Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Review Article

Use of Mesenchymal Stem Cells in Crohn's Disease and Perianal Fistulas: A Narrative Review

Author(s): Azar Sheikholeslami, Hoda Fazaeli, Naser Kalhor, Mohadeseh Khoshandam, Seyed Jalal Eshagh Hoseini and Mohsen Sheykhhasan*

Volume 18, Issue 1, 2023

Published on: 23 November, 2021

Page: [76 - 92] Pages: 17

DOI: 10.2174/1574888X16666210916145717

Price: $65

Open Access Journals Promotions 2
Abstract

Crohn's Disease (CD), which usually leads to anal fistulas among patients, is the most important inflammatory bowel disease that causes morbidity in many people around the world. This review article proposes using MSCs as a hopeful therapeutic strategy for CD and anal fistula treatment in both preclinical and clinical conditions. Finally, darvadstrocel, a cell-based medication to treat complex anal fistulas in adults, as the only European Medicines Agency (EMA)-approved product for the treatment of anal fistulas in CD is addressed.

Although several common therapies, such as surgery and anti-tumor necrosis factor-alpha (TNF-α) drugs as well as a combination of these methods is used to improve this disease, however, due to the low effectiveness of these treatments, the use of new strategies with higher efficiency is still recommended. Cell therapy is among the new emerging therapeutic strategies that have attracted great attention from clinicians due to its unique capabilities. One of the most widely used cell sources administrated in cell therapy is mesenchymal stem cell (MSC).

This review article will discuss preclinical and clinical studies about MSCs as a potent and promising therapeutic option in the treatment of CD and anal fistula.

Keywords: Cell therapy, mesenchymal stem cells, crohn's disease, anal fistula, darvadstrocel, immunomodulation, anti-fibrosis.

[1]
Vuitton L, Marteau P, Sandborn WJ, et al. IOIBD technical review on endoscopic indices for Crohn’s disease clinical trials. Gut 2016; 65(9): 1447-55.
[http://dx.doi.org/10.1136/gutjnl-2015-309903] [PMID: 26353983]
[2]
Baumgart DC, Carding SR. Inflammatory bowel disease: cause and immunobiology. Lancet 2007; 369(9573): 1627-40.
[http://dx.doi.org/10.1016/S0140-6736(07)60750-8] [PMID: 17499605]
[3]
Naidoo K, Gordon M, Fagbemi AO, Thomas AG, Akobeng AK. Probiotics for maintenance of remission in ulcerative colitis. Cochrane Database Syst Rev 2011; (12): CD007443.
[http://dx.doi.org/10.1002/14651858.CD007443.pub2] [PMID: 22161412]
[4]
Seyedian SS, Nokhostin F, Malamir MD. A review of the diagnosis, prevention, and treatment methods of inflammatory bowel disease. J Med Life 2019; 12(2): 113-22.
[http://dx.doi.org/10.25122/jml-2018-0075] [PMID: 31406511]
[5]
Zhu X-L, Xu X-M, Chen S, Wang Q-M, Zhang K-G. Lupus enteritis masquerading as Crohn’s disease. BMC Gastroenterol 2019; 19(1): 154.
[http://dx.doi.org/10.1186/s12876-019-1058-1] [PMID: 31455284]
[6]
Ben-Horin S, Kopylov U, Chowers Y. Optimizing anti-TNF treatments in inflammatory bowel disease. Autoimmun Rev 2014; 13(1): 24-30.
[http://dx.doi.org/10.1016/j.autrev.2013.06.002] [PMID: 23792214]
[7]
Weisshof R, El Jurdi K, Zmeter N, Rubin DT. Emerging therapies for inflammatory bowel disease. Adv Ther 2018; 35(11): 1746-62.
[http://dx.doi.org/10.1007/s12325-018-0795-9] [PMID: 30374806]
[8]
Panés J, García-Olmo D, Van Assche G, et al. Expanded allogeneic adipose-derived mesenchymal stem cells (Cx601) for complex perianal fistulas in Crohn’s disease: A phase 3 randomised, double-blind controlled trial. Lancet 2016; 388(10051): 1281-90.
[http://dx.doi.org/10.1016/S0140-6736(16)31203-X] [PMID: 27477896]
[9]
Pérez-Jeldres T, Tyler CJ, Boyer JD, et al. Cell trafficking interference in inflammatory bowel disease: Therapeutic interventions based on basic pathogenesis concepts. Inflamm Bowel Dis 2019; 25(2): 270-82.
[http://dx.doi.org/10.1093/ibd/izy269] [PMID: 30165490]
[10]
Shukla T, Sands BE. Novel non-biologic targets for inflammatory bowel disease. Curr Gastroenterol Rep 2019; 21(5): 22.
[http://dx.doi.org/10.1007/s11894-019-0689-2] [PMID: 31016396]
[11]
Volarevic V, Markovic BS, Gazdic M, et al. Ethical and safety issues of stem cell-based therapy. Int J Med Sci 2018; 15(1): 36-45.
[http://dx.doi.org/10.7150/ijms.21666]
[12]
Abu-Dawud R, Graffmann N, Ferber S, Wruck W, Adjaye J. Pluripotent stem cells: Induction and self-renewal. Philos Trans R Soc Lond B Biol Sci 1750; 373(1750): 20170213.
[http://dx.doi.org/10.1098/rstb.2017.0213]
[13]
Zhang J, Jiao J. Molecular biomarkers for embryonic and adult neural stem cell and neurogenesis. BioMed Res Int 2015; 2015: 727542.
[http://dx.doi.org/10.1155/2015/727542] [PMID: 26421301]
[14]
Sheykhhasan M, Wong JKL, Seifalian AM. Human adipose-derived stem cells with great therapeutic potential. Curr Stem Cell Res Ther 2019; 14(7): 532-48.
[http://dx.doi.org/10.2174/1574888X14666190411121528] [PMID: 30973112]
[15]
Tabatabaei Qomi R, Sheykhhasan M. Adipose-derived stromal cell in regenerative medicine: A review. World J Stem Cells 2017; 9(8): 107-17.
[http://dx.doi.org/10.4252/wjsc.v9.i8.107] [PMID: 28928907]
[16]
Samadi P, Saki S, Manoochehri H, Sheykhhasan M. Therapeutic applications of mesenchymal stem cells: A comprehensive review. Curr Stem Cell Res Ther 2021; 16(3): 323-53.
[http://dx.doi.org/10.2174/1574888X15666200914142709] [PMID: 32928093]
[17]
Ghiasi M, Tabatabaei Qomi R, Nikbakht M, Sheykhhasan M. Expression of collagen type I and II, aggrecan and SOX9 genes in mesenchymal stem cells on different bioscaffolds. TUMJ 2015; 73(3): 158-67.
[18]
Sart S, Agathos SN. Large-scale expansion and differentiation of mesenchymal stem cells in microcarrier-based stirred bioreactors. Methods Mol Biol 2016; 1502: 87-102.
[http://dx.doi.org/10.1007/7651_2015_314] [PMID: 26892015]
[19]
Li Z, Hu X, Zhong JF. Mesenchymal stem cells: Characteristics, function, and application. Stem Cells Int 2019; 2019: 8106818.
[http://dx.doi.org/10.1155/2019/8106818]
[20]
Wei X, Yang X, Han ZP, Qu FF, Shao L, Shi YF. Mesenchymal stem cells: A new trend for cell therapy. Acta Pharmacol Sin 2013; 34(6): 747-54.
[http://dx.doi.org/10.1038/aps.2013.50] [PMID: 23736003]
[21]
Zanoni M, Cortesi M, Zamagni A, Tesei A. The role of mesenchymal stem cells in radiation-induced lung fibrosis. Int J Mol Sci 2019; 20(16): 3876.
[http://dx.doi.org/10.3390/ijms20163876] [PMID: 31398940]
[22]
Dong LH, Jiang YY, Liu YJ, et al. The anti-fibrotic effects of mesenchymal stem cells on irradiated lungs via stimulating endogenous secretion of HGF and PGE2. Sci Rep 2015; 5: 8713.
[http://dx.doi.org/10.1038/srep08713] [PMID: 25736907]
[23]
Karaoz E. Anti-apoptotic, anti-inflammatory and immunosuppressive effects of mesenchymal stem cells: Novel concept for future therapies. proceedings of the qatar international conference on stem cell science and policy; 2012 Feb; Doha, Qatar. HBKU Press 2012; 2012: 17.
[http://dx.doi.org/10.5339/qproc.2012.stem.1.17]
[24]
Alcayaga-Miranda F, Cuenca J, Khoury M. Antimicrobial activity of mesenchymal stem cells: Current status and new perspectives of antimicrobial peptide-based therapies. Front Immunol 2017; 8: 339.
[http://dx.doi.org/10.3389/fimmu.2017.00339]
[25]
Sutton MT, Fletcher D, Ghosh SK, et al. Antimicrobial properties of mesenchymal stem cells: Therapeutic potential for cystic fibrosis infection, and treatment. Stem Cells Int 2016; 2016: 5303048.
[http://dx.doi.org/10.1155/2016/5303048] [PMID: 26925108]
[26]
Krasnodembskaya A, Song Y, Fang X, et al. Antibacterial effect of human mesenchymal stem cells is mediated in part from secretion of the antimicrobial peptide LL-37. Stem Cells 2010; 28(12): 2229-38.
[http://dx.doi.org/10.1002/stem.544] [PMID: 20945332]
[27]
Chow L, Johnson V, Impastato R, Coy J, Strumpf A, Dow S. Antibacterial activity of human mesenchymal stem cells mediated directly by constitutively secreted factors and indirectly by activation of innate immune effector cells. Stem Cells Transl Med 2020; 9(2): 235-49.
[http://dx.doi.org/10.1002/sctm.19-0092] [PMID: 31702119]
[28]
Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 2005; 105(4): 1815-22.
[http://dx.doi.org/10.1182/blood-2004-04-1559] [PMID: 15494428]
[29]
Romieu-Mourez R, François M, Boivin M-N, Bouchentouf M, Spaner DE, Galipeau J. Cytokine modulation of TLR expression and activation in mesenchymal stromal cells leads to a proinflammatory phenotype. J Immunol 2009; 182(12): 7963-73.
[http://dx.doi.org/10.4049/jimmunol.0803864] [PMID: 19494321]
[30]
Zhao X, Liu D, Gong W, et al. The toll-like receptor 3 ligand, poly(I:C), improves immunosuppressive function and therapeutic effect of mesenchymal stem cells on sepsis via inhibiting MiR-143. Stem Cells 2014; 32(2): 521-33.
[http://dx.doi.org/10.1002/stem.1543] [PMID: 24105952]
[31]
Opitz CA, Litzenburger UM, Lutz C, et al. Toll-like receptor engagement enhances the immunosuppressive properties of human bone marrow-derived mesenchymal stem cells by inducing indoleamine-2,3-dioxygenase-1 via interferon-β and protein kinase R. Stem Cells 2009; 27(4): 909-19.
[http://dx.doi.org/10.1002/stem.7] [PMID: 19353519]
[32]
Tomchuck SL, Zwezdaryk KJ, Coffelt SB, Waterman RS, Danka ES, Scandurro AB. Toll-like receptors on human mesenchymal stem cells drive their migration and immunomodulating responses. Stem Cells 2008; 26(1): 99-107.
[http://dx.doi.org/10.1634/stemcells.2007-0563] [PMID: 17916800]
[33]
DelaRosa O, Dalemans W, Lombardo E. Toll-like receptors as modulators of mesenchymal stem cells. Front Immunol 2012; 3: 182.
[http://dx.doi.org/10.3389/fimmu.2012.00182]
[34]
Giuliani M, Bennaceur-Griscelli A, Nanbakhsh A, et al. TLR ligands stimulation protects MSC from NK killing. Stem Cells 2014; 32(1): 290-300.
[http://dx.doi.org/10.1002/stem.1563] [PMID: 24123639]
[35]
Waterman RS, Tomchuck SL, Henkle SL, Betancourt AM. A new mesenchymal stem cell (MSC) paradigm: polarization into a pro-inflammatory MSC1 or an Immunosuppressive MSC2 phenotype. PLoS One 2010; 5(4): e10088.
[http://dx.doi.org/10.1371/journal.pone.0010088] [PMID: 20436665]
[36]
Kurte M, Vega-Letter AM, Luz-Crawford P, et al. Time-dependent LPS exposure commands MSC immunoplasticity through TLR4 activation leading to opposite therapeutic outcome in EAE. Stem Cell Res Ther 2020; 11(1): 416.
[http://dx.doi.org/10.1186/s13287-020-01840-2] [PMID: 32988406]
[37]
Kolaczkowska E, Kubes P. Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol 2013; 13(3): 159-75.
[http://dx.doi.org/10.1038/nri3399] [PMID: 23435331]
[38]
Wang Y, Chen X, Cao W, Shi Y. Plasticity of mesenchymal stem cells in immunomodulation: Pathological and therapeutic implications. Nat Immunol 2014; 15(11): 1009-16.
[http://dx.doi.org/10.1038/ni.3002] [PMID: 25329189]
[39]
Li W, Ren G, Huang Y, et al. Mesenchymal stem cells: A double-edged sword in regulating immune responses. Cell Death Differ 2012; 19(9): 1505-13.
[http://dx.doi.org/10.1038/cdd.2012.26] [PMID: 22421969]
[40]
Krampera M, Galipeau J, Shi Y, Tarte K, Sensebe L. Immunological characterization of multipotent mesenchymal stromal cells-The International Society for Cellular Therapy (ISCT) working proposal. Cytotherapy 2013; 15(9): 1054-61.
[http://dx.doi.org/10.1016/j.jcyt.2013.02.010] [PMID: 23602578]
[41]
Morandi F, Raffaghello L, Bianchi G, et al. Immunogenicity of human mesenchymal stem cells in HLA-class I-restricted T-cell responses against viral or tumor-associated antigens. Stem Cells 2008; 26(5): 1275-87.
[http://dx.doi.org/10.1634/stemcells.2007-0878] [PMID: 18292209]
[42]
Selmani Z, Naji A, Zidi I, et al. Human leukocyte antigen-G5 secretion by human mesenchymal stem cells is required to suppress T lymphocyte and natural killer function and to induce CD4+CD25highFOXP3+ regulatory T cells. Stem Cells 2008; 26(1): 212-22.
[http://dx.doi.org/10.1634/stemcells.2007-0554] [PMID: 17932417]
[43]
Regmi S, Pathak S, Kim JO, Yong CS, Jeong J-H. Mesenchymal stem cell therapy for the treatment of inflammatory diseases: Challenges, opportunities, and future perspectives. Eur J Cell Biol 2019; 98(5-8): 151041.
[http://dx.doi.org/10.1016/j.ejcb.2019.04.002] [PMID: 31023504]
[44]
François M, Romieu-Mourez R, Li M, Galipeau J. Human MSC suppression correlates with cytokine induction of indoleamine 2,3-dioxygenase and bystander M2 macrophage differentiation. Mol Ther 2012; 20(1): 187-95.
[http://dx.doi.org/10.1038/mt.2011.189] [PMID: 21934657]
[45]
Melief SM, Schrama E, Brugman MH, et al. Multipotent stromal cells induce human regulatory T cells through a novel pathway involving skewing of monocytes toward anti-inflammatory macrophages. Stem Cells 2013; 31(9): 1980-91.
[http://dx.doi.org/10.1002/stem.1432] [PMID: 23712682]
[46]
Le Blanc K, Mougiakakos D. Multipotent mesenchymal stromal cells and the innate immune system. Nat Rev Immunol 2012; 12(5): 383-96.
[http://dx.doi.org/10.1038/nri3209] [PMID: 22531326]
[47]
Augello A, Tasso R, Negrini SM, et al. Bone marrow mesenchymal progenitor cells inhibit lymphocyte proliferation by activation of the programmed death 1 pathway. Eur J Immunol 2005; 35(5): 1482-90.
[http://dx.doi.org/10.1002/eji.200425405] [PMID: 15827960]
[48]
Beyth S, Borovsky Z, Mevorach D, et al. Human mesenchymal stem cells alter antigen-presenting cell maturation and induce T- cell unresponsiveness. Blood 2005; 105(5): 2214-9.
[http://dx.doi.org/10.1182/blood-2004-07-2921] [PMID: 15514012]
[49]
Nauta AJ, Kruisselbrink AB, Lurvink E, Willemze R, Fibbe WE. Mesenchymal stem cells inhibit generation and function of both CD34+-derived and monocyte-derived dendritic cells. J Immunol 2006; 177(4): 2080-7.
[http://dx.doi.org/10.4049/jimmunol.177.4.2080] [PMID: 16887966]
[50]
Zhang B, Liu R, Shi D, et al. Mesenchymal stem cells induce mature dendritic cells into a novel Jagged-2-dependent regulatory dendritic cell population. Blood 2009; 113(1): 46-57.
[http://dx.doi.org/10.1182/blood-2008-04-154138] [PMID: 18832657]
[51]
Jiang X-X, Zhang Y, Liu B, et al. Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood 2005; 105(10): 4120-6.
[http://dx.doi.org/10.1182/blood-2004-02-0586] [PMID: 15692068]
[52]
Jung YJ, Ju SY, Yoo ES, et al. MSC-DC interactions: MSC inhibit maturation and migration of BM-derived DC. Cytotherapy 2007; 9(5): 451-8.
[http://dx.doi.org/10.1080/14653240701452057] [PMID: 17786606]
[53]
Uccelli A, Moretta L, Pistoia V. Mesenchymal stem cells in health and disease. Nat Rev Immunol 2008; 8(9): 726-36.
[http://dx.doi.org/10.1038/nri2395] [PMID: 19172693]
[54]
Tabera S, Pérez-Simón JA, Díez-Campelo M, Sánchez-Abarca LI, Blanco B, López A, et al. The effect of mesenchymal stem cells on the viability, proliferation and differentiation of B-lymphocytes. haematologica 2008; 93(9): 1301-9.
[http://dx.doi.org/10.3324/haematol.12857]
[55]
Chabannes D, Hill M, Merieau E, et al. A role for heme oxygenase-1 in the immunosuppressive effect of adult rat and human mesenchymal stem cells. Blood 2007; 110(10): 3691-4.
[http://dx.doi.org/10.1182/blood-2007-02-075481] [PMID: 17684157]
[56]
De Miguel MP, Fuentes-Julián S, Blázquez-Martínez A, et al. Immunosuppressive properties of mesenchymal stem cells: Advances and applications. Curr Mol Med 2012; 12(5): 574-91.
[http://dx.doi.org/10.2174/156652412800619950] [PMID: 22515979]
[57]
Nasef A, Chapel A, Mazurier C, et al. Identification of IL-10 and TGF-β transcripts involved in the inhibition of T-lymphocyte proliferation during cell contact with human mesenchymal stem cells. Gene Expr 2007; 13(4-5): 217-26.
[http://dx.doi.org/10.3727/000000006780666957] [PMID: 17605296]
[58]
Najar M, Fayyad-Kazan H, Faour WH, et al. Immunological modulation following bone marrow-derived mesenchymal stromal cells and Th17 lymphocyte co-cultures. Inflamm Res 2019; 68(3): 203-13.
[http://dx.doi.org/10.1007/s00011-018-1205-0] [PMID: 30506263]
[59]
Zimmermann JA, Hettiaratchi MH, McDevitt TC. Enhanced immunosuppression of T cells by sustained presentation of bioactive interferon-γ within three‐dimensional mesenchymal stem cell constructs. Stem Cells Transl Med 2017; 6(1): 223-37.
[http://dx.doi.org/10.5966/sctm.2016-0044] [PMID: 28170190]
[60]
Ren C, Kumar S, Chanda D, et al. Cancer gene therapy using mesenchymal stem cells expressing interferon-β in a mouse prostate cancer lung metastasis model. Gene Ther 2008; 15(21): 1446-53.
[http://dx.doi.org/10.1038/gt.2008.101] [PMID: 18596829]
[61]
Phinney D, Pittenger M. MSC‐derived exosomes for cell-free therapy stem cells. Stem Cells 2017; 35(4): 851-8. Erratum in: Stem Cells 2017; 35(9): 2103.
[http://dx.doi.org/10.1002/stem.2575] [PMID: 28294454]
[62]
Zhang B, Shen L, Shi H, et al. Exosomes from human umbilical cord mesenchymal stem cells: identification, purification, and biological characteristics. Stem Cells Int 2016; 2016: 1929536.
[http://dx.doi.org/10.1155/2016/1929536] [PMID: 28105054]
[63]
Corcione A, Benvenuto F, Ferretti E, et al. Human mesenchymal stem cells modulate B-cell functions. Blood 2006; 107(1): 367-72.
[http://dx.doi.org/10.1182/blood-2005-07-2657] [PMID: 16141348]
[64]
English K, Ryan JM, Tobin L, Murphy MJ, Barry FP, Mahon BP. Cell contact, prostaglandin E(2) and transforming growth factor beta 1 play non-redundant roles in human mesenchymal stem cell induction of CD4+CD25(High) forkhead box P3+ regulatory T cells. Clin Exp Immunol 2009; 156(1): 149-60.
[http://dx.doi.org/10.1111/j.1365-2249.2009.03874.x] [PMID: 19210524]
[65]
Ghannam S, Pène J, Moquet-Torcy G, Jorgensen C, Yssel H. Mesenchymal stem cells inhibit human Th17 cell differentiation and function and induce a T regulatory cell phenotype. J Immunol 2010; 185(1): 302-12.
[http://dx.doi.org/10.4049/jimmunol.0902007] [PMID: 20511548]
[66]
Cahill EF, Tobin LM, Carty F, Mahon BP, English K. Jagged-1 is required for the expansion of CD4+ CD25+ FoxP3+ regulatory T cells and tolerogenic dendritic cells by murine mesenchymal stromal cells. Stem Cell Res Ther 2015; 6(1): 19.
[http://dx.doi.org/10.1186/s13287-015-0021-5] [PMID: 25890330]
[67]
Del Papa B, Sportoletti P, Cecchini D, et al. Notch1 modulates mesenchymal stem cells mediated regulatory T-cell induction. Eur J Immunol 2013; 43(1): 182-7.
[http://dx.doi.org/10.1002/eji.201242643] [PMID: 23161436]
[68]
Rashedi I, Gómez-Aristizábal A, Wang XH, Viswanathan S, Keating A. TLR3 or TLR4 activation enhances mesenchymal stromal cell‐mediated Treg induction via Notch signaling. Stem Cells 2017; 35(1): 265-75.
[http://dx.doi.org/10.1002/stem.2485] [PMID: 27571579]
[69]
Luz-Crawford P, Kurte M, Bravo-Alegría J, et al. Mesenchymal stem cells generate a CD4+CD25+Foxp3+ regulatory T cell population during the differentiation process of Th1 and Th17 cells. Stem Cell Res Ther 2013; 4(3): 65.
[http://dx.doi.org/10.1186/scrt216] [PMID: 23734780]
[70]
Luz-Crawford P, Tejedor G, Mausset-Bonnefont A-L, et al. Glucocorticoid-induced leucine zipper governs the therapeutic potential of mesenchymal stem cells by inducing a switch from pathogenic to regulatory Th17 cells in a mouse model of collagen-induced arthritis. Arthritis Rheumatol 2015; 67(6): 1514-24.
[http://dx.doi.org/10.1002/art.39069] [PMID: 25708718]
[71]
Yang N, Baban B, Isales CM, Shi XM. Crosstalk between bone marrow-derived mesenchymal stem cells and regulatory T cells through a glucocorticoid-induced leucine zipper/developmental endothelial locus-1-dependent mechanism. FASEB J 2015; 29(9): 3954-63.
[http://dx.doi.org/10.1096/fj.15-273664] [PMID: 26038125]
[72]
Liu Q, Zheng H, Chen X, et al. Human mesenchymal stromal cells enhance the immunomodulatory function of CD8(+)CD28(-) regulatory T cells. Cell Mol Immunol 2015; 12(6): 708-18.
[http://dx.doi.org/10.1038/cmi.2014.118] [PMID: 25482073]
[73]
Engela AU, Hoogduijn MJ, Boer K, et al. Human adipose-tissue derived mesenchymal stem cells induce functional de-novo regulatory T cells with methylated FOXP3 gene DNA. Clin Exp Immunol 2013; 173(2): 343-54.
[http://dx.doi.org/10.1111/cei.12120] [PMID: 23607314]
[74]
Di Nicola M, Carlo-Stella C, Magni M, et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 2002; 99(10): 3838-43.
[http://dx.doi.org/10.1182/blood.V99.10.3838] [PMID: 11986244]
[75]
Batten P, Sarathchandra P, Antoniw JW, et al. Human mesenchymal stem cells induce T cell anergy and downregulate T cell allo-responses via the TH2 pathway: Relevance to tissue engineering human heart valves. Tissue Eng 2006; 12(8): 2263-73.
[http://dx.doi.org/10.1089/ten.2006.12.2263] [PMID: 16968166]
[76]
Zappia E, Casazza S, Pedemonte E, et al. Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood 2005; 106(5): 1755-61.
[http://dx.doi.org/10.1182/blood-2005-04-1496] [PMID: 15905186]
[77]
Prigione I, Benvenuto F, Bocca P, Battistini L, Uccelli A, Pistoia V. Reciprocal interactions between human mesenchymal stem cells and gammadelta T cells or invariant natural killer T cells. Stem Cells 2009; 27(3): 693-702.
[http://dx.doi.org/10.1634/stemcells.2008-0687] [PMID: 19096038]
[78]
Chen H-W, Chen H-Y, Wang L-T, et al. Mesenchymal stem cells tune the development of monocyte-derived dendritic cells toward a myeloid-derived suppressive phenotype through growth-regulated oncogene chemokines. J Immunol 2013; 190(10): 5065-77.
[http://dx.doi.org/10.4049/jimmunol.1202775] [PMID: 23589610]
[79]
Yen BL, Yen M-L, Hsu P-J, Liu K-J, Wang C-J, Bai C-H, et al. Multipotent human mesenchymal stromal cells mediate expansion of myeloid-derived suppressor cells via hepatocyte growth factor/c-met and STAT3. Stem cell reports 2013; 1(2): 139-51.
[http://dx.doi.org/10.1016/j.stemcr.2013.06.006]
[80]
Németh K, Leelahavanichkul A, Yuen PS, et al. Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med 2009; 15(1): 42-9.
[http://dx.doi.org/10.1038/nm.1905] [PMID: 19098906]
[81]
Philipp D, Suhr L, Wahlers T, Choi Y-H, Paunel-Görgülü A. Preconditioning of bone marrow-derived mesenchymal stem cells highly strengthens their potential to promote IL-6-dependent M2b polarization. Stem Cell Res Ther 2018; 9(1): 286.
[http://dx.doi.org/10.1186/s13287-018-1039-2] [PMID: 30359316]
[82]
Pereira RC, Martinelli D, Cancedda R, Gentili C, Poggi A. Human articular chondrocytes regulate immune response by affecting directly T cell proliferation and indirectly inhibiting monocyte differentiation to professional antigen-presenting cells. Front Immunol 2016; 7: 415.
[http://dx.doi.org/10.3389/fimmu.2016.00415]
[83]
Rasmusson I, Ringdén O, Sundberg B, Le Blanc K. Mesenchymal stem cells inhibit the formation of cytotoxic T lymphocytes, but not activated cytotoxic T lymphocytes or natural killer cells. Transplantation 2003; 76(8): 1208-13.
[http://dx.doi.org/10.1097/01.TP.0000082540.43730.80] [PMID: 14578755]
[84]
González MA, Gonzalez-Rey E, Rico L, Büscher D, Delgado M. Adipose-derived mesenchymal stem cells alleviate experimental colitis by inhibiting inflammatory and autoimmune responses. Gastroenterology 2009; 136(3): 978-89.
[http://dx.doi.org/10.1053/j.gastro.2008.11.041] [PMID: 19135996]
[85]
Wu Y, Hoogduijn MJ, Baan CC, et al. Adipose tissue-derived mesenchymal stem cells have a heterogenic cytokine secretion profile. Stem Cells Int 2017; 2017: 4960831.
[http://dx.doi.org/10.1155/2017/4960831] [PMID: 28642794]
[86]
de Witte SFH, Luk F, Sierra Parraga JM, et al. Immunomodulation by therapeutic mesenchymal stromal cells (MSC) is triggered through phagocytosis of MSC by monocytic cells. Stem Cells 2018; 36(4): 602-15.
[http://dx.doi.org/10.1002/stem.2779] [PMID: 29341339]
[87]
Luk F, Carreras-Planella L, Korevaar SS, et al. Inflammatory conditions dictate the effect of mesenchymal stem or stromal cells on B cell function. Front Immunol 2017; 8: 1042.
[http://dx.doi.org/10.3389/fimmu.2017.01042]
[88]
Ge W, Jiang J, Arp J, Liu W, Garcia B, Wang H. Regulatory T- cell generation and kidney allograft tolerance induced by mesenchymal stem cells associated with indoleamine 2,3-dioxygenase expression. Transplantation 2010; 90(12): 1312-20.
[http://dx.doi.org/10.1097/TP.0b013e3181fed001] [PMID: 21042238]
[89]
Spaggiari GM, Capobianco A, Abdelrazik H, Becchetti F, Mingari MC, Moretta L. Mesenchymal stem cells inhibit natural killer-cell proliferation, cytotoxicity, and cytokine production: role of indoleamine 2,3-dioxygenase and prostaglandin E2. Blood 2008; 111(3): 1327-33.
[http://dx.doi.org/10.1182/blood-2007-02-074997] [PMID: 17951526]
[90]
Popp FC, Eggenhofer E, Renner P, et al. Mesenchymal stem cells can induce long-term acceptance of solid organ allografts in synergy with low-dose mycophenolate. Transpl Immunol 2008; 20(1-2): 55-60.
[http://dx.doi.org/10.1016/j.trim.2008.08.004] [PMID: 18762258]
[91]
Obermajer N, Popp FC, Soeder Y, et al. Conversion of Th17 into IL-17A(neg) regulatory T cells: A novel mechanism in prolonged allograft survival promoted by mesenchymal stem cell-supported minimized immunosuppressive therapy. J Immunol 2014; 193(10): 4988-99.
[http://dx.doi.org/10.4049/jimmunol.1401776] [PMID: 25305313]
[92]
Luz-Crawford P, Djouad F, Toupet K, et al. Mesenchymal stem cell‐derived Interleukin 1 receptor antagonist promotes macrophage polarization and inhibits B cell differentiation. Stem Cells 2016; 34(2): 483-92.
[http://dx.doi.org/10.1002/stem.2254] [PMID: 26661518]
[93]
Eggenhofer E, Popp FC, Mendicino M, et al. Heart grafts tolerized through third-party multipotent adult progenitor cells can be retransplanted to secondary hosts with no immunosuppression. Stem Cells Transl Med 2013; 2(8): 595-606.
[http://dx.doi.org/10.5966/sctm.2012-0166] [PMID: 23836805]
[94]
Riquelme P, Haarer J, Kammler A, et al. TIGIT+ iTregs elicited by human regulatory macrophages control T cell immunity. Nat Commun 2018; 9(1): 2858.
[http://dx.doi.org/10.1038/s41467-018-05167-8] [PMID: 30030423]
[95]
Weiss ARR, Dahlke MH. Immunomodulation by mesenchymal stem cells (MSCs): Mechanisms of action of living, apoptotic, and dead MSCs. Front Immunol 2019; 10: 1191.
[http://dx.doi.org/10.3389/fimmu.2019.01191]
[96]
Su J, Chen X, Huang Y, et al. Phylogenetic distinction of iNOS and IDO function in mesenchymal stem cell-mediated immunosuppression in mammalian species. Cell Death Differ 2014; 21(3): 388-96.
[http://dx.doi.org/10.1038/cdd.2013.149] [PMID: 24162664]
[97]
Ren G, Zhang L, Zhao X, et al. Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell 2008; 2(2): 141-50.
[http://dx.doi.org/10.1016/j.stem.2007.11.014] [PMID: 18371435]
[98]
Bai L, Lennon DP, Caplan AI, et al. Hepatocyte growth factor mediates mesenchymal stem cell-induced recovery in multiple sclerosis models. Nat Neurosci 2012; 15(6): 862-70.
[http://dx.doi.org/10.1038/nn.3109] [PMID: 22610068]
[99]
Cao W, Yang Y, Wang Z, et al. Leukemia inhibitory factor inhibits T helper 17 cell differentiation and confers treatment effects of neural progenitor cell therapy in autoimmune disease. Immunity 2011; 35(2): 273-84.
[http://dx.doi.org/10.1016/j.immuni.2011.06.011] [PMID: 21835648]
[100]
Volarevic V, Gazdic M, Simovic Markovic B, Jovicic N, Djonov V, Arsenijevic N. Mesenchymal stem cell-derived factors: Immuno-modulatory effects and therapeutic potential. Biofactors 2017; 43(5): 633-44.
[http://dx.doi.org/10.1002/biof.1374] [PMID: 28718997]
[101]
Vasandan AB, Jahnavi S, Shashank C, Prasad P, Kumar A, Prasanna SJ. Human Mesenchymal stem cells program macrophage plasticity by altering their metabolic status via a PGE2-dependent mechanism. Sci Rep 2016; 6: 38308.
[http://dx.doi.org/10.1038/srep38308] [PMID: 27910911]
[102]
Tatara R, Ozaki K, Kikuchi Y, et al. Mesenchymal stromal cells inhibit Th17 but not regulatory T-cell differentiation. Cytotherapy 2011; 13(6): 686-94.
[http://dx.doi.org/10.3109/14653249.2010.542456] [PMID: 21171824]
[103]
Galland S, Vuille J, Martin P, et al. Tumor-derived mesenchymal stem cells use distinct mechanisms to block the activity of natural killer cell subsets. Cell Rep 2017; 20(12): 2891-905.
[http://dx.doi.org/10.1016/j.celrep.2017.08.089] [PMID: 28930684]
[104]
Wang G, Cao K, Liu K, et al. Kynurenic acid, an IDO metabolite, controls TSG-6-mediated immunosuppression of human mesenchymal stem cells. Cell Death Differ 2018; 25(7): 1209-23.
[http://dx.doi.org/10.1038/s41418-017-0006-2] [PMID: 29238069]
[105]
Choi H, Lee RH, Bazhanov N, Oh JY, Prockop DJ. Anti-inflammatory protein TSG-6 secreted by activated MSCs attenuates zymosan-induced mouse peritonitis by decreasing TLR2/NF-κB signaling in resident macrophages. Blood 2011; 118(2): 330-8.
[http://dx.doi.org/10.1182/blood-2010-12-327353] [PMID: 21551236]
[106]
Lee RH, Pulin AA, Seo MJ, et al. Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell 2009; 5(1): 54-63.
[http://dx.doi.org/10.1016/j.stem.2009.05.003] [PMID: 19570514]
[107]
Mindrescu C, Dias AA, Olszewski RJ, Klein MJ, Reis LF, Wisniewski HG. Reduced susceptibility to collagen-induced arthritis in DBA/1J mice expressing the TSG-6 transgene. Arthritis Rheum 2002; 46(9): 2453-64.
[http://dx.doi.org/10.1002/art.10503] [PMID: 12355494]
[108]
Song W-J, Li Q, Ryu M-O, et al. TSG-6 released from intraperitoneally injected canine adipose tissue-derived mesenchymal stem cells ameliorate inflammatory bowel disease by inducing M2 macrophage switch in mice. Stem Cell Res Ther 2018; 9(1): 91.
[http://dx.doi.org/10.1186/s13287-018-0841-1] [PMID: 29625582]
[109]
Dyer DP, Salanga CL, Johns SC, et al. The anti-inflammatory protein TSG-6 regulates chemokine function by inhibiting chemokine/glycosaminoglycan interactions. J Biol Chem 2016; 291(24): 12627-40.
[http://dx.doi.org/10.1074/jbc.M116.720953] [PMID: 27044744]
[110]
Li T, Yan Y, Wang B, et al. Exosomes derived from human umbilical cord mesenchymal stem cells alleviate liver fibrosis. Stem Cells Dev 2013; 22(6): 845-54.
[http://dx.doi.org/10.1089/scd.2012.0395] [PMID: 23002959]
[111]
Rani S, Ryan AE, Griffin MD, Ritter T. Mesenchymal stem cell-derived extracellular vesicles: Toward cell-free therapeutic applications. Mol Ther 2015; 23(5): 812-23.
[http://dx.doi.org/10.1038/mt.2015.44] [PMID: 25868399]
[112]
Yu B, Kim HW, Gong M, et al. Exosomes secreted from GATA-4 overexpressing mesenchymal stem cells serve as a reservoir of anti-apoptotic microRNAs for cardioprotection. Int J Cardiol 2015; 182: 349-60.
[http://dx.doi.org/10.1016/j.ijcard.2014.12.043] [PMID: 25590961]
[113]
Wu S, Ju G-Q, Du T, Zhu Y-J, Liu G-H. Microvesicles derived from human umbilical cord Wharton’s jelly mesenchymal stem cells attenuate bladder tumor cell growth in vitro and in vivo. PLoS One 2013; 8(4): e61366.
[http://dx.doi.org/10.1371/journal.pone.0061366] [PMID: 23593475]
[114]
Akiyama K, Chen C, Wang D, et al. Mesenchymal-stem-cell-induced immunoregulation involves FAS-ligand-/FAS-mediated T cell apoptosis. Cell Stem Cell 2012; 10(5): 544-55.
[http://dx.doi.org/10.1016/j.stem.2012.03.007] [PMID: 22542159]
[115]
Ni K, Liu M, Zheng J, et al. PD-1/PD-L1 pathway mediates the alleviation of pulmonary fibrosis by human mesenchymal stem cells in humanized mice. Am J Respir Cell Mol Biol 2018; 58(6): 684-95.
[http://dx.doi.org/10.1165/rcmb.2017-0326OC] [PMID: 29220578]
[116]
Sheng H, Wang Y, Jin Y, et al. A critical role of IFNgamma in priming MSC-mediated suppression of T cell proliferation through up-regulation of B7-H1. Cell Res 2008; 18(8): 846-57.
[http://dx.doi.org/10.1038/cr.2008.80] [PMID: 18607390]
[117]
de Witte SF, Gargesha M, Merino A, et al. In vivo tracking of live and dead mesenchymal stromal cells. Cytotherapy 2017; 19(5): S155.
[http://dx.doi.org/10.1016/j.jcyt.2017.02.233]
[118]
Le Blanc K, Ringdén O. Immunomodulation by mesenchymal stem cells and clinical experience. J Intern Med 2007; 262(5): 509-25.
[http://dx.doi.org/10.1111/j.1365-2796.2007.01844.x] [PMID: 17949362]
[119]
Galleu A, Riffo-Vasquez Y, Trento C, et al. Apoptosis in mesenchymal stromal cells induces in vivo recipient-mediated immunomodulation. Sci Transl Med 2017; 9(416): eaam7828.
[http://dx.doi.org/10.1126/scitranslmed.aam7828] [PMID: 29141887]
[120]
Laing AG, Riffo-Vasquez Y, Sharif-Paghaleh E, Lombardi G, Sharpe PT. Immune modulation by apoptotic dental pulp stem cells in vivo. Immunotherapy 2018; 10(3): 201-11.
[http://dx.doi.org/10.2217/imt-2017-0117] [PMID: 29370720]
[121]
Franquesa M, Hoogduijn MJ, Bestard O, Grinyó JM. Immunomodulatory effect of mesenchymal stem cells on B cells. Front Immunol 2012; 3: 212.
[http://dx.doi.org/10.3389/fimmu.2012.00212]
[122]
Williams CA, Harry RA, McLeod JD. Apoptotic cells induce dendritic cell-mediated suppression via interferon-γ-induced IDO. Immunology 2008; 124(1): 89-101.
[http://dx.doi.org/10.1111/j.1365-2567.2007.02743.x] [PMID: 18067553]
[123]
Ciccocioppo R, Bernardo ME, Sgarella A, et al. Autologous bone marrow-derived mesenchymal stromal cells in the treatment of fistulising Crohn’s disease. Gut 2011; 60(6): 788-98.
[http://dx.doi.org/10.1136/gut.2010.214841] [PMID: 21257987]
[124]
Ferrer L, Kimbrel EA, Lam A, et al. Treatment of perianal fistulas with human embryonic stem cell-derived mesenchymal stem cells: A canine model of human fistulizing Crohn’s disease. Regen Med 2016; 11(1): 33-43.
[http://dx.doi.org/10.2217/rme.15.69] [PMID: 26387424]
[125]
Reinisch W, Gasché C, Tillinger W, et al. Clinical relevance of serum interleukin-6 in Crohn’s disease: single point measurements, therapy monitoring, and prediction of clinical relapse. Am J Gastroenterol 1999; 94(8): 2156-64.
[http://dx.doi.org/10.1111/j.1572-0241.1999.01288.x] [PMID: 10445543]
[126]
Ruffolo C, Scarpa M, Faggian D, et al. Cytokine network in chronic perianal Crohn’s disease and indeterminate colitis after colectomy. J Gastrointest Surg 2007; 11(1): 16-21.
[http://dx.doi.org/10.1007/s11605-006-0021-y] [PMID: 17390181]
[127]
Wang X, Kimbrel EA, Ijichi K, et al. Human ESC-derived MSCs outperform bone marrow MSCs in the treatment of an EAE model of multiple sclerosis. Stem Cell Reports 2014; 3(1): 115-30.
[http://dx.doi.org/10.1016/j.stemcr.2014.04.020]
[128]
Chao K, Zhang S, Qiu Y, et al. Human umbilical cord-derived mesenchymal stem cells protect against experimental colitis via CD5(+) B regulatory cells. Stem Cell Res Ther 2016; 7(1): 109.
[http://dx.doi.org/10.1186/s13287-016-0376-2] [PMID: 27515534]
[129]
Xie M, Qin H, Luo Q, et al. Comparison of adipose-derived and bone marrow mesenchymal stromal cells in a murine model of Crohn’s disease. Dig Dis Sci 2017; 62(1): 115-23.
[http://dx.doi.org/10.1007/s10620-016-4166-6] [PMID: 27107864]
[130]
Le Blanc K, Frassoni F, Ball L, et al. Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: A phase II study. Lancet 2008; 371(9624): 1579-86.
[http://dx.doi.org/10.1016/S0140-6736(08)60690-X] [PMID: 18468541]
[131]
Ryan JM, Barry FP, Murphy JM, Mahon BP. Mesenchymal stem cells avoid allogeneic rejection. J Inflamm 2005; 2(1): 8.
[http://dx.doi.org/10.1186/1476-9255-2-8] [PMID: 16045800]
[132]
Sun L, Wang D, Liang J, et al. Umbilical cord mesenchymal stem cell transplantation in severe and refractory systemic lupus erythematosus. Arthritis Rheum 2010; 62(8): 2467-75.
[http://dx.doi.org/10.1002/art.27548] [PMID: 20506343]
[133]
Yamout B, Hourani R, Salti H, et al. Bone marrow mesenchymal stem cell transplantation in patients with multiple sclerosis: A pilot study. J Neuroimmunol 2010; 227(1-2): 185-9.
[http://dx.doi.org/10.1016/j.jneuroim.2010.07.013] [PMID: 20728948]
[134]
Gharibi T, Ahmadi M, Seyfizadeh N, Jadidi-Niaragh F, Yousefi M. Immunomodulatory characteristics of mesenchymal stem cells and their role in the treatment of multiple sclerosis. Cell Immunol 2015; 293(2): 113-21.
[http://dx.doi.org/10.1016/j.cellimm.2015.01.002] [PMID: 25596473]
[135]
Kimbrel EA, Kouris NA, Yavanian GJ, et al. Mesenchymal stem cell population derived from human pluripotent stem cells displays potent immunomodulatory and therapeutic properties. Stem Cells Dev 2014; 23(14): 1611-24.
[http://dx.doi.org/10.1089/scd.2013.0554] [PMID: 24650034]
[136]
Zhao S, Wehner R, Bornhäuser M, Wassmuth R, Bachmann M, Schmitz M. Immunomodulatory properties of mesenchymal stromal cells and their therapeutic consequences for immune-mediated disorders. Stem Cells Dev 2010; 19(5): 607-14.
[http://dx.doi.org/10.1089/scd.2009.0345] [PMID: 19824807]
[137]
Yang FY, Chen R, Zhang X, et al. Preconditioning enhances the therapeutic effects of mesenchymal stem cells on colitis through PGE2-mediated T-cell modulation. Cell Transplant 2018; 27(9): 1352-67.
[http://dx.doi.org/10.1177/0963689718780304] [PMID: 30095002]
[138]
Mao F, Wu Y, Tang X, et al. Exosomes derived from human umbilical cord mesenchymal stem cells relieve inflammatory bowel disease in mice. BioMed Res Int 2017; 2017: 5356760.
[http://dx.doi.org/10.1155/2017/5356760] [PMID: 28589143]
[139]
Wu Y, Qiu W, Xu X, Kang J, Wang J, Wen Y, et al. Exosomes derived from human umbilical cord mesenchymal stem cells alleviate inflammatory bowel disease in mice through ubiquitination. Am J Transl Res 2018; 10(7): 2026-36.
[140]
Carvello M, Lightner A, Yamamoto T, Kotze PG, Spinelli A. Mesenchymal stem cells for perianal Crohn’s disease. Cells 2019; 8(7): 764.
[http://dx.doi.org/10.3390/cells8070764] [PMID: 31340546]
[141]
Simovic Markovic B, Nikolic A, Gazdic M, et al. Pharmacological inhibition of Gal-3 in mesenchymal stem cells enhances their capacity to promote alternative activation of macrophages in dextran sulphate sodium-induced colitis. Stem Cells Int 2016; 2016: 2640746.
[http://dx.doi.org/10.1155/2016/2640746] [PMID: 27057168]
[142]
Ishioka S, Hosokawa T, Ikeda T, et al. Therapeutic potential of mature adipocyte-derived dedifferentiated fat cells for inflammatory bowel disease. Pediatr Surg Int 2020; 36(7): 799-807.
[http://dx.doi.org/10.1007/s00383-020-04681-5] [PMID: 32448932]
[143]
Lian L, Huang Q, Zhang L, et al. Anti-fibrogenic potential of mesenchymal stromal cells in treating fibrosis in Crohn’s disease. Dig Dis Sci 2018; 63(7): 1821-34.
[http://dx.doi.org/10.1007/s10620-018-5082-8] [PMID: 29704139]
[144]
Barnhoorn MC, Wasser MNJM, Roelofs H, et al. Long-term evaluation of allogeneic bone marrow-derived mesenchymal stromal cell therapy for Crohn’s disease perianal fistulas. J Crohn’s Colitis 2020; 14(1): 64-70.
[http://dx.doi.org/10.1093/ecco-jcc/jjz116] [PMID: 31197361]
[145]
Ciccocioppo R, Gallia A, Sgarella A, Kruzliak P, Gobbi PG, Corazza GR. Long-term follow-up of Crohn disease fistulas after local injections of bone marrow-derived mesenchymal stem cells. Mayo Clin Proc 2015; 90(6): 747-55.
[http://dx.doi.org/10.1016/j.mayocp.2015.03.023] [PMID: 26046409]
[146]
García-Olmo D, García-Arranz M, Herreros D, Pascual I, Peiro C, Rodríguez-Montes JA. A phase I clinical trial of the treatment of Crohn’s fistula by adipose mesenchymal stem cell transplantation. Dis Colon Rectum 2005; 48(7): 1416-23.
[http://dx.doi.org/10.1007/s10350-005-0052-6] [PMID: 15933795]
[147]
Guadalajara H, Herreros D, De-La-Quintana P, Trebol J, Garcia-Arranz M, Garcia-Olmo D. Long-term follow-up of patients undergoing adipose-derived adult stem cell administration to treat complex perianal fistulas. I Int J Colorectal Dis 2012; 27(5): 595-600.
[http://dx.doi.org/10.1007/s00384-011-1350-1] [PMID: 22065114]
[148]
Cho YB, Lee WY, Park KJ, Kim M, Yoo H-W, Yu CS. Autologous adipose tissue-derived stem cells for the treatment of Crohn’s fistula: A phase I clinical study. Cell Transplant 2013; 22(2): 279-85.
[http://dx.doi.org/10.3727/096368912X656045] [PMID: 23006344]
[149]
Choi S, Ryoo S-B, Park KJ, et al. Autologous adipose tissue-derived stem cells for the treatment of complex perianal fistulas not associated with Crohn’s disease: A phase II clinical trial for safety and efficacy. Tech Coloproctol 2017; 21(5): 345-53.
[http://dx.doi.org/10.1007/s10151-017-1630-z] [PMID: 28567691]
[150]
Lee WY, Park KJ, Cho YB, et al. Autologous adipose tissue-derived stem cells treatment demonstrated favorable and sustainable therapeutic effect for Crohn’s fistula. Stem Cells 2013; 31(11): 2575-81.
[http://dx.doi.org/10.1002/stem.1357] [PMID: 23404825]
[151]
Cho YB, Park KJ, Yoon SN, et al. Long-term results of adipose-derived stem cell therapy for the treatment of Crohn’s fistula. Stem Cells Transl Med 2015; 4(5): 532-7.
[http://dx.doi.org/10.5966/sctm.2014-0199] [PMID: 25829404]
[152]
Dietz AB, Dozois EJ, Fletcher JG, et al. Autologous mesenchymal stem cells, applied in a bioabsorbable matrix, for treatment of perianal fistulas in patients with Crohn's disease. Gastroenterology 2017; 153(1): 59-62.
[http://dx.doi.org/10.1053/j.gastro.2017.04.001]
[153]
Herreros MD, Garcia-Arranz M, Guadalajara H, De-La-Quintana P, Garcia-Olmo D. Autologous expanded adipose-derived stem cells for the treatment of complex cryptoglandular perianal fistulas: A phase III randomized clinical trial (FATT 1: fistula Advanced Therapy Trial 1) and long-term evaluation. Dis Colon Rectum 2012; 55(7): 762-72.
[http://dx.doi.org/10.1097/DCR.0b013e318255364a] [PMID: 22706128]
[154]
Dozois EJ, Lightner AL, Mathis KL, et al. Early results of a phase I trial using an adipose-derived mesenchymal stem cell-coated fistula plug for the treatment of transsphincteric cryptoglandular fistulas. Dis Colon Rectum 2019; 62(5): 615-22.
[http://dx.doi.org/10.1097/DCR.0000000000001333] [PMID: 30664554]
[155]
Lightner AL, Dozois EJ, Dietz AB, et al. Matrix-delivered autologous mesenchymal stem cell therapy for refractory rectovaginal Crohn’s fistulas. Inflamm Bowel Dis 2020; 26(5): 670-7.
[http://dx.doi.org/10.1093/ibd/izz215] [PMID: 31605115]
[156]
Garcia-Olmo D, Herreros D, Pascual I, et al. Expanded adipose-derived stem cells for the treatment of complex perianal fistula: A phase II clinical trial. Dis Colon Rectum 2009; 52(1): 79-86.
[http://dx.doi.org/10.1007/DCR.0b013e3181973487] [PMID: 19273960]
[157]
Molendijk I, Bonsing BA, Roelofs H, et al. Allogeneic bone marrow-derived mesenchymal stromal cells promote healing of refractory perianal fistulas in patients with Crohn’s disease. Gastroenterology 2015; 149(4): 918-27.
[http://dx.doi.org/10.1053/j.gastro.2015.06.014]
[158]
García-Arranz M, Herreros MD, González-Gómez C, et al. Treatment of Crohn’s-related rectovaginal fistula with allogeneic expanded-adipose derived stem cells: A phase I-IIa clinical trial. Stem Cells Transl Med 2016; 5(11): 1441-6.
[http://dx.doi.org/10.5966/sctm.2015-0356] [PMID: 27412883]
[159]
Zhang J, Lv S, Liu X, Song B, Shi L. Umbilical cord mesenchymal stem cell treatment for Crohn’s disease: A randomized controlled clinical trial. Gut Liver 2018; 12(1): 73-8.
[http://dx.doi.org/10.5009/gnl17035] [PMID: 28873511]
[160]
Mayer L, Pandak WM, Melmed GY, et al. Safety and tolerability of human placenta-derived cells (PDA001) in treatment-resistant Crohn’s disease: A phase 1 study. Inflamm Bowel Dis 2013; 19(4): 754-60.
[http://dx.doi.org/10.1097/MIB.0b013e31827f27df] [PMID: 23429460]
[161]
Forbes GM, Sturm MJ, Leong RW, et al. A phase 2 study of allogeneic mesenchymal stromal cells for luminal Crohn’s disease refractory to biologic therapy. Clin Gastroenterol Hepatol 2014; 12(1): 64-71.
[http://dx.doi.org/10.1016/j.cgh.2013.06.021] [PMID: 23872668]
[162]
de la Portilla F, Alba F, García-Olmo D, Herrerías JM, González FX, Galindo A. Expanded allogeneic adipose-derived stem cells (eASCs) for the treatment of complex perianal fistula in Crohn’s disease: Results from a multicenter phase I/IIa clinical trial. Int J Colorectal Dis 2013; 28(3): 313-23.
[http://dx.doi.org/10.1007/s00384-012-1581-9] [PMID: 23053677]
[163]
Park KJ, Ryoo SB, Kim JS, et al. Allogeneic adipose-derived stem cells for the treatment of perianal fistula in Crohn’s disease: A pilot clinical trial. Colorectal Dis 2016; 18(5): 468-76.
[http://dx.doi.org/10.1111/codi.13223] [PMID: 26603576]
[164]
Panés J, García-Olmo D, Van Assche G, Colombel JF, Reinisch W, Baumgart DC, et al. Long-term efficacy and safety of stem cell therapy (Cx601) for complex perianal fistulas in patients with Crohn’s disease. Gastroenterology 2018; 154(5): 1334-42.
[http://dx.doi.org/10.1053/j.gastro.2017.12.020]
[165]
Nikolic M, Stift A, Reinisch W, et al. Allogeneic expanded adipose-derived stem cells in the treatment of rectovaginal fistulas in Crohn’s disease. Colorectal Dis 2021; 23(1): 153-8.
[http://dx.doi.org/10.1111/codi.15324] [PMID: 32810356]
[166]
Dige A, Hougaard HT, Agnholt J, et al. Efficacy of injection of freshly collected autologous adipose tissue into perianal fistulas in patients with Crohn’s disease. Gastroenterology 2019; 156(8): 2208-16.
[http://dx.doi.org/10.1053/j.gastro.2019.02.005]
[167]
Barnhoorn MC, Van Halteren AGS, Van Pel M, et al. Lymphoproliferative disease in the rectum 4 years after local mesenchymal stromal cell therapy for refractory perianal Crohn’s fistulas: A case report. J Crohn’s Colitis 2019; 13(6): 807-11.
[http://dx.doi.org/10.1093/ecco-jcc/jjy220] [PMID: 30561580]
[168]
Chaplin S. Darvadstrocel for the treatment of complex perianal fistulas. Prescriber 2019; 30(11): 32-3.
[http://dx.doi.org/10.1002/psb.1804]
[169]
Meng ZW, Baumgart DC. Darvadstrocel for the treatment of perianal fistulas in Crohn’s disease. Expert Rev Gastroenterol Hepatol 2020; 14(6): 405-10.
[http://dx.doi.org/10.1080/17474124.2020.1764349] [PMID: 32354239]
[170]
Cabalzar-Wondberg D, Turina M, Biedermann L, Rogler G, Schreiner P. Allogeneic expanded adipose-derived mesenchymal stem cell therapy for perianal fistulas in Crohn’s disease: A case series. Colorectal Dis 2021; 23(6): 1444-50.
[http://dx.doi.org/10.1111/codi.15587] [PMID: 33595166]
[171]
Galland S, Stamenkovic I. Mesenchymal stromal cells in cancer: A review of their immunomodulatory functions and dual effects on tumor progression. J Pathol 2020; 250(5): 555-72.
[http://dx.doi.org/10.1002/path.5357] [PMID: 31608444]
[172]
Ryska O, Serclova Z, Mestak O, Matouskova E, Vesely P, Mrazova I. Local application of adipose-derived mesenchymal stem cells supports the healing of fistula: Prospective randomised study on rat model of fistulising Crohn’s disease. Scand J Gastroenterol 2017; 52(5): 543-50.
[http://dx.doi.org/10.1080/00365521.2017.1281434] [PMID: 28116942]
[173]
Mariñas-Pardo L, Núñez-Naveira L, Hermida-Prieto M. Pre-clinical evaluation of the treatment with MSCs of fistular pathology in inflammatory bowel diseases. J Stem Cell Res Med
[http://dx.doi.org/10.15761/JSCRM.1000136]
[174]
Lee B-C, Shin N, Lee JY, et al. MIS416 enhances therapeutic functions of human umbilical cord blood-derived Mesenchymal stem cells against experimental colitis by modulating systemic immune milieu. Front Immunol 2018; 9: 1078.
[http://dx.doi.org/10.3389/fimmu.2018.01078]
[175]
Jung KJ, Lee GW, Park CH, et al. Mesenchymal stem cells decrease oxidative stress in the bowels of interleukin-10 knockout mice. Gut Liver 2020; 14(1): 100-7.
[http://dx.doi.org/10.5009/gnl18438] [PMID: 31158947]
[176]
Xu J, Wang X, Chen J, Chen S, Li Z, Liu H, et al. Embryonic stem cell-derived mesenchymal stem cells promote colon epithelial integrity and regeneration by elevating circulating IGF-1 in colitis mice. Theranostics 2020; 10(26): 12204.
[http://dx.doi.org/10.7150/thno.47683]
[177]
Li Y, Altemus J, Lightner AL. Mesenchymal stem cells and acellular products attenuate murine induced colitis. Stem Cell Res Ther 2020; 11(1): 515.
[http://dx.doi.org/10.1186/s13287-020-02025-7] [PMID: 33256827]
[178]
Forte D, Ciciarello M, Valerii MC, et al. Human cord blood-derived platelet lysate enhances the therapeutic activity of adipose-derived mesenchymal stromal cells isolated from Crohn's disease patients in a mouse model of colitis. Stem Cell Res Ther 2015; 6(1): 170.
[http://dx.doi.org/10.1186/s13287-015-0166-2]
[179]
Duijvestein M, Vos ACW, Roelofs H, et al. Autologous bone marrow-derived mesenchymal stromal cell treatment for refractory luminal Crohn’s disease: Results of a phase I study. Gut 2010; 59(12): 1662-9.
[http://dx.doi.org/10.1136/gut.2010.215152] [PMID: 20921206]
[180]
Dhere T, Copland I, Garcia M, et al. The safety of autologous and metabolically fit bone marrow mesenchymal stromal cells in medically refractory Crohn’s disease - a phase 1 trial with three doses. Aliment Pharmacol Ther 2016; 44(5): 471-81.
[http://dx.doi.org/10.1111/apt.13717] [PMID: 27385373]
[181]
Vieujean S, Loly JP, Boutaffala L, et al. P293 local mesenchymal stem cells injection in Crohn’s disease strictures: A phase I-II, open-label clinical study. J Crohn’s Colitis 2021; 15 (Suppl. 1): S323-4.
[http://dx.doi.org/10.1093/ecco-jcc/jjab076.417]
[182]
Maciel Gutiérrez VM, Gutiérrez Guillen SG, Centeno Flores MW, et al. Safety of allogeneic adipose tissue-derived mesenchymal stem cells for the treatment of complex perianal fistulas not associated with Crohn’s disease: A phase i clinical trial. Dis Colon Rectum 2021; 64(3): 328-34.
[http://dx.doi.org/10.1097/DCR.0000000000001863] [PMID: 33538521]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy