Review Article

重症监护中的微生物群:一个非常规和未知的盟友

卷 29, 期 18, 2022

发表于: 13 January, 2022

页: [3179 - 3188] 页: 10

弟呕挨: 10.2174/0929867328666210915115056

价格: $65

摘要

背景:消化道是外部环境和身体之间的界面,其中复杂的多微生物生态学的相互作用对健康和疾病有重要影响。住院期间和重症监护病房(ICU)中改变的生理机制有助于病原群的生长。入院后数小时内发生肠道生态失调。这可能是由于不同的因素,如正常肠道运输的改变,各种药物的管理,或肠壁的改变,导致一连串的事件,将导致硝酸盐的增加和氧浓度的减少,和自由基的释放。 目的:本研究旨在报道微生物群对重症监护科患者脓毒症发展的最新进展。在这篇简短的综述中,我们回顾了关于肠道免疫防御的局部和系统机制的最新科学发现。此外,我们认为有必要在对危重患者的微生物群进行的众多研究的基础上回顾文献,以预防这些患者感染的传播。 材料与方法:本文旨在回答四个主要问题: 1-肠道菌群的主要防御系统帮助我们预防系统性疾病的风险? 2-生态失调的主要全身性异常是什么? 3-ICU预防感染传播的现代策略是什么? 4-Covid-19与微生物群之间的关系是什么? 我们回顾了72篇文章使用以下关键词:“微生物群”和“微生物群”和“重症监护”,“重症监护”和“肠道”,“危重疾病”,“微生物群”和“重症护理”,“微生物群”和“脓毒症”,“微生物群”和“感染”,和“胃肠道免疫”:科克伦对照试验注册,科克伦图书馆, Medline and Pubmed, Google Scholar, Ovid/Wiley。此外,我们还咨询了ClinicalTrials.com网站,以找出最近已经进行或正在进行的研究。 结果:危重病可改变肠道菌群,导致内稳态失衡。尽管许多机制,如上皮细胞与钙化细胞一起构建一个机械屏障致病细菌,粘液相关淋巴组织(麦)刺激免疫反应通过生产干扰素伽马(IFN-y)和THN-a或或生产淋巴细胞Telper产生的抗炎细胞因子2。但这些防御可以改变在ICU住院后,导致严重的并发症,如急性呼吸窘迫综合征(ARDS)、医疗保健相关肺炎(HAP)和呼吸机相关肺炎(VAP),全身感染和多器官衰竭(MOF),也冠状动脉疾病(CAD)的发展。此外,该微生物群对肠道并发症的发展和sars-covid-19患者的严重程度也有显著影响。 结论:微生物群被认为是使重症监护病房中已经非常虚弱的患者临床病情恶化的重要因素之一。同时,微生物群在预防icu相关并发症中也起着至关重要的作用。通过利用现有的资源,如益生菌、合生菌或粪便微生物群移植(FMT),我们可以保持微生物群和肠道的完整性,这将有助于维持ICU患者的稳态。

关键词: 微生物群和ICU、ICU和肠道、微生物群和危重症、微生物群和危重症护理、脓毒症、感染、胃肠道免疫、SARS-COVID-19。

[1]
McDermott, A.J.; Huffnagle, G.B. The microbiome and regulation of mucosal immunity. Immunology, 2014, 142(1), 24-31.
[http://dx.doi.org/10.1111/imm.12231] [PMID: 24329495]
[2]
Abreu, M.T. Toll-like receptor signalling in the intestinal epithelium: how bacterial recognition shapes intestinal function. Nat. Rev. Immunol., 2010, 10(2), 131-144.
[http://dx.doi.org/10.1038/nri2707] [PMID: 20098461]
[3]
del Rio, M.L.; Bernhardt, G.; Rodriguez-Barbosa, J.I.; Förster, R. Development and functional specialization of CD103+ dendritic cells. Immunol. Rev., 2010, 234(1), 268-281.
[http://dx.doi.org/10.1111/j.0105-2896.2009.00874.x] [PMID: 20193025]
[4]
Sun, C.M.; Hall, J.A.; Blank, R.B.; Bouladoux, N.; Oukka, M.; Mora, J.R.; Belkaid, Y. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid. J. Exp. Med., 2007, 204(8), 1775-1785.
[http://dx.doi.org/10.1084/jem.20070602] [PMID: 17620362]
[5]
Hinde, K.; Lewis, Z.T. Microbiota. Mother’s littlest helpers. Science, 2015, 348(6242), 1427-1428.
[http://dx.doi.org/10.1126/science.aac7436] [PMID: 26113704]
[6]
Blaser, M.J. The microbiome revolution. J. Clin. Invest., 2014, 124(10), 4162-4165.
[http://dx.doi.org/10.1172/JCI78366] [PMID: 25271724]
[7]
Thaiss, C.A.; Zmora, N.; Levy, M.; Elinav, E. The microbiome and innate immunity. Nature, 2016, 535(7610), 65-74.
[http://dx.doi.org/10.1038/nature18847] [PMID: 27383981]
[8]
Piccini, F. Alla scoperta del microbioma umano, flora batterica, nutrizione e malattie del progresso. Fabio Piccini. Edizioni del Kindle,
[9]
Lynch, S.V.; Pedersen, O. The human intestinal microbiome in health and disease. N. Engl. J. Med., 2016, 375(24), 2369-2379.
[http://dx.doi.org/10.1056/NEJMra1600266] [PMID: 27974040]
[10]
Zhang, D.; Frenette, P.S. Cross talk between neutrophils and the microbiota. Blood, 2019, 133(20), 2168-2177.
[http://dx.doi.org/10.1182/blood-2018-11-844555] [PMID: 30898860]
[11]
Eckburg, P.B.; Bik, E.M.; Bernstein, C.N.; Purdom, E.; Dethlefsen, L.; Sargent, M.; Gill, S.R.; Nelson, K.E.; Relman, D.A. Diversity of the human intestinal microbial flora. Science, 2005, 308(5728), 1635-1638.
[http://dx.doi.org/10.1126/science.1110591] [PMID: 15831718]
[12]
Longhitano, Y.; Zanza, C.; Thangathurai, D.; Taurone, S.; Kozel, D.; Racca, F.; Audo, A.; Ravera, E.; Migneco, A.; Piccioni, A.; Franceschi, F. Gut alterations in septic patients: A biochemical literature review. Rev. Recent Clin. Trials, 2020, 15(4), 289-297.
[http://dx.doi.org/10.2174/1574887115666200811105251] [PMID: 32781963]
[13]
Nakov, R.; Segal, J.P.; Settanni, C.R.; Bibbò, S.; Gasbarrini, A.; Cammarota, G.; Ianiro, G. Microbiome: what intensivists should know. Minerva Anestesiol., 2020, 86(7), 777-785.
[http://dx.doi.org/10.23736/S0375-9393.20.14278-0] [PMID: 32368882]
[14]
U.S. National library of medicine. Availalble from: https://clinicaltrials.gov/ [Accessed February 28, 2021].
[15]
Dickson, R.P. The microbiome and critical illness. Lancet Respir. Med., 2016, 4(1), 59-72.
[http://dx.doi.org/10.1016/S2213-2600(15)00427-0] [PMID: 26700442]
[16]
Artis, D. Epithelial-cell recognition of commensal bacteria and maintenance of immune homeostasis in the gut. Nat. Rev. Immunol., 2008, 8(6), 411-420.
[http://dx.doi.org/10.1038/nri2316] [PMID: 18469830]
[17]
Yen, T.H.; Wright, N.A. The gastrointestinal tract stem cell niche. Stem Cell Rev., 2006, 2(3), 203-212.
[http://dx.doi.org/10.1007/s12015-006-0048-1] [PMID: 17625256]
[18]
Piccioni, A.; de Cunzo, T.; Valletta, F.; Covino, M.; Rinninella, E.; Raoul, P.; Zanza, C.; Mele, M.C.; Franceschi, F. Gut microbiota and environment in coronary artery disease. Int. J. Environ. Res. Public Health, 2021, 18(8), 4242.
[http://dx.doi.org/10.3390/ijerph18084242] [PMID: 33923612]
[19]
Kleinschek, M.A.; Boniface, K.; Sadekova, S.; Grein, J.; Murphy, E.E.; Turner, S.P.; Raskin, L.; Desai, B.; Faubion, W.A.; de Waal Malefyt, R.; Pierce, R.H.; McClanahan, T.; Kastelein, R.A. Circulating and gut-resident human Th17 cells express CD161 and promote intestinal inflammation. J. Exp. Med., 2009, 206(3), 525-534.
[http://dx.doi.org/10.1084/jem.20081712] [PMID: 19273624]
[20]
Makita, S.; Kanai, T.; Nemoto, Y.; Totsuka, T.; Okamoto, R.; Tsuchiya, K.; Yamamoto, M.; Kiyono, H.; Watanabe, M. Intestinal lamina propria retaining CD4+CD25+ regulatory T cells is a suppressive site of intestinal inflammation. J. Immunol., 2007, 178(8), 4937-4946.
[http://dx.doi.org/10.4049/jimmunol.178.8.4937] [PMID: 17404275]
[21]
Muñoz, M.; Heimesaat, M.M.; Danker, K.; Struck, D.; Lohmann, U.; Plickert, R.; Bereswill, S.; Fischer, A.; Dunay, I.R.; Wolk, K.; Loddenkemper, C.; Krell, H.W.; Libert, C.; Lund, L.R.; Frey, O.; Hölscher, C.; Iwakura, Y.; Ghilardi, N.; Ouyang, W.; Kamradt, T.; Sabat, R.; Liesenfeld, O. Interleukin (IL)-23 mediates Toxoplasma gondii-induced immunopathology in the gut via matrixmetalloproteinase-2 and IL-22 but independent of IL-17. J. Exp. Med., 2009, 206(13), 3047-3059.
[http://dx.doi.org/10.1084/jem.20090900] [PMID: 19995958]
[22]
Bailey, M.; Plunkett, F.J.; Rothkötter, H.J.; Vega-Lopez, M.A.; Haverson, K.; Stokes, C.R. Regulation of mucosal immune responses in effector sites. Proc. Nutr. Soc., 2001, 60(4), 427-435.
[http://dx.doi.org/10.1079/PNS2001118] [PMID: 12069394]
[23]
Brandtzaeg, P.; Pabst, R. Let’s go mucosal: communication on slippery ground. Trends Immunol., 2004, 25(11), 570-577.
[http://dx.doi.org/10.1016/j.it.2004.09.005] [PMID: 15489184]
[24]
Lycke, N.Y.; Bemark, M. The role of Peyer’s patches in synchronizing gut IgA responses. Front. Immunol., 2012, 3, 329.
[http://dx.doi.org/10.3389/fimmu.2012.00329] [PMID: 23181060]
[25]
Stecher, B.; Denzler, R.; Maier, L.; Bernet, F.; Sanders, M.J.; Pickard, D.J.; Barthel, M.; Westendorf, A.M.; Krogfelt, K.A.; Walker, A.W.; Ackermann, M.; Dobrindt, U.; Thomson, N.R.; Hardt, W.D. Gut inflammation can boost horizontal gene transfer between pathogenic and commensal Enterobacteriaceae. Proc. Natl. Acad. Sci. USA, 2012, 109(4), 1269-1274.
[http://dx.doi.org/10.1073/pnas.1113246109] [PMID: 22232693]
[26]
Babrowski, T.; Romanowski, K.; Fink, D.; Kim, M.; Gopalakrishnan, V.; Zaborina, O.; Alverdy, J.C. The intestinal environment of surgical injury transforms Pseudomonas aeruginosa into a discrete hypervirulent morphotype capable of causing lethal peritonitis. Surgery, 2013, 153(1), 36-43.
[http://dx.doi.org/10.1016/j.surg.2012.06.022] [PMID: 22862900]
[27]
Hayakawa, M.; Asahara, T.; Henzan, N.; Murakami, H.; Yamamoto, H.; Mukai, N.; Minami, Y.; Sugano, M.; Kubota, N.; Uegaki, S.; Kamoshida, H.; Sawamura, A.; Nomoto, K.; Gando, S. Dramatic changes of the gut flora immediately after severe and sudden insults. Dig. Dis. Sci., 2011, 56(8), 2361-2365.
[http://dx.doi.org/10.1007/s10620-011-1649-3] [PMID: 21384123]
[28]
Vincent, J.L.; Rello, J.; Marshall, J.; Silva, E.; Anzueto, A.; Martin, C.D.; Moreno, R.; Lipman, J.; Gomersall, C.; Sakr, Y.; Reinhart, K. International study of the prevalence and outcomes of infection in intensive care units. JAMA, 2009, 302(21), 2323-2329.
[http://dx.doi.org/10.1001/jama.2009.1754] [PMID: 19952319]
[29]
Krezalek, M.A.; DeFazio, J.; Zaborina, O.; Zaborin, A.; Alverdy, J.C. The shift of an intestinal “microbiome” to a “pathobiome” governs the course and outcome of sepsis following surgical injury. Shock, 2016, 45(5), 475-482.
[http://dx.doi.org/10.1097/SHK.0000000000000534] [PMID: 26863118]
[30]
Grootjans, J.; Lenaerts, K.; Derikx, J.P.; Matthijsen, R.A.; de Bruïne, A.P.; van Bijnen, A.A.; van Dam, R.M.; Dejong, C.H.; Buurman, W.A. Human intestinal ischemia-reperfusion-induced inflammation characterized: experiences from a new translational model. Am. J. Pathol., 2010, 176(5), 2283-2291.
[http://dx.doi.org/10.2353/ajpath.2010.091069] [PMID: 20348235]
[31]
Shimizu, K.; Ogura, H.; Hamasaki, T.; Goto, M.; Tasaki, O.; Asahara, T.; Nomoto, K.; Morotomi, M.; Matsushima, A.; Kuwagata, Y.; Sugimoto, H. Altered gut flora are associated with septic complications and death in critically ill patients with systemic inflammatory response syndrome. Dig. Dis. Sci., 2011, 56(4), 1171-1177.
[http://dx.doi.org/10.1007/s10620-010-1418-8] [PMID: 20931284]
[32]
Arumugam, M.; Raes, J.; Pelletier, E.; Le Paslier, D.; Yamada, T.; Mende, D.R.; Fernandes, G.R.; Tap, J.; Bruls, T.; Batto, J.M.; Bertalan, M.; Borruel, N.; Casellas, F.; Fernandez, L.; Gautier, L.; Hansen, T.; Hattori, M.; Hayashi, T.; Kleerebezem, M.; Kurokawa, K.; Leclerc, M.; Levenez, F.; Manichanh, C.; Nielsen, H.B.; Nielsen, T.; Pons, N.; Poulain, J.; Qin, J.; Sicheritz-Ponten, T.; Tims, S.; Torrents, D.; Ugarte, E.; Zoetendal, E.G.; Wang, J.; Guarner, F.; Pedersen, O.; de Vos, W.M.; Brunak, S.; Doré, J.; Antolín, M.; Artiguenave, F.; Blottiere, H.M.; Almeida, M.; Brechot, C.; Cara, C.; Chervaux, C.; Cultrone, A.; Delorme, C.; Denariaz, G.; Dervyn, R.; Foerstner, K.U.; Friss, C.; van de Guchte, M.; Guedon, E.; Haimet, F.; Huber, W.; van Hylckama-Vlieg, J.; Jamet, A.; Juste, C.; Kaci, G.; Knol, J.; Lakhdari, O.; Layec, S.; Le Roux, K.; Maguin, E.; Mérieux, A.; Melo Minardi, R.; M’rini, C.; Muller, J.; Oozeer, R.; Parkhill, J.; Renault, P.; Rescigno, M.; Sanchez, N.; Sunagawa, S.; Torrejon, A.; Turner, K.; Vandemeulebrouck, G.; Varela, E.; Winogradsky, Y.; Zeller, G.; Weissenbach, J.; Ehrlich, S.D.; Bork, P. Enterotypes of the human gut microbiome. Nature, 2011, 473(7346), 174-180.
[http://dx.doi.org/10.1038/nature09944] [PMID: 21508958]
[33]
Lankelma, J.M.; van Vught, L.A.; Belzer, C.; Schultz, M.J.; van der Poll, T.; de Vos, W.M.; Wiersinga, W.J. Critically ill patients demonstrate large interpersonal variation in intestinal microbiota dysregulation: a pilot study. Intensive Care Med., 2017, 43(1), 59-68.
[http://dx.doi.org/10.1007/s00134-016-4613-z] [PMID: 27837233]
[34]
Zaborin, A.; Smith, D.; Garfield, K.; Quensen, J.; Shakhsheer, B.; Kade, M.; Tirrell, M.; Tiedje, J.; Gilbert, J.A.; Zaborina, O.; Alverdy, J.C. Membership and behavior of ultra-low-diversity pathogen communities present in the gut of humans during prolonged critical illness. MBio, 2014, 5(5), e01361-e14.
[http://dx.doi.org/10.1128/mBio.01361-14] [PMID: 25249279]
[35]
McDonald, D.; Ackermann, G.; Khailova, L.; Baird, C.; Heyland, D.; Kozar, R.; Lemieux, M.; Derenski, K.; King, J.; Vis-Kampen, C.; Knight, R.; Wischmeyer, P.E. Extreme dysbiosis of the microbiome in critical illness. MSphere, 2016, 1(4), e00199-e16.
[http://dx.doi.org/10.1128/mSphere.00199-16] [PMID: 27602409]
[36]
Paroni Sterbini, F.; Palladini, A.; Masucci, L.; Cannistraci, C.V.; Pastorino, R.; Ianiro, G.; Bugli, F.; Martini, C.; Ricciardi, W.; Gasbarrini, A.; Sanguinetti, M.; Cammarota, G.; Posteraro, B. Effects of proton pump inhibitors on the gastric mucosa-associated microbiota in dyspeptic patients. Appl. Environ. Microbiol., 2016, 82(22), 6633-6644.
[http://dx.doi.org/10.1128/AEM.01437-16] [PMID: 27590821]
[37]
Marshall, J.C.; Christou, N.V.; Meakins, J.L. The gastrointestinal tract. The “undrained abscess” of multiple organ failure. Ann. Surg., 1993, 218(2), 111-119.
[http://dx.doi.org/10.1097/00000658-199308000-00001] [PMID: 8342990]
[38]
Hilty, M.; Burke, C.; Pedro, H.; Cardenas, P.; Bush, A.; Bossley, C.; Davies, J.; Ervine, A.; Poulter, L.; Pachter, L.; Moffatt, M.F.; Cookson, W.O. Disordered microbial communities in asthmatic airways. PLoS One, 2010, 5(1), e8578.
[http://dx.doi.org/10.1371/journal.pone.0008578] [PMID: 20052417]
[39]
Dickson, R.P.; Erb-Downward, J.R.; Freeman, C.M.; McCloskey, L.; Falkowski, N.R.; Huffnagle, G.B.; Curtis, J.L. Bacterial topography of the healthy human lower respiratory tract. MBio, 2017, 8(1), e02287-e16.
[http://dx.doi.org/10.1128/mBio.02287-16] [PMID: 28196961]
[40]
Dickson, R.P.; Erb-Downward, J.R.; Freeman, C.M.; McCloskey, L.; Beck, J.M.; Huffnagle, G.B.; Curtis, J.L. Spatial variation in the healthy human lung microbiome and the adapted island model of lung biogeography. Ann. Am. Thorac. Soc., 2015, 12(6), 821-830.
[http://dx.doi.org/10.1513/AnnalsATS.201501-029OC] [PMID: 25803243]
[41]
Gleeson, K.; Eggli, D.F.; Maxwell, S.L. Quantitative aspiration during sleep in normal subjects. Chest, 1997, 111(5), 1266-1272.
[http://dx.doi.org/10.1378/chest.111.5.1266] [PMID: 9149581]
[42]
Segal, L.N.; Alekseyenko, A.V.; Clemente, J.C.; Kulkarni, R.; Wu, B.; Gao, Z.; Chen, H.; Berger, K.I.; Goldring, R.M.; Rom, W.N.; Blaser, M.J.; Weiden, M.D. Enrichment of lung microbiome with supraglottic taxa is associated with increased pulmonary inflammation. Microbiome, 2013, 1(1), 19.
[http://dx.doi.org/10.1186/2049-2618-1-19] [PMID: 24450871]
[43]
Sekizawa, K.; Ujiie, Y.; Itabashi, S.; Sasaki, H.; Takishima, T. Lack of cough reflex in aspiration pneumonia. Lancet, 1990, 335(8699), 1228-1229.
[http://dx.doi.org/10.1016/0140-6736(90)92758-A] [PMID: 1971077]
[44]
Sands, K.M.; Wilson, M.J.; Lewis, M.A.O.; Wise, M.P.; Palmer, N.; Hayes, A.J.; Barnes, R.A.; Williams, D.W. Respiratory pathogen colonization of dental plaque, the lower airways, and endotracheal tube biofilms during mechanical ventilation. J. Crit. Care, 2017, 37, 30-37.
[http://dx.doi.org/10.1016/j.jcrc.2016.07.019] [PMID: 27621110]
[45]
Munro, C.L.; Grap, M.J. Oral health and care in the intensive care unit: state of the science. Am. J. Crit. Care, 2004, 13(1), 25-33.
[http://dx.doi.org/10.4037/ajcc2004.13.1.25] [PMID: 14735645]
[46]
Günther, A.; Siebert, C.; Schmidt, R.; Ziegler, S.; Grimminger, F.; Yabut, M.; Temmesfeld, B.; Walmrath, D.; Morr, H.; Seeger, W. Surfactant alterations in severe pneumonia, acute respiratory distress syndrome, and cardiogenic lung edema. Am. J. Respir. Crit. Care Med., 1996, 153(1), 176-184.
[http://dx.doi.org/10.1164/ajrccm.153.1.8542113] [PMID: 8542113]
[47]
Wu, H.; Kuzmenko, A.; Wan, S.; Schaffer, L.; Weiss, A.; Fisher, J.H.; Kim, K.S.; McCormack, F.X. Surfactant proteins A and D inhibit the growth of Gram-negative bacteria by increasing membrane permeability. J. Clin. Invest., 2003, 111(10), 1589-1602.
[http://dx.doi.org/10.1172/JCI16889] [PMID: 12750409]
[48]
Poroyko, V.; Meng, F.; Meliton, A.; Afonyushkin, T.; Ulanov, A.; Semenyuk, E.; Latif, O.; Tesic, V.; Birukova, A.A.; Birukov, K.G. Alterations of lung microbiota in a mouse model of LPS-induced lung injury. Am. J. Physiol. Lung Cell. Mol. Physiol., 2015, 309(1), L76-L83.
[http://dx.doi.org/10.1152/ajplung.00061.2014] [PMID: 25957290]
[49]
Dickson, R.P.; Singer, B.H.; Newstead, M.W.; Falkowski, N.R.; Erb-Downward, J.R.; Standiford, T.J.; Huffnagle, G.B. Enrichment of the lung microbiome with gut bacteria in sepsis and the acute respiratory distress syndrome. Nat. Microbiol., 2016, 1(10), 16113.
[http://dx.doi.org/10.1038/nmicrobiol.2016.113] [PMID: 27670109]
[50]
Lukovic, E.; Moitra, V.K.; Freedberg, D.E. The microbiome: implications for perioperative and critical care. Curr. Opin. Anaesthesiol., 2019, 32(3), 412-420.
[http://dx.doi.org/10.1097/ACO.0000000000000734] [PMID: 30925514]
[51]
Spreadborough, P.; Lort, S.; Pasquali, S.; Popplewell, M.; Owen, A.; Kreis, I.; Tucker, O.; Vohra, R.S. A systematic review and meta-analysis of perioperative oral decontamination in patients undergoing major elective surgery. Perioper. Med. (Lond.), 2016, 5, 6.
[http://dx.doi.org/10.1186/s13741-016-0030-7] [PMID: 27006763]
[52]
Kollef, M.H.; Afessa, B.; Anzueto, A.; Veremakis, C.; Kerr, K.M.; Margolis, B.D.; Craven, D.E.; Roberts, P.R.; Arroliga, A.C.; Hubmayr, R.D.; Restrepo, M.I.; Auger, W.R.; Schinner, R. Silver-coated endotracheal tubes and incidence of ventilator-associated pneumonia: the NASCENT randomized trial. JAMA, 2008, 300(7), 805-813.
[http://dx.doi.org/10.1001/jama.300.7.805] [PMID: 18714060]
[53]
Muscedere, J.; Rewa, O.; McKechnie, K.; Jiang, X.; Laporta, D.; Heyland, D.K. Subglottic secretion drainage for the prevention of ventilator-associated pneumonia: a systematic review and meta-analysis. Crit. Care Med., 2011, 39(8), 1985-1991.
[http://dx.doi.org/10.1097/CCM.0b013e318218a4d9] [PMID: 21478738]
[54]
Ianiro, G.; Valerio, L.; Masucci, L.; Pecere, S.; Bibbò, S.; Quaranta, G.; Posteraro, B.; Currò, D.; Sanguinetti, M.; Gasbarrini, A.; Cammarota, G. Predictors of failure after single faecal microbiota transplantation in patients with recurrent Clostridium difficile infection: results from a 3-year, single-centre cohort study. Clin. Microbiol. Infect., 2017, 23(5), 337.e1-337.e3.
[http://dx.doi.org/10.1016/j.cmi.2016.12.025] [PMID: 28057560]
[55]
Petrof, E.O.; Dhaliwal, R.; Manzanares, W.; Johnstone, J. Probiotics in the critically ill: a systematic review of the randomized trial evidence. Crit. Care Med., 2012, 40, 3290-3302.
[56]
Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; Calder, P.C.; Sanders, M.E. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol., 2014, 11(8), 506-514.
[http://dx.doi.org/10.1038/nrgastro.2014.66] [PMID: 24912386]
[57]
Fischer, M.; Sipe, B.; Rogers, N.; Sagi, S. Fecal microbiota transplant in severe and severe-complicated Clostridium difficile: a promising treatment approach. Gut microbes, 2017, 8, 289e302.
[58]
Steidler, L.; Hans, W.; Schotte, L.; Neirynck, S.; Obermeier, F.; Falk, W.; Fiers, W.; Remaut, E. Treatment of murine colitis by Lactococcus lactis secreting interleukin-10. Science, 2000, 289(5483), 1352-1355.
[http://dx.doi.org/10.1126/science.289.5483.1352] [PMID: 10958782]
[59]
Ritchie, M.L.; Romanuk, T.N. A meta-analysis of probiotic efficacy for gastrointestinal diseases. PLoS One, 2012, 7(4), e34938.
[http://dx.doi.org/10.1371/journal.pone.0034938] [PMID: 22529959]
[60]
Manzanares, W.; Lemieux, M.; Langlois, P.L.; Wischmeyer, P.E. Probiotic and synbiotic therapy in critical illness: a systematic review and meta-analysis. Crit. Care, 2016, 19, 262.
[http://dx.doi.org/10.1186/s13054-016-1434-y] [PMID: 27538711]
[61]
McClave, S.A.; Taylor, B.E.; Martindale, R.G.; Warren, M.M.; Johnson, D.R.; Braunschweig, C.; McCarthy, M.S.; Davanos, E.; Rice, T.W.; Cresci, G.A.; Gervasio, J.M.; Sacks, G.S.; Roberts, P.R.; Compher, C. Guidelines for the provision and assessment of nutrition support therapy in the adult critically Ill patient: Society of critical care medicine (SCCM) and American society for parenteral and enteral nutrition (A.S.P.E.N.). JPEN J. Parenter. Enteral Nutr., 2016, 40(2), 159-211.
[http://dx.doi.org/10.1177/0148607115621863] [PMID: 26773077]
[62]
Shimizu, K.; Yamada, T.; Ogura, H.; Mohri, T.; Kiguchi, T.; Fujimi, S.; Asahara, T.; Yamada, T.; Ojima, M.; Ikeda, M.; Shimazu, T. Synbiotics modulate gut microbiota and reduce enteritis and ventilator-associated pneumonia in patients with sepsis: a randomized controlled trial. Crit. Care, 2018, 22(1), 239.
[http://dx.doi.org/10.1186/s13054-018-2167-x] [PMID: 30261905]
[63]
Cammarota, G.; Ianiro, G.; Tilg, H.; Rajilić-Stojanović, M.; Kump, P.; Satokari, R.; Sokol, H.; Arkkila, P.; Pintus, C.; Hart, A.; Segal, J.; Aloi, M.; Masucci, L.; Molinaro, A.; Scaldaferri, F.; Gasbarrini, G.; Lopez-Sanroman, A.; Link, A.; de Groot, P.; de Vos, W.M.; Högenauer, C.; Malfertheiner, P.; Mattila, E.; Milosavljević, T.; Nieuwdorp, M.; Sanguinetti, M.; Simren, M.; Gasbarrini, A. European consensus conference on faecal microbiota transplantation in clinical practice. Gut, 2017, 66(4), 569-580.
[http://dx.doi.org/10.1136/gutjnl-2016-313017] [PMID: 28087657]
[64]
Kraft, S.C.; Earle, R.H.; Roesler, M.; Esterly, J.R. Unexplained bronchopulmonary disease with inflammatory bowel disease. Arch. Intern. Med., 1976, 136(4), 454-459.
[http://dx.doi.org/10.1001/archinte.1976.03630040056012] [PMID: 1267553]
[65]
von Wichert, P.; Barth, P.; von Wichert, G. Tracheal and bronchial involvement in colitis ulcerosa - a colo-bronchitic syndrome? A case report and some additional considerations. Ger. Med. Sci., 2015, 13, Doc03.
[PMID: 25834480]
[66]
McAleer, J.P.; Kolls, J.K. Contributions of the intestinal microbiome in lung immunity. Eur. J. Immunol., 2018, 48(1), 39-49.
[http://dx.doi.org/10.1002/eji.201646721] [PMID: 28776643]
[67]
Marsland, B.J.; Trompette, A.; Gollwitzer, E.S. The gut-lung axis in respiratory disease. Ann. Am. Thorac. Soc., 2015, 12(Suppl. 2), S150-S156.
[PMID: 26595731]
[68]
Wong, M.C.; Huang, J.; Lai, C.; Ng, R.; Chan, F.K.L.; Chan, P.K.S. Detection of SARS-CoV-2 RNA in fecal specimens of patients with confirmed COVID-19: A meta-analysis. J. Infect., 2020, 81(2), e31-e38.
[http://dx.doi.org/10.1016/j.jinf.2020.06.012] [PMID: 32535156]
[69]
Zuo, T.; Zhang, F.; Lui, G.C.Y. Alterations in gut microbiota of patients with COVID-19 during time of hospitalization. Gastroenterology, 2020, S0016–5085, 34701-34706.
[70]
Li, F.; Lu, H.; Li, X.; Wang, X.; Zhang, Q.; Mi, L. The impact of COVID-19 on intestinal flora: A protocol for systematic review and meta analysis. Medicine (Baltimore), 2020, 99(39), e22273.
[http://dx.doi.org/10.1097/MD.0000000000022273] [PMID: 32991426]
[71]
Kalantar-Zadeh, K.; Ward, S.A.; Kalantar-Zadeh, K.; El-Omar, E.M. Considering the effects of microbiome and diet on SARS-CoV-2 infection: nanotechnology roles. ACS Nano, 2020, 14(5), 5179-5182.
[http://dx.doi.org/10.1021/acsnano.0c03402] [PMID: 32356654]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy