[3]
Manjusha S, Neelima P, Ananya B, Bhavitha KVNSD, Narayana VL. Brain tumor detection using convolutional neural networks and deep learning concepts. J Eng Sci 2018; 0377-9254.
[8]
Rao BD, Goswami MM. A comprehensive study of features used for brain tumor detection and segmentation from Mr images. 2017 Innovations in Power and Advanced Computing Technologies (i-PACT). In: IEEE; 2017; pp. 1-6.
[9]
Farmanfarma KK, Mohammadian M, Shahabinia Z, Hassanipour S, Salehiniya H. Brain cancer in the world: An epidemiological review. World Can Res J 2019; 6: 5.
[17]
Dandıl E, Çakıroğlu M, Ekşi Z. Computer-aided diagnosis of malign and benign brain tumors on MR images. International Conference on ICT Innovations. 157-66.
[24]
Alluri HV, Narayana TV, Ramya BN, Rajesh B. Detection and diagnosis of brain tumor using segmentation and classification methods: A review. Int J Technol Res Eng 2013; 2347-4718.
[27]
Kurup RV, Sowmya V, Soman KP. Effect of data pre-processing on brain tumor classification using capsulenet. ICICCT 2019 – System Reliability, Quality Control, Safety, Maintenance and Management 2019; 110-9.
[32]
Somasundaram K, Mercina JH, Magesh Kalaiselvi ST. Brain portion extraction scheme using region growing and morphological operation from MRI of human head scans. IJCSE 2018; 6(4): 298-302.
[51]
Leal N, Varela EZ. A New approach on skull stripping of brain MRI based on saliency detection using dictionary learning and sparse coding. Prospectiva 2019; 17(2): 4.
[55]
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv preprint 2014; 14091556 .
[60]
Nagalkar VJ, Sarate GG. Brain tumor detection and identification using support vector machine. Brain 2019; 6(12): 2020-3.
[64]
Kharrat A, Benamrane N, Messaoud MB, Abid M. Evolutionary support vector machine for parameters optimization applied to medical diagnostic. VISAPP 2011; 201-4.
[68]
Pugalenthi R, Rajakumar MP, Ramya J, Rajinikanth V. Evaluation and classification of the brain tumor MRI using machine learning technique. J Control Eng Appl Inform 2019; 21(4): 12-21.
[74]
Parvin H, Alizadeh H, Minaei-Bidgoli B. MKNN: Modified k-nearest neighbor. Proceedings of the World Congress on Engineering and Computer Science. October 22 - 24, 2008; San Francisco, USA. 2008.
[84]
Soltaninejad M, Zhang L, Lambrou T, Yang G, Allinson N, Ye X. MRI brain tumor segmentation using random forests and fully convolutional networks arXiv preprint 2019; arXiv:190906337.
[88]
Kim D. brain tumor detection: 2 novel approaches. Preprints 2020; 2020080641.
[94]
Ciresan D, Giusti A, Gambardella LM, Schmidhuber J. Deep neural networks segment neuronal membranes in electron microscopy images.Advances in Neural Information Processing Systems. Cambridge: The MIT Press 2012; pp. 2483-851.
[99]
Sharma M. Artificial neural network fuzzy inference system (ANFIS) for brain tumor detectio arXiv preprint 2012; arXiv:12120059.
[103]
Amarapur B. Computer-aided diagnosis applied to MRI images of brain tumor using cognition based modified level set and optimized ANN classifier. Multimedia Tools Appl 2020; 79(5): 3571-99.
[107]
Lee CY, Xie S, Gallagher P, Zhang Z, Tu Z. Deeply-supervised nets. Proceedings of the Eighteenth International Conference on Artificial Intelligence and Statistics. 562-70.
[108]
Li H, Zhao R, Wang X. Highly efficient forward and backward propagation of convolutional neural networks for pixelwise classification. arXiv preprint 2014; arXiv:14124526.
[109]
Kayalibay B, Jensen G, van der Smagt P. CNN-based segmentation of medical imaging data. arXiv preprint 2017; arXiv:170103056.
[124]
Thapa S, Panday SP. Information and Communication Technology for Intelligent Systems. In: Senjyu T, Mahalle PN, Perumal T, Joshi A, Eds. Smart Innovation, Systems and Technologies, ICTIS. Singapore: Springer 2020; Vol. 196.
[127]
Han C, Rundo L, Araki R, et al. Infinite brain tumor images: Can GAN-based data augmentation improve tumor detection on MR Images? Proc Meeting on Image Recognition and Understanding (MIRU 2018). Sapporo, Japan. 2018.