Japan’s drug regulation during the COVID-19 pandemic: Lessons from a case study of Favipiravir. Clin Pharmacol Ther 2021.
[http://dx.doi.org/10.1002/cpt.2251] [PMID: 33882157]
[145]
Warowicka A, Nawrot R, Goździcka-Józefiak A. Antiviral activity of berberine. Arch Virol 2020; 165(9): 1935-45.
[http://dx.doi.org/10.1007/s00705-020-04706-3] [PMID: 32594322]
[146]
Liu W, Zhang X, Liu P, et al. Effects of berberine on matrix accumulation and NF-kappa B signal pathway in alloxan-induced diabetic mice with renal injury. Eur J Pharmacol 2010; 638(1-3): 150-5.
[http://dx.doi.org/10.1016/j.ejphar.2010.04.033] [PMID: 20447389]
[147]
Kim H-Y, Shin HS, Park H, et al. in vitro inhibition of coronavirus replications by the traditionally used medicinal herbal extracts, Cimicifuga rhizoma, Meliae cortex, Coptidis rhizoma, and Phellodendron cortex. J Clin Virol 2008; 41(2): 122-8.
[http://dx.doi.org/10.1016/j.jcv.2007.10.011] [PMID: 18036887]
[148]
Vitte J, Michel M, Mezouar S, et al. Immune modulation as a therapeutic option during the SARS-CoV-2 outbreak: The case for antimalarial aminoquinolines. Front Immunol 2020; 11: 2159.
[http://dx.doi.org/10.3389/fimmu.2020.02159] [PMID: 32983179]
[149]
Zhong J, Tang J, Ye C, Dong L. The immunology of COVID-19: is immune modulation an option for treatment? Lancet Rheumatol 2020; 2(7): e428-36.
[http://dx.doi.org/10.1016/S2665-9913(20)30120-X] [PMID: 32835246]
[150]
Liu J, Cao R, Xu M, et al. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discov 2020; 6(1): 16.
[http://dx.doi.org/10.1038/s41421-020-0156-0] [PMID: 33731711]
[151]
Patil VM, Singhal S, Masand N. A systematic review on use of aminoquinolines for the therapeutic management of COVID-19: Efficacy, safety and clinical trials. Life Sci 2020; 254: 117775.
[http://dx.doi.org/10.1016/j.lfs.2020.117775] [PMID: 32418894]
[152]
Rodriguez-Valero N, Vera I, Torralvo MR, et al. Malaria prophylaxis approach during COVID-19 pandemic. Travel Med Infect Dis 2020; 38: 101716.
[http://dx.doi.org/10.1016/j.tmaid.2020.101716] [PMID: 32360423]
[153]
COVID-19 RISK and Treatments (CORIST) Collaboration. Use of hydroxychloroquine in hospitalised COVID-19 patients is associated with reduced mortality: Findings from the observational multicentre Italian CORIST study. Eur J Intern Med 2020; 82: 38-47.
[http://dx.doi.org/10.1016/j.ejim.2020.08.019] [PMID: 32859477]
[154]
Saleh M, Gabriels J, Chang D, et al. Effect of chloroquine, hydroxychloroquine, and azithromycin on the corrected QT interval in patients with SARS-CoV-2 infection. Circ Arrhythm Electrophysiol 2020; 13(6): e008662.
[http://dx.doi.org/10.1161/CIRCEP.120.008662] [PMID: 32347743]
[155]
Fihn SD, Perencevich E, Bradley SM. Caution needed on the use of chloroquine and hydroxychloroquine for coronavirus disease 2019 pp. 2574-3805.
[156]
Gautret P, Lagier JC, Parola P, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents 2020; 56(1): 105949.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105949] [PMID: 32205204]
[157]
Bosseboeuf E, et al. Azithromycin inhibits the replication of Zika virus. J Antivir Antiretrovir 2018; 10(1): 6-11.
[http://dx.doi.org/10.4172/1948-5964.1000173]
[158]
Sisk JM, Frieman MB, Machamer CE. Coronavirus S protein-induced fusion is blocked prior to hemifusion by Abl kinase inhibitors. J Gen Virol 2018; 99(5): 619-30.
[http://dx.doi.org/10.1099/jgv.0.001047] [PMID: 29557770]
[159]
Weston S, Coleman CM, Haupt R, et al. Broad anti-coronavirus activity of food and drug administration-approved drugs against SARS-CoV-2 in vitro and SARS-CoV in vivo. J Virol 2020; 94(21): e01218-20.
[http://dx.doi.org/10.1128/JVI.01218-20] [PMID: 32817221]
[160]
Richardson P, Griffin I, Tucker C, et al. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. Lancet 2020; 395(10223): e30-1.
[http://dx.doi.org/10.1016/S0140-6736(20)30304-4] [PMID: 32032529]
[161]
Jeon S, Ko M, Lee J, et al. Identification of antiviral drug candidates against SARS-CoV-2 from FDA-approved drugs. Antimicrob Agents Chemother 2020; 64(7): e00819-20.
[http://dx.doi.org/10.1128/AAC.00819-20] [PMID: 32366720]
[162]
García-Serradilla M, Risco C, Pacheco B. Drug repurposing for new, efficient, broad spectrum antivirals. Virus Res 2019; 264: 22-31.
[http://dx.doi.org/10.1016/j.virusres.2019.02.011] [PMID: 30794895]
[163]
Corti D, Misasi J, Mulangu S, et al. Protective monotherapy against lethal Ebola virus infection by a potently neutralizing antibody. Science 2016; 351(6279): 1339-42.
[http://dx.doi.org/10.1126/science.aad5224] [PMID: 26917593]
[164]
Wang L, Shi W, Chappell JD, et al. Importance of neutralizing monoclonal antibodies targeting multiple antigenic sites on the Middle East respiratory syndrome coronavirus spike glycoprotein to avoid neutralization escape. J Virol 2018; 92(10): e02002-17.
[http://dx.doi.org/10.1128/JVI.02002-17] [PMID: 29514901]
[165]
Cao Y, Su B, Guo X, et al. Potent neutralizing antibodies against SARS-CoV-2 identified by high-throughput single-cell sequencing of convalescent patients’ B cells. Cell 2020; 182(1): 73-84.e16.
[http://dx.doi.org/10.1016/j.cell.2020.05.025] [PMID: 32425270]
[166]
Hanke L, Vidakovics Perez L, Sheward DJ, et al. An alpaca nanobody neutralizes SARS-CoV-2 by blocking receptor interaction. Nat Commun 2020; 11(1): 4420.
[http://dx.doi.org/10.1038/s41467-020-18174-5] [PMID: 32887876]
[167]
Ju B, Zhang Q, Ge J, et al. Human neutralizing antibodies elicited by SARS-CoV-2 infection. Nature 2020; 584(7819): 115-9.
[http://dx.doi.org/10.1038/s41586-020-2380-z] [PMID: 32454513]
[168]
Pinto D, Park YJ, Beltramello M, et al. Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody. Nature 2020; 583(7815): 290-5.
[http://dx.doi.org/10.1038/s41586-020-2349-y] [PMID: 32422645]
[169]
Rogers TF, et al. Rapid isolation of potent SARS-CoV-2 neutralizing antibodies and protection in a small animal model. bioRxiv 2020.
[http://dx.doi.org/10.1101/2020.05.11.088674]
[170]
Tian X, Li C, Huang A, et al. Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody. Emerg Microbes Infect 2020; 9(1): 382-5.
[http://dx.doi.org/10.1080/22221751.2020.1729069] [PMID: 32065055]
[171]
Li W, Schäfer A, Kulkarni SS, et al. High potency of a bivalent human VH domain in SARS-CoV-2 animal models. Cell 2020; 183(2): 429-441.e16.
[http://dx.doi.org/10.1016/j.cell.2020.09.007] [PMID: 32941803]
[172]
Wan J, Xing S, Ding L, et al. Human-IgG-neutralizing monoclonal antibodies block the SARS-CoV-2 infection. Cell Rep 2020; 32(3): 107918.
[http://dx.doi.org/10.1016/j.celrep.2020.107918] [PMID: 32668215]
[173]
Wu Y, Wang F, Shen C, et al. A noncompeting pair of human neutralizing antibodies block COVID-19 virus binding to its receptor ACE2. Science 2020; 368(6496): 1274-8.
[http://dx.doi.org/10.1126/science.abc2241] [PMID: 32404477]
[174]
Chen J, et al. Review of COVID-19 antibody therapies. Annu Rev Biophys 2020.
[PMID: 33064571]
[175]
Wang C, Li W, Drabek D, et al. A human monoclonal antibody blocking SARS-CoV-2 infection. Nat Commun 2020; 11(1): 2251.
[http://dx.doi.org/10.1038/s41467-020-16256-y] [PMID: 32366817]
[176]
Kreye J, Reincke SM, Kornau HC, et al. A therapeutic non-self-reactive SARS-CoV-2 antibody protects from lung pathology in a COVID-19 hamster model. Cell 2020; 183(4): 1058-1069.e19.
[http://dx.doi.org/10.1016/j.cell.2020.09.049] [PMID: 33058755]
[177]
Yuan M, Wu NC, Zhu X, et al. A highly conserved cryptic epitope in the receptor binding domains of SARS-CoV-2 and SARS-CoV. Science 2020; 368(6491): 630-3.
[http://dx.doi.org/10.1126/science.abb7269] [PMID: 32245784]
[178]
Shi R, Shan C, Duan X, et al. A human neutralizing antibody targets the receptor-binding site of SARS-CoV-2. Nature 2020; 584(7819): 120-4.
[http://dx.doi.org/10.1038/s41586-020-2381-y] [PMID: 32454512]
[179]
Huo J, Le Bas A, Ruza RR, et al. Neutralizing nanobodies bind SARS-CoV-2 spike RBD and block interaction with ACE2. Nat Struct Mol Biol 2020; 27(9): 846-54.
[http://dx.doi.org/10.1038/s41594-020-0469-6] [PMID: 32661423]
[180]
Piccoli L, Park YJ, Tortorici MA, et al. Mapping neutralizing and immunodominant sites on the SARS-CoV-2 spike receptor-binding domain by structure-guided high-resolution serology. Cell 2020; 183(4): 1024-1042.e21.
[http://dx.doi.org/10.1016/j.cell.2020.09.037] [PMID: 32991844]
[181]
Barnes CO, West AP Jr, Huey-Tubman KE, et al. Structures of human antibodies bound to SARS-CoV-2 spike reveal common epitopes and recurrent features of antibodies. Cell 2020; 182(4): 828-842.e16.
[http://dx.doi.org/10.1016/j.cell.2020.06.025] [PMID: 32645326]
[182]
Barnes CO, Jette CA, Abernathy ME, et al. SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies. Nature 2020; 588(7839): 682-7.
[http://dx.doi.org/10.1038/s41586-020-2852-1] [PMID: 33045718]
[183]
Yuan M, Liu H, Wu NC, et al. Structural basis of a shared antibody response to SARS-CoV-2. Science 2020; 369(6507): 1119-23.
[http://dx.doi.org/10.1126/science.abd2321] [PMID: 32661058]
[184]
REICHERT J. Anti-SARS-CoV-2 antibody JS016 enters first clinical study. Antibody Society 2020
[185]
Weinreich DM, et al. REGN-COV2, a neutralizing antibody cocktail, in outpatients with covid-19. LID 1533-4406 (Electronic)
[http://dx.doi.org/10.1056/NEJMoa2035002]
[186]
Pandey SC, Pande V, Sati D, Upreti S, Samant M. Vaccination strategies to combat novel corona virus SARS-CoV-2. Life Sci 2020; 256: 117956.
[http://dx.doi.org/10.1016/j.lfs.2020.117956] [PMID: 32535078]
[187]
Gao Q, Bao L, Mao H, et al. Development of an inactivated vaccine candidate for SARS-CoV-2. Science 2020; 369(6499): 77-81.
[http://dx.doi.org/10.1126/science.abc1932] [PMID: 32376603]
[188]
Piyush R, Rajarshi K, Chatterjee A, Khan R, Ray S. Nucleic acid-based therapy for coronavirus disease 2019. Heliyon 2020; 6(9): e05007.
[http://dx.doi.org/10.1016/j.heliyon.2020.e05007] [PMID: 32984620]
[189]
Vogel FR, Sarver N. Nucleic acid vaccines. Clin Microbiol Rev 1995. 0893-8512 (Print)
[http://dx.doi.org/10.1128/CMR.8.3.406]
[190]
Pardi N, Hogan MJ, Porter FW, Weissman D. mRNA vaccines - a new era in vaccinology. Nat Rev Drug Discov 2018; 17(4): 261-79.
[http://dx.doi.org/10.1038/nrd.2017.243] [PMID: 29326426]
[191]
Bettini E, Locci M. SARS-CoV-2 mRNA vaccines: Immunological mechanism and beyond. Vaccines (Basel) 2021; 9(2): 147.
[http://dx.doi.org/10.3390/vaccines9020147] [PMID: 33673048]
[192]
Zimmer JCC, Wee SL. Coronavirus vaccine tracker. The New York times 2020.
[193]
Voysey M, et al. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet 2020.
[PMID: 33306989]
[194]
Logunov DY, Dolzhikova IV, Zubkova OV, et al. Safety and immunogenicity of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine in two formulations: two open, non-randomised phase 1/2 studies from Russia. Lancet 2020; 396(10255): 887-97.
[http://dx.doi.org/10.1016/S0140-6736(20)31866-3] [PMID: 32896291]
[195]
Polack FP, Thomas SJ, Kitchin N, et al. Safety and efficacy of the BNT162b2 mRNA covid-19 vaccine. N Engl J Med 2020; 383(27): 2603-15.
[http://dx.doi.org/10.1056/NEJMoa2034577] [PMID: 33301246]
[196]
Mahase E. Covid-19: Moderna vaccine is nearly 95% effective, trial involving high risk and elderly people shows. BMJ 2020; •••: m4471.
[http://dx.doi.org/10.1136/bmj.m4471]
[197]
Jackson LA, Anderson EJ, Rouphael NG, et al. An mRNA vaccine against SARS-CoV-2 - preliminary report. N Engl J Med 2020; 383(20): 1920-31.
[http://dx.doi.org/10.1056/NEJMoa2022483] [PMID: 32663912]
[198]
DeFrancesco L. COVID-19 antibodies on trial. Nat Biotechnol 2020; 38(11): 1242-52.
[http://dx.doi.org/10.1038/s41587-020-0732-8] [PMID: 33087898]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy