Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Cationic Clitoria ternatea Seed Peptide as a Potential Novel Bioactive Molecule

Author(s): S. Sreekala and Usha Devi Muraleedharan*

Volume 28, Issue 11, 2021

Published on: 22 September, 2021

Page: [1259 - 1271] Pages: 13

DOI: 10.2174/0929866528666210922124735

Price: $65

Open Access Journals Promotions 2
Abstract

Background: While several biologics have been reported from different parts of Clitoria ternatea, a herbaceous climber of the family Fabaceae, specific production of cationic peptides other than cyclotides (<3.7 kDa) has barely been investigated, or their bioactive potential been looked into.

Objective: The study aims to uncover potential bioactivities and characteristics of novel cationic peptides from C. ternatea seeds.

Methods: C. ternatea seed cationic peptide purified by simple and cost-effective procedures was analyzed by electrophoresis and mass spectrometry. Antimicrobial efficacy was evaluated against bacterial and fungal pathogens. Antioxidant potential was quantified by in vitro antioxidant assays. Physicochemical characterization and Tandem mass spectrometry were performed.

Results: An 8.5 kDa cationic peptide purified from C. ternatea seeds was active against Candida albicans, Staphylococcus aureus, Aeromonas hydrophila and Escherichia coli at a minimum inhibitory concentration in the range of 8-32 μg/ml. This activity was totally uncompromised at pH 5-8 or after 1 h of heat treatment at 70-80ºC, but was sensitive to protease treatment. Concentration-dependent free-radical scavenging activity and ferric-reducing capacity demonstrated the antioxidant potential of the peptide. Tandem MS analysis of trypsin-digested peptide based on shotgun proteomics detected matching peptide sequences with one or two cysteine residues but had low sequence coverage (≤17%) to known sequences in the C. ternatea protein database. Taken together, the distinct characteristics of this novel 8.5 kDa peptide clearly distinguish it from known cyclotides of C. ternatea.

Conclusions: Insights have been obtained into the functional characteristics of what appears to be a novel cationic peptide from C. ternatea seeds, exhibiting significant antimicrobial and antioxidant activities.

Keywords: Cationic peptide, Clitoria seed, antimicrobial, antioxidant, cyclotides, bioactivity.

Graphical Abstract
[1]
Mwangi, J.; Hao, X.; Lai, R.; Zhang, Z.Y. Antimicrobial peptides: new hope in the war against multidrug resistance. Zool. Res., 2019, 40(6), 488-505.
[http://dx.doi.org/10.24272/j.issn.2095-8137.2019.062] [PMID: 31592585]
[2]
Drayton, M.; Kizhakkedathu, J.N.; Straus, S.K. Towards robust delivery of antimicrobial peptides to combat bacterial resistance. Molecules, 2020, 25(13), 3048.
[http://dx.doi.org/10.3390/molecules25133048] [PMID: 32635310]
[3]
Zharkova, M.S.; Orlov, D.S.; Golubeva, O.Y.; Chakchir, O.B.; Eliseev, I.E.; Grinchuk, T.M.; Shamova, O.V. Application of antimicrobial peptides of the innate immune system in combination with conventional antibiotics - A novel way to combat antibiotic resistance? Front. Cell. Infect. Microbiol., 2019, 9, 128.
[http://dx.doi.org/10.3389/fcimb.2019.00128] [PMID: 31114762]
[4]
Spohn, R.; Daruka, L.; Lázár, V.; Martins, A.; Vidovics, F.; Grézal, G.; Méhi, O.; Kintses, B.; Számel, M.; Jangir, P.K.; Csörgő, B.; Györkei, Á.; Bódi, Z.; Faragó, A.; Bodai, L.; Földesi, I.; Kata, D.; Maróti, G.; Pap, B.; Wirth, R.; Papp, B.; Pál, C. Integrated evolutionary analysis reveals antimicrobial peptides with limited resistance. Nat. Commun., 2019, 10(1), 4538.
[http://dx.doi.org/10.1038/s41467-019-12364-6] [PMID: 31586049]
[5]
Park, S.C.; Park, Y.; Hahm, K.S. The role of antimicrobial peptides in preventing multidrug-resistant bacterial infections and biofilm formation. Int. J. Mol. Sci., 2011, 12(9), 5971-5992.
[http://dx.doi.org/10.3390/ijms12095971] [PMID: 22016639]
[6]
Lei, J.; Sun, L.; Huang, S.; Zhu, C.; Li, P.; He, J.; Mackey, V.; Coy, D.H.; He, Q. The antimicrobial peptides and their potential clinical applications. Am. J. Transl. Res., 2019, 11(7), 3919-3931.
[PMID: 31396309]
[7]
Huan, Y.; Kong, Q.; Mou, H.; Yi, H. Antimicrobial peptides: classification, design, application and research progress in multiple fields. Front. Microbiol., 2020, 11, 582779.
[http://dx.doi.org/10.3389/fmicb.2020.582779] [PMID: 33178164]
[8]
Hancock, R.E. Host defence (cationic) peptides: what is their future clinical potential? Drugs, 1999, 57(4), 469-473.
[http://dx.doi.org/10.2165/00003495-199957040-00002] [PMID: 10235687]
[9]
Huang, H.W. Molecular mechanism of antimicrobial peptides: the origin of cooperativity. Biochim. Biophys. Acta, 2006, 1758(9), 1292-1302.
[http://dx.doi.org/10.1016/j.bbamem.2006.02.001] [PMID: 16542637]
[10]
Zasloff, M. Antimicrobial peptides of multicellular organisms. Nature, 2002, 415(6870), 389-395.
[http://dx.doi.org/10.1038/415389a] [PMID: 11807545]
[11]
Silverstein, K.A.; Moskal, W.A., Jr; Wu, H.C.; Underwood, B.A.; Graham, M.A.; Town, C.D.; VandenBosch, K.A. Small cysteine-rich peptides resembling antimicrobial peptides have been under-predicted in plants. Plant J., 2007, 51(2), 262-280.
[http://dx.doi.org/10.1111/j.1365-313X.2007.03136.x] [PMID: 17565583]
[12]
Padovan, L.; Scocchi, M.; Tossi, A. Structural aspects of plant antimicrobial peptides. Curr. Protein Pept. Sci., 2010, 11(3), 210-219.
[http://dx.doi.org/10.2174/138920310791112093] [PMID: 20088769]
[13]
Tam, J.P.; Wang, S.; Wong, K.H.; Tan, W.L. Antimicrobial peptides from plants. Pharmaceuticals (Basel), 2015, 8(4), 711-757.
[http://dx.doi.org/10.3390/ph8040711] [PMID: 26580629]
[14]
Nawrot, R.; Barylski, J.; Nowicki, G.; Broniarczyk, J.; Buchwald, W.; Goździcka-Józefiak, A. Plant antimicrobial peptides. Folia Microbiol. (Praha), 2014, 59(3), 181-196.
[http://dx.doi.org/10.1007/s12223-013-0280-4] [PMID: 24092498]
[15]
Thomma, B.P.H.J.; Cammue, B.P.A.; Thevissen, K. Plant defensins. Planta, 2002, 216(2), 193-202.
[http://dx.doi.org/10.1007/s00425-002-0902-6] [PMID: 12447532]
[16]
Wang, G. Improved methods for classification, prediction, and design of antimicrobial peptides. Methods Mol. Biol., 2015, 1268, 43-66.
[http://dx.doi.org/10.1007/978-1-4939-2285-7_3] [PMID: 25555720]
[17]
Meneguetti, B.T.; Machado, L.D.; Oshiro, K.G.; Nogueira, M.L.; Carvalho, C.M.; Franco, O.L. Antimicrobial peptides from fruits and their potential use as biotechnological tools - A review and outlook. Front. Microbiol., 2017, 7, 2136.
[http://dx.doi.org/10.3389/fmicb.2016.02136] [PMID: 28119671]
[18]
Morris, J.B. Characterization of butterfly pea (Clitoria ternatea L.) accessions for morphology, phenology, reproduction and potential nutraceutical, pharmaceutical trait utilization. Genet. Resour. Crop Evol., 2009, 56, 421-427.
[http://dx.doi.org/10.1007/s10722-008-9376-0]
[19]
Mukherjee, P.K.; Kumar, V.; Kumar, N.S.; Heinrich, M. The Ayurvedic medicine Clitoria ternatea- from traditional use to scientific assessment. J. Ethnopharmacol., 2008, 120(3), 291-301.
[http://dx.doi.org/10.1016/j.jep.2008.09.009] [PMID: 18926895]
[20]
Malik, J.; Karan, M.; Vasisht, K. Nootropic, anxiolytic and CNS-depressant studies on different plant sources of shankhpushpi. Pharm. Biol., 2011, 49(12), 1234-1242.
[http://dx.doi.org/10.3109/13880209.2011.584539] [PMID: 21846173]
[21]
Devi, B.P.; Boominathan, R.; Mandal, S.C. Anti-inflammatory, analgesic and antipyretic properties of Clitoria ternatea root. Fitoterapia, 2003, 74(4), 345-349.
[http://dx.doi.org/10.1016/S0367-326X(03)00057-1] [PMID: 12781804]
[22]
Pratap, G.M.J.; Manoj, K.M.G.; Sai, S.A.J.; Sujatha, B.; Sreedevi, E. Evaluation of three medicinal plants for anti-microbial activity. Ayu, 2012, 33(3), 423-428.
[http://dx.doi.org/10.4103/0974-8520.108859] [PMID: 23723653]
[23]
Ponnusamy, S.; Gnanaraj, W.E.; Antonisamy, J.M.; Selvakumar, V.; Nelson, J. The effect of leaves extracts of Clitoria ternatea Linn against the fish pathogens. Asian Pac. J. Trop. Med., 2010, 3, 723-726.
[http://dx.doi.org/10.1016/S1995-7645(10)60173-3]
[24]
Kamilla, L.; Mansor, S.M.; Ramanathan, S.; Sasidharan, S. Effects of Clitoria ternatea leaf extract on growth and morphogenesis of Aspergillus niger. Microsc. Microanal., 2009, 15(4), 366-372.
[http://dx.doi.org/10.1017/S1431927609090783] [PMID: 19575837]
[25]
Kumar, B.S.; Bhat, K.I. In-vitro cytotoxic activity studies of Clitoria ternatea Linn. flower extracts. Int. J. Pharm. Sci. Rev. Res., 2011, 6, 120-121.
[26]
Neda, G.D.; Rabeta, M.S.; Ong, M.T. Chemical composition and anti-proliferative properties of flowers of Clitoria ternatea. Int. Food Res. J., 2013, 20, 1229-1234.
[27]
Nithianantham, K.; Shyamala, M.; Chen, Y.; Latha, L.Y.; Jothy, S.L.; Sasidharan, S. Hepatoprotective potential of Clitoria ternatea leaf extract against paracetamol induced damage in mice. Molecules, 2011, 16(12), 10134-10145.
[http://dx.doi.org/10.3390/molecules161210134] [PMID: 22146374]
[28]
Talpate, K.A.; Bhosale, U.A.; Zambare, M.R.; Somani, R. Antihyperglycemic and antioxidant activity of Clitorea ternatea Linn. on streptozotocin-induced diabetic rats. Ayu, 2013, 34(4), 433-439.
[http://dx.doi.org/10.4103/0974-8520.127730] [PMID: 24696583]
[29]
Chusak, C.; Thilavech, T.; Henry, C.J.; Adisakwattana, S. Acute effect of Clitoria ternatea flower beverage on glycemic response and antioxidant capacity in healthy subjects: a randomized crossover trial. BMC Complement. Altern. Med., 2018, 18(1), 6.
[http://dx.doi.org/10.1186/s12906-017-2075-7] [PMID: 29310631]
[30]
Maneesai, P.; Iampanichakul, M.; Chaihongsa, N.; Poasakate, A.; Potue, P.; Rattanakanokchai, S.; Bunbupha, S.; Chiangsaen, P.; Pakdeechote, P. Butterfly pea flower (Clitoria ternatea Linn.) extract ameliorates cardiovascular dysfunction and oxidative stress in nitric oxide-deficient hypertensive rats. Antioxidants, 2021, 10(4), 523.
[http://dx.doi.org/10.3390/antiox10040523] [PMID: 33801631]
[31]
Phrueksanan, W.; Yibchok-anun, S.; Adisakwattana, S. Protection of Clitoria ternatea flower petal extract against free radical-induced hemolysis and oxidative damage in canine erythrocytes. Res. Vet. Sci., 2014, 97(2), 357-363.
[http://dx.doi.org/10.1016/j.rvsc.2014.08.010] [PMID: 25241390]
[32]
Taur, D.J.; Patil, R.Y. Evaluation of antiasthmatic activity of Clitoria ternatea L. roots. J. Ethnopharmacol., 2011, 136(2), 374-376.
[http://dx.doi.org/10.1016/j.jep.2011.04.064] [PMID: 21575696]
[33]
Solanki, Y.B.; Jain, S.M. Antihyperlipidemic activity of Clitoria ternatea and Vigna mungo in rats. Pharm. Biol., 2010, 48(8), 915-923.
[http://dx.doi.org/10.3109/13880200903406147] [PMID: 20673179]
[34]
Taranalli, A.D.; Cheeramkuzhy, T.C. Influence of clitoria ternatea extracts on memory and central cholinergic activity in rats. Pharm. Biol., 2000, 38(1), 51-56.
[http://dx.doi.org/10.1076/1388-0209(200001)3811-BFT051] [PMID: 21214440]
[35]
Rai, K.S. Neurogenic potential of Clitoria ternatea aqueous root extract – A basis for enhancing learning and memory. World Acad. Sci. Eng. Technol., 2010, 70, 237-240.
[36]
Aulakh, G.S.; Narayanan, S.; Mahadevan, G. Phyto - chemistry and pharmacology of shankapushpi - four varieties. Anc. Sci. Life, 1988, 7(3-4), 149-156.
[PMID: 22557606]
[37]
Terahara, N.; Saito, N.; Hondas, T.; Toki, K. Structure of Ternatin D1, an acylated anthocyanin from Clitoria ternatea flowers. Tetrahedron Lett., 1989, 30, 305-308.
[http://dx.doi.org/10.1016/S0040-4039(01)93771-2]
[38]
Terahara, N.; Saito, N.; Honda, T.; Toki, K.; Osajima, Y. Further structural elucidation of the anthocyanin, deacylternatin from Clitoria ternatea. Phytochemistry, 1990, 29, 3686-3687.
[http://dx.doi.org/10.1016/0031-9422(90)85308-3]
[39]
Makasana, J.; Dholakiya, B.; Gajbhiye, N.; Raju, S. Extractive determination of bioactive flavonoids from butterfly pea (Clitoria ternatea Linn.). Res. Chem. Intermed., 2016, 43, 783-799.
[http://dx.doi.org/10.1007/s11164-016-2664-y]
[40]
Kazuma, K.; Noda, N.; Suzuki, M. Malonylated flavonol glycosides from the petals of Clitoria ternatea. Phytochemistry, 2003, 62(2), 229-237.
[http://dx.doi.org/10.1016/S0031-9422(02)00486-7] [PMID: 12482461]
[41]
Swain, S.S.; Rout, K.K.; Chand, P.K. Production of triterpenoid anti-cancer compound taraxerol in Agrobacterium-transformed root cultures of butterfly pea (Clitoria ternatea L.). Appl. Biochem. Biotechnol., 2012, 168(3), 487-503.
[http://dx.doi.org/10.1007/s12010-012-9791-8] [PMID: 22843061]
[42]
Banerjee, S.K.; Chakravarti, R.N. Taraxerol from Clitoria ternatea. Bull. Calcutta Sch. Trop. Med., 1963, 11, 106-107.
[PMID: 14068655]
[43]
Jain, N.N.; Ohal, C.C.; Shroff, S.K.; Bhutada, R.H.; Somani, R.S.; Kasture, V.S.; Kasture, S.B. Clitoria ternatea and the CNS. Pharmacol. Biochem. Behav., 2003, 75(3), 529-536.
[http://dx.doi.org/10.1016/S0091-3057(03)00130-8] [PMID: 12895670]
[44]
Kamilla, L.; Ramanathan, S.; Sasidharan, S.; Mansor, S.M. Evaluation of antinociceptive effect of methanolic leaf and root extracts of Clitoria ternatea Linn. in rats. Indian J. Pharmacol., 2014, 46(5), 515-520.
[http://dx.doi.org/10.4103/0253-7613.140583] [PMID: 25298581]
[45]
Joshi, S.S.; Shrivastava, R.K.; Shrivastava, D.K. Chemical examination of Clitoria ternatea seeds. J. Am. Oil Chem. Soc., 1981, 58, 714.
[http://dx.doi.org/10.1007/BF02899459]
[46]
Kulshreshtha, D.K.; Khare, M.P. Chemical investigation of the seeds of Clitoria ternatea Linn. Curr. Sci., 1967, 36, 124-125.
[47]
Barro, C.; Ribeiro, A. The study of Clitoria ternatea L. hay as a forage alternative in tropical countries. Evolution of the chemical composition at four different growth stages. J. Sci. Food Agric., 1983, 34, 780-782.
[http://dx.doi.org/10.1002/jsfa.2740340803]
[48]
Kelemu, S.; Cardona, C.; Segura, G. Antimicrobial and insecticidal protein isolated from seeds of Clitoria ternatea, a tropical forage legume. Plant Physiol. Biochem., 2004, 42(11), 867-873.
[http://dx.doi.org/10.1016/j.plaphy.2004.10.013] [PMID: 15694280]
[49]
Poth, A.G.; Colgrave, M.L.; Philip, R.; Kerenga, B.; Daly, N.L.; Anderson, M.A.; Craik, D.J. Discovery of cyclotides in the fabaceae plant family provides new insights into the cyclization, evolution, and distribution of circular proteins. ACS Chem. Biol., 2011, 6(4), 345-355.
[http://dx.doi.org/10.1021/cb100388j] [PMID: 21194241]
[50]
Poth, A.G.; Colgrave, M.L.; Lyons, R.E.; Daly, N.L.; Craik, D.J. Discovery of an unusual biosynthetic origin for circular proteins in legumes. Proc. Natl. Acad. Sci. USA, 2011, 108(25), 10127-10132.
[http://dx.doi.org/10.1073/pnas.1103660108] [PMID: 21593408]
[51]
Nguyen, G.K.; Zhang, S.; Nguyen, N.T.; Nguyen, P.Q.; Chiu, M.S.; Hardjojo, A.; Tam, J.P. Discovery and characterization of novel cyclotides originated from chimeric precursors consisting of albumin-1 chain a and cyclotide domains in the Fabaceae family. J. Biol. Chem., 2011, 286(27), 24275-24287.
[http://dx.doi.org/10.1074/jbc.M111.229922] [PMID: 21596752]
[52]
Nguyen, K.N.; Nguyen, G.K.; Nguyen, P.Q.; Ang, K.H.; Dedon, P.C.; Tam, J.P. Immunostimulating and Gram-negative-specific antibacterial cyclotides from the butterfly pea (Clitoria ternatea). FEBS J., 2016, 283(11), 2067-2090.
[http://dx.doi.org/10.1111/febs.13720] [PMID: 27007913]
[53]
Nguyen, G.K.; Wang, S.; Qiu, Y.; Hemu, X.; Lian, Y.; Tam, J.P. Butelase 1 is an Asx-specific ligase enabling peptide macrocyclization and synthesis. Nat. Chem. Biol., 2014, 10(9), 732-738.
[http://dx.doi.org/10.1038/nchembio.1586] [PMID: 25038786]
[54]
Sen, Z.; Zhan, X.K.; Jing, J.; Yi, Z.; Wanqi, Z. Chemosensitizing activities of cyclotides from Clitoria ternatea in paclitaxel-resistant lung cancer cells. Oncol. Lett., 2013, 5(2), 641-644.
[http://dx.doi.org/10.3892/ol.2012.1042] [PMID: 23419988]
[55]
Oguis, G.K.; Gilding, E.K.; Jackson, M.A.; Craik, D.J. Butterfly pea (Clitoria ternatea), a cyclotide-bearing plant with applications in agriculture and medicine. Front. Plant Sci., 2019, 10, 645.
[http://dx.doi.org/10.3389/fpls.2019.00645] [PMID: 31191573]
[56]
Gould, A.; Ji, Y.; Aboye, T.L.; Camarero, J.A. Cyclotides, a novel ultrastable polypeptide scaffold for drug discovery. Curr. Pharm. Des., 2011, 17(38), 4294-4307.
[http://dx.doi.org/10.2174/138161211798999438] [PMID: 22204428]
[57]
Cole, A.M.; Ganz, T. Human antimicrobial peptides: analysis and application. Biotechniques, 2000, 29(4), 822-826, 828, 830-831.
[http://dx.doi.org/10.2144/00294rv01] [PMID: 11056814]
[58]
Liang, Y.; Guan, R.; Huang, W.; Xu, T. Isolation and identification of a novel inducible antibacterial peptide from the skin mucus of Japanese eel, Anguilla japonica. Protein J., 2011, 30(6), 413-421.
[http://dx.doi.org/10.1007/s10930-011-9346-9] [PMID: 21796440]
[59]
Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 1970, 227(5259), 680-685.
[http://dx.doi.org/10.1038/227680a0] [PMID: 5432063]
[60]
Panyim, S.; Chalkley, R. High resolution acrylamide gel electrophoresis of histones. Arch. Biochem. Biophys., 1969, 130(1), 337-346.
[http://dx.doi.org/10.1016/0003-9861(69)90042-3] [PMID: 5778650]
[61]
Shechter, D.; Dormann, H.L.; Allis, C.D.; Hake, S.B. Extraction, purification and analysis of histones. Nat. Protoc., 2007, 2(6), 1445-1457.
[http://dx.doi.org/10.1038/nprot.2007.202] [PMID: 17545981]
[62]
Candiano, G.; Bruschi, M.; Musante, L.; Santucci, L.; Ghiggeri, G.M.; Carnemolla, B.; Orecchia, P.; Zardi, L.; Righetti, P.G. Blue silver: a very sensitive colloidal Coomassie G-250 staining for proteome analysis. Electrophoresis, 2004, 25(9), 1327-1333.
[http://dx.doi.org/10.1002/elps.200305844] [PMID: 15174055]
[63]
Holder, I.A.; Boyce, S.T. Agar well diffusion assay testing of bacterial susceptibility to various antimicrobials in concentrations non-toxic for human cells in culture. Burns, 1994, 20(5), 426-429.
[http://dx.doi.org/10.1016/0305-4179(94)90035-3] [PMID: 7999271]
[64]
CLSI. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard—Ninth edition.CLSI document M07-A9; Clinical and Laboratory Standards Institute: Wayne, PA, 2012.
[65]
Bär, W.; Bäde-Schumann, U.; Krebs, A.; Cromme, L. Rapid method for detection of minimal bactericidal concentration of antibiotics. J. Microbiol. Methods, 2009, 77(1), 85-89.
[http://dx.doi.org/10.1016/j.mimet.2009.01.010] [PMID: 19318061]
[66]
Ge, J.; Sun, Y.; Xin, X.; Wang, Y.; Ping, W. Purification and partial characterization of a novel bacteriocin synthesized by Lactobacillus paracasei HD1-7 isolated from Chinese Sauerkraut juice. Sci. Rep., 2016, 6, 19366.
[http://dx.doi.org/10.1038/srep19366] [PMID: 26763314]
[67]
Huang, T.; Zhang, X.; Pan, J.; Su, X.; Jin, X.; Guan, X. Purification and characterization of a novel cold shock protein-like bacteriocin synthesized by Bacillus thuringiensis. Sci. Rep., 2016, 6, 35560.
[http://dx.doi.org/10.1038/srep35560] [PMID: 27762322]
[68]
Ebbensgaard, A.; Mordhorst, H.; Overgaard, M.T.; Nielsen, C.G.; Aarestrup, F.M.; Hansen, E.B. Comparative evaluation of the antimicrobial activity of different antimicrobial peptides against a range of pathogenic bacteria. PLoS One, 2015, 10(12), e0144611.
[http://dx.doi.org/10.1371/journal.pone.0144611] [PMID: 26656394]
[69]
Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of free radical method to evaluate antioxidant activity. Lebensm. Wiss. Technol., 1995, 28, 25-30.
[http://dx.doi.org/10.1016/S0023-6438(95)80008-5]
[70]
Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal. Biochem., 1996, 239(1), 70-76.
[http://dx.doi.org/10.1006/abio.1996.0292] [PMID: 8660627]
[71]
Kamkaen, N.; Wilkinson, J.M. The antioxidant activity of Clitoria ternatea flower petal extracts and eye gel. Phytother. Res., 2009, 23(11), 1624-1625.
[http://dx.doi.org/10.1002/ptr.2832] [PMID: 19367668]
[72]
Jaafar, N.F.; Ramli, M.E.; Mohd Salleh, R. Optimum extraction condition of Clitoria ternatea flower on antioxidant activities, total phenolic, total flavonoid and total anthocyanin contents. Trop. Life Sci. Res., 2020, 31(2), 1-17.
[http://dx.doi.org/10.21315/tlsr2020.31.2.1] [PMID: 32922666]
[73]
Rabeta, M.S.; An Nabil, Z. Total phenolic compounds and scavenging activity in Clitoria ternatea and Vitex negundo Linn. Int. Food Res. J., 2013, 20, 495-500.
[74]
Kalmankar, N.V.; Venkatesan, R.; Balaram, P.; Sowdhamini, R. Transcriptomic profiling of the medicinal plant Clitoria ternatea: identification of potential genes in cyclotide biosynthesis. Sci. Rep., 2020, 10(1), 12658.
[http://dx.doi.org/10.1038/s41598-020-69452-7] [PMID: 32728092]
[75]
Serra, A.; Hemu, X.; Nguyen, G.K.; Nguyen, N.T.; Sze, S.K.; Tam, J.P. A high-throughput peptidomic strategy to decipher the molecular diversity of cyclic cysteine-rich peptides. Sci. Rep., 2016, 6, 23005.
[http://dx.doi.org/10.1038/srep23005] [PMID: 26965458]
[76]
Gilding, E.K.; Jackson, M.A.; Poth, A.G.; Henriques, S.T.; Prentis, P.J.; Mahatmanto, T.; Craik, D.J. Gene coevolution and regulation lock cyclic plant defence peptides to their targets. New Phytol., 2016, 210(2), 717-730.
[http://dx.doi.org/10.1111/nph.13789] [PMID: 26668107]
[77]
Oguis, G.K.; Gilding, E.K.; Huang, Y.H.; Poth, A.G.; Jackson, M.A.; Craik, D.J. 2020, Insecticidal diversity of butterfly pea (Clitoria ternatea) accessions. Ind. Crops Prod., 2020, 147, 112214.
[http://dx.doi.org/10.1016/j.indcrop.2020.112214]
[78]
Rahioui, I.; Laugier, C.; Balmand, S.; Da Silva, P.; Rahbe, Y.; Gressent, F. Toxicity, binding and internalization of the pea-A1b entomotoxin in Sf9 cells. Biochimie, 2007, 89(12), 1539-1543.
[http://dx.doi.org/10.1016/j.biochi.2007.07.021] [PMID: 17845830]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy