Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Research Progress on Dipeptidyl Peptidase Family: Structure, Function and Xenobiotic Metabolism

Author(s): Xing-Kai Qian, Jing Zhang, Xiao-Dong Li, Pei-Fang Song and Li-Wei Zou*

Volume 29, Issue 12, 2022

Published on: 11 January, 2022

Page: [2167 - 2188] Pages: 22

DOI: 10.2174/0929867328666210915103431

Price: $65

Abstract

Prolyl-specific peptidases or proteases, including Dipeptidyl Peptidase 2, 4, 6, 8, 9, 10, Fibroblast Activation Protein, prolyl endopeptidase, and prolyl carboxypeptidase, belong to the dipeptidyl peptidase family. In human physiology and anatomy, they have homology amino acid sequences and similarities in the structure; however, they have distinct functions and play different roles. Some of them also play important roles in the metabolism of drugs containing endogenous peptides, xenobiotics containing peptides, and exogenous peptides. The major functions of these peptidases in both the metabolism of human health and bioactive peptides are of significant importance in the development of effective inhibitors to control the metabolism of endogenous bioactive peptides. The structural characteristics, distribution of tissue, endogenous substrates, and biological functions were summarized in this review. Furthermore, the xenobiotics metabolism of the dipeptidyl peptidase family is illustrated. All the evidence and information summarized in this review would be very useful for researchers to extend the understanding of the proteins of these families and offer advice and assistance in physiology and pathology studies.

Keywords: Dipeptidyl peptidase family, metabolism, detection methods, inhibitor, prolyl carboxypeptidase, FAP.

[1]
Enz, N.; Vliegen, G.; De Meester, I.; Jungraithmayr, W. CD26/DPP4 - a potential biomarker and target for cancer therapy. Pharmacol. Ther., 2019, 198, 135-159.
[http://dx.doi.org/10.1016/j.pharmthera.2019.02.015] [PMID: 30822465]
[2]
Sánchez-Garrido, M.A.; Habegger, K.M.; Clemmensen, C.; Holleman, C.; Müller, T.D.; Perez-Tilve, D.; Li, P.; Agrawal, A.S.; Finan, B.; Drucker, D.J.; Tschöp, M.H.; DiMarchi, R.D.; Kharitonenkov, A. Fibroblast activation protein (FAP) as a novel metabolic target. Mol. Metab., 2016, 5(10), 1015-1024.
[http://dx.doi.org/10.1016/j.molmet.2016.07.003] [PMID: 27689014]
[3]
Johnson, D.C.; Taabazuing, C.Y.; Okondo, M.C.; Chui, A.J.; Rao, S.D.; Brown, F.C.; Reed, C.; Peguero, E.; de Stanchina, E.; Kentsis, A.; Bachovchin, D.A. DPP8/DPP9 inhibitor-induced pyroptosis for treatment of acute myeloid leukemia. Nat. Med., 2018, 24(8), 1151-1156.
[http://dx.doi.org/10.1038/s41591-018-0082-y] [PMID: 29967349]
[4]
Lin, L.; Long, L.K.; Hatch, M.M.; Hoffman, D.A. DPP6 domains responsible for its localization and function. J. Biol. Chem., 2014, 289(46), 32153-32165.
[http://dx.doi.org/10.1074/jbc.M114.578070] [PMID: 25190807]
[5]
Svarcbahs, R.; Julku, U.; Kilpeläinen, T.; Kyyrö, M.; Jäntti, M.; Myöhänen, T.T. New tricks of prolyl oligopeptidase inhibitors - A common drug therapy for several neurodegenerative diseases. Biochem. Pharmacol., 2019, 161, 113-120.
[http://dx.doi.org/10.1016/j.bcp.2019.01.013] [PMID: 30660495]
[6]
Waumans, Y.; Baerts, L.; Kehoe, K.; Lambeir, A.M.; De Meester, I. The dipeptidyl peptidase family, prolyl oligopeptidase, and prolyl carboxypeptidase in the immune system and inflammatory disease, including atherosclerosis. Front. Immunol., 2015, 6, 387-404.
[http://dx.doi.org/10.3389/fimmu.2015.00387] [PMID: 26300881]
[7]
Long, J.Z.; Cravatt, B.F. The metabolic serine hydrolases and their functions in mammalian physiology and disease. Chem. Rev., 2011, 111(10), 6022-6063.
[http://dx.doi.org/10.1021/cr200075y] [PMID: 21696217]
[8]
Soisson, S.M.; Patel, S.B.; Abeywickrema, P.D.; Byrne, N.J.; Diehl, R.E.; Hall, D.L.; Ford, R.E.; Reid, J.C.; Rickert, K.W.; Shipman, J.M.; Sharma, S.; Lumb, K.J. Structural definition and substrate specificity of the S28 protease family: the crystal structure of human prolylcarboxypeptidase. BMC Struct. Biol., 2010, 10, 16-23.
[http://dx.doi.org/10.1186/1472-6807-10-16] [PMID: 20540760]
[9]
van Doremalen, N.; Munster, V.J. Animal models of Middle East respiratory syndrome coronavirus infection. Antiviral Res., 2015, 122, 28-38.
[http://dx.doi.org/10.1016/j.antiviral.2015.07.005] [PMID: 26192750]
[10]
Chen, T.; Ajami, K.; McCaughan, G.W.; Gai, W.P.; Gorrell, M.D.; Abbott, C.A. Molecular characterization of a novel dipeptidyl peptidase like 2-short form (DPL2-s) that is highly expressed in the brain and lacks dipeptidyl peptidase activity. Biochim. Biophys. Acta, 2006, 1764(1), 33-43.
[http://dx.doi.org/10.1016/j.bbapap.2005.09.013] [PMID: 16290253]
[11]
Chung, K.M.; Cheng, J.H.; Suen, C.S.; Huang, C.H.; Tsai, C.H.; Huang, L.H.; Chen, Y.R.; Wang, A.H.; Jiaang, W.T.; Hwang, M.J.; Chen, X. The dimeric transmembrane domain of prolyl dipeptidase DPP-IV contributes to its quaternary structure and enzymatic activities.Protein science : A publication of the Protein Society, 2010, 19(9), 1627-1638..
[http://dx.doi.org/10.1002/pro.443] [PMID: 20572019]
[12]
Weihofen, W.A.; Liu, J.; Reutter, W.; Saenger, W.; Fan, H. Crystal structure of CD26/dipeptidyl-peptidase IV in complex with adenosine deaminase reveals a highly amphiphilic interface. J. Biol. Chem., 2004, 279(41), 43330-43335.
[http://dx.doi.org/10.1074/jbc.M405001200] [PMID: 15213224]
[13]
Aertgeerts, K.; Ye, S.; Tennant, M.G.; Kraus, M.L.; Rogers, J.; Sang, B.C.; Skene, R.J.; Webb, D.R.; Prasad, G.S. Crystal structure of human dipeptidyl peptidase IV in complex with a decapeptide reveals details on substrate specificity and tetrahedral intermediate formation. Protein Sci., 2004, 13(2), 412-421.
[http://dx.doi.org/10.1110/ps.03460604] [PMID: 14718659]
[14]
Klemann, C.; Wagner, L.; Stephan, M.; von Hörsten, S. Cut to the chase: a review of CD26/dipeptidyl peptidase-4's (DPP4) entanglement in the immune system. Clin. Exp. Immunol., 2016, 185(1), 1-21.
[http://dx.doi.org/10.1111/cei.12781] [PMID: 26919392]
[15]
O’Brien, P.; O’Connor, B.F. Seprase: an overview of an important matrix serine protease. Biochim. Biophys. Acta, 2008, 1784(9), 1130-1145.
[http://dx.doi.org/10.1016/j.bbapap.2008.01.006] [PMID: 18262497]
[16]
Aertgeerts, K.; Levin, I.; Shi, L.; Snell, G.P.; Jennings, A.; Prasad, G.S.; Zhang, Y.; Kraus, M.L.; Salakian, S.; Sridhar, V.; Wijnands, R.; Tennant, M.G. Structural and kinetic analysis of the substrate specificity of human fibroblast activation protein alpha. J. Biol. Chem., 2005, 280(20), 19441-19444.
[http://dx.doi.org/10.1074/jbc.C500092200] [PMID: 15809306]
[17]
Cheng, J.D.; Valianou, M.; Canutescu, A.A.; Jaffe, E.K.; Lee, H.O.; Wang, H.; Lai, J.H.; Bachovchin, W.W.; Weiner, L.M. Abrogation of fibroblast activation protein enzymatic activity attenuates tumor growth. Mol. Cancer Ther., 2005, 4(3), 351-360.
[http://dx.doi.org/10.1158/1535-7163.MCT-04-0269] [PMID: 15767544]
[18]
Keane, F.M.; Nadvi, N.A.; Yao, T.W.; Gorrell, M.D.; Neuropeptide, Y.; Neuropeptide, Y. B-type natriuretic peptide, substance P and peptide YY are novel substrates of fibroblast activation protein-α. FEBS J., 2011, 278(8), 1316-1332.
[http://dx.doi.org/10.1111/j.1742-4658.2011.08051.x] [PMID: 21314817]
[19]
Yazbeck, R.; Jaenisch, S.E.; Abbott, C.A. Potential disease biomarkers: dipeptidyl peptidase 4 and fibroblast activation protein. Protoplasma, 2018, 255(1), 375-386.
[http://dx.doi.org/10.1007/s00709-017-1129-5] [PMID: 28620698]
[20]
Puré, E.; Blomberg, R. Pro-tumorigenic roles of fibroblast activation protein in cancer: back to the basics. Oncogene, 2018, 37(32), 4343-4357.
[http://dx.doi.org/10.1038/s41388-018-0275-3] [PMID: 29720723]
[21]
Zhang, H.; Chen, Y.; Keane, F.M.; Gorrell, M.D. Advances in understanding the expression and function of dipeptidyl peptidase 8 and 9. Mol. Cancer Res., 2013, 11(12), 1487-1496.
[http://dx.doi.org/10.1158/1541-7786.MCR-13-0272] [PMID: 24038034]
[22]
Ross, B.; Krapp, S.; Augustin, M.; Kierfersauer, R.; Arciniega, M.; Geiss-Friedlander, R.; Huber, R. Structures and mechanism of dipeptidyl peptidases 8 and 9, important players in cellular homeostasis and cancer. Proc. Natl. Acad. Sci. USA, 2018, 115(7), E1437-E1445.
[http://dx.doi.org/10.1073/pnas.1717565115] [PMID: 29382749]
[23]
Qi, S.Y.; Riviere, P.J.; Trojnar, J.; Junien, J.L.; Akinsanya, K.O. Cloning and characterization of dipeptidyl peptidase 10, a new member of an emerging subgroup of serine proteases. Biochem. J., 2003, 373(Pt 1), 179-189.
[http://dx.doi.org/10.1042/bj20021914] [PMID: 12662155]
[24]
Bezerra, G.A.; Dobrovetsky, E.; Seitova, A.; Fedosyuk, S.; Dhe-Paganon, S.; Gruber, K. Structure of human dipeptidyl peptidase 10 (DPPY): a modulator of neuronal Kv4 channels. Sci. Rep., 2015, 5, 8769-8777.
[http://dx.doi.org/10.1038/srep08769] [PMID: 25740212]
[25]
López, A.; Herranz-Trillo, F.; Kotev, M.; Gairí, M.; Guallar, V.; Bernadó, P.; Millet, O.; Tarragó, T.; Giralt, E. Active-site-directed inhibitors of prolyl oligopeptidase abolish its conformational dynamics. ChemBioChem, 2016, 17(10), 913-917.
[http://dx.doi.org/10.1002/cbic.201600102] [PMID: 26918396]
[26]
Svarcbahs, R.; Julku, U.H.; Norrbacka, S.; Myöhänen, T.T. Removal of prolyl oligopeptidase reduces alpha-synuclein toxicity in cells and in vivo. Sci. Rep., 2018, 8(1), 1552-1569.
[http://dx.doi.org/10.1038/s41598-018-19823-y] [PMID: 29367610]
[27]
Araki, H.; Li, Y.; Yamamoto, Y.; Haneda, M.; Nishi, K.; Kikkawa, R.; Ohkubo, I. Purification, molecular cloning, and immunohistochemical localization of dipeptidyl peptidase II from the rat kidney and its identity with quiescent cell proline dipeptidase. J. Biochem., 2001, 129(2), 279-288.
[http://dx.doi.org/10.1093/oxfordjournals.jbchem.a002855] [PMID: 11173530]
[28]
Maes, M.B.; Lambeir, A.M.; Gilany, K.; Senten, K.; Van der Veken, P.; Leiting, B.; Augustyns, K.; Scharpé, S.; De Meester, I. Kinetic investigation of human dipeptidyl peptidase II (DPPII)-mediated hydrolysis of dipeptide derivatives and its identification as quiescent cell proline dipeptidase (QPP)/dipeptidyl peptidase 7 (DPP7). Biochem. J., 2005, 386(Pt 2), 315-324.
[http://dx.doi.org/10.1042/BJ20041156] [PMID: 15487984]
[29]
Maes, M.B.; Scharpe, S.; De Meester, I. Dipeptidyl peptidase II (DPPII), a review. Clinica Chimica Acta, 2007, 380(1-2), 31-49.
[http://dx.doi.org/10.1016/j.cca.2007.01.024] [PMID: 17328877]
[30]
Bezerra, G.A.; Dobrovetsky, E.; Dong, A.; Seitova, A.; Crombett, L.; Shewchuk, L.M.; Hassell, A.M.; Sweitzer, S.M.; Sweitzer, T.D.; McDevitt, P.J.; Johanson, K.O.; Kennedy-Wilson, K.M.; Cossar, D.; Bochkarev, A.; Gruber, K.; Dhe-Paganon, S. Structures of human DPP7 reveal the molecular basis of specific inhibition and the architectural diversity of proline-specific peptidases. PLoS One, 2012, 7(8), e43019-e43031.
[http://dx.doi.org/10.1371/journal.pone.0043019] [PMID: 22952628]
[31]
Cordero, O.J.; Salgado, F.J.; Nogueira, M. On the origin of serum CD26 and its altered concentration in cancer patients. Cancer Immunol. Immunother., 2009, 58(11), 1723-1747.
[http://dx.doi.org/10.1007/s00262-009-0728-1] [PMID: 19557413]
[32]
Wang, M.; Herrmann, C.J.; Simonovic, M.; Szklarczyk, D.; von Mering, C. Version 4.0 of PaxDb: Protein abundance data, integrated across model organisms, tissues, and cell-lines. Proteomics, 2015, 15(18), 3163-3168.
[http://dx.doi.org/10.1002/pmic.201400441] [PMID: 25656970]
[33]
Nistala, R.; Savin, V. Diabetes, hypertension, and chronic kidney disease progression: role of DPP4. Am. J. Physiol. Renal Physiol., 2017, 312(4), F661-F670.
[http://dx.doi.org/10.1152/ajprenal.00316.2016] [PMID: 28122713]
[34]
Darmoul, D.; Lacasa, M.; Baricault, L.; Marguet, D.; Sapin, C.; Trotot, P.; Barbat, A.; Trugnan, G. Dipeptidyl peptidase IV (CD 26) gene expression in enterocyte-like colon cancer cell lines HT-29 and Caco-2. Cloning of the complete human coding sequence and changes of dipeptidyl peptidase IV mRNA levels during cell differentiation. J. Biol. Chem., 1992, 267(7), 4824-4833.
[http://dx.doi.org/10.1016/S0021-9258(18)42906-7] [PMID: 1347043]
[35]
Dahan, A.; Wolk, O.; Yang, P.; Mittal, S.; Wu, Z.; Landowski, C.P.; Amidon, G.L. Dipeptidyl peptidase IV as a potential target for selective prodrug activation and chemotherapeutic action in cancers. Mol. Pharm., 2014, 11(12), 4385-4394.
[http://dx.doi.org/10.1021/mp500483v] [PMID: 25365774]
[36]
Perner, F.; Gyuris, T.; Rákóczy, G.; Sárváry, E.; Görög, D.; Szalay, F.; Kunos, I.; Szönyi, L.; Péterfy, M.; Takács, L. Dipeptidyl peptidase activity of CD26 in serum and urine as a marker of cholestasis: experimental and clinical evidence. J. Lab. Clin. Med., 1999, 134(1), 56-67.
[http://dx.doi.org/10.1016/S0022-2143(99)90054-9] [PMID: 10402060]
[37]
Dolznig, H.; Schweifer, N.; Puri, C.; Kraut, N.; Rettig, W.J.; Kerjaschki, D.; Garin-Chesa, P. Characterization of cancer stroma markers: In silico analysis of an mRNA expression database for fibroblast activation protein and endosialin. Cancer Immun., 2005, 5, 10-18.
[PMID: 16076089]
[38]
Šimková, A.; Bušek, P.; Šedo, A.; Konvalinka, J. Molecular recognition of fibroblast activation protein for diagnostic and therapeutic applications. Biochim. Biophys. Acta. Proteins Proteomics, 2020, 1868(7)140409
[http://dx.doi.org/10.1016/j.bbapap.2020.140409] [PMID: 32171757]
[39]
Busek, P.; Mateu, R.; Zubal, M.; Kotackova, L.; Sedo, A. Targeting fibroblast activation protein in cancer - Prospects and caveats. Front. Biosci., 2018, 23, 1933-1968.
[http://dx.doi.org/10.2741/4682] [PMID: 29772538]
[40]
Sinnathurai, P.; Lau, W.; De Ribeiro, A.V.; Bachovchin, W.; Englert, H.; Howe, G.; Spencer, D.; Manolios, N.; Gorrell, M. Fibroblast activation protein and dipeptidyl peptidase IV in rheumatoid arthritis and systemic sclerosis. Intern. Med. J., 2014, 44, 22-23.
[41]
da Silva, A.C.; Jammal, M.P.; Etchebehere, R.M.; Murta, E.F.C.; Nomelini, R.S. Role of alpha-smooth muscle actin and fibroblast activation protein alpha in ovarian neoplasms. Gynecol. Obstet. Invest., 2018, 83(4), 381-387.
[http://dx.doi.org/10.1159/000488088] [PMID: 29621774]
[42]
Lay, A.J.; Zhang, H.E.; McCaughan, G.W.; Gorrell, M.D. Fibroblast activation protein in liver fibrosis. Front. Biosci., 2019, 24, 1-17.
[http://dx.doi.org/10.2741/4706] [PMID: 30468644]
[43]
Meng, M.; Wang, W.; Yan, J.; Tan, J.; Liao, L.; Shi, J.; Wei, C.; Xie, Y.; Jin, X.; Yang, L.; Jin, Q.; Zhu, H.; Tan, W.; Yang, F.; Hou, Z. Immunization of stromal cell targeting fibroblast activation protein providing immunotherapy to breast cancer mouse model. Tumour Biol., 2016, 37(8), 10317-10327.
[http://dx.doi.org/10.1007/s13277-016-4825-4] [PMID: 26842926]
[44]
Liu, J.; Huang, C.; Peng, C.; Xu, F.; Li, Y.; Yutaka, Y.; Xiong, B.; Yang, X. Stromal fibroblast activation protein alpha promotes gastric cancer progression via epithelial-mesenchymal transition through Wnt/β-catenin pathway. BMC Cancer, 2018, 18(1), 1099-1108.
[http://dx.doi.org/10.1186/s12885-018-5035-9] [PMID: 30419872]
[45]
Pan, X.; Shi, H. The expression of fibroblast activation protein (FAP) in human lung cancer tissues and its clinical significance. J. Thorac. Oncol., 2015, 10(9), S461-S461.
[46]
Wen, X.; He, X.; Jiao, F.; Wang, C.; Sun, Y.; Ren, X.; Li, Q. Fibroblast activation protein-α-positive fibroblasts promote gastric cancer progression and resistance to immune checkpoint blockade. Oncol. Res., 2017, 25(4), 629-640.
[http://dx.doi.org/10.3727/096504016X14768383625385] [PMID: 27983931]
[47]
Wagner, L.; Klemann, C.; Stephan, M.; von Hörsten, S. Unravelling the immunological roles of dipeptidyl peptidase 4 (DPP4) activity and/or structure homologue (DASH) proteins. Clin. Exp. Immunol., 2016, 184(3), 265-283.
[http://dx.doi.org/10.1111/cei.12757] [PMID: 26671446]
[48]
Hu, M.; Qian, C.; Hu, Z.; Fei, B.; Zhou, H. Biomarkers in tumor microenvironment? upregulation of fibroblast activation protein-α correlates with gastric cancer progression and poor prognosis. OMICS, 2017, 21(1), 38-44.
[http://dx.doi.org/10.1089/omi.2016.0159] [PMID: 28206814]
[49]
Yu, D.M.; Ajami, K.; Gall, M.G.; Park, J.; Lee, C.S.; Evans, K.A.; McLaughlin, E.A.; Pitman, M.R.; Abbott, C.A.; McCaughan, G.W.; Gorrell, M.D. The in vivo expression of dipeptidyl peptidases 8 and 9. J. Histochem. Cytochem., 2009, 57(11), 1025-1040.
[http://dx.doi.org/10.1369/jhc.2009.953760] [PMID: 19581630]
[50]
Radicke, S.; Cotella, D.; Graf, E.M.; Ravens, U.; Wettwer, E. Expression and function of dipeptidyl-aminopeptidase-like protein 6 as a putative beta-subunit of human cardiac transient outward current encoded by Kv4.3. J. Physiol., 2005, 565(Pt 3), 751-756.
[http://dx.doi.org/10.1113/jphysiol.2005.087312] [PMID: 15890703]
[51]
Takimoto, K.; Hayashi, Y.; Ren, X.; Yoshimura, N. Species and tissue differences in the expression of DPPY splicing variants. Biochem. Biophys. Res. Commun., 2006, 348(3), 1094-1100.
[http://dx.doi.org/10.1016/j.bbrc.2006.07.157] [PMID: 16899223]
[52]
Park, H.S.; Yeo, H.Y.; Chang, H.J.; Kim, K.H.; Park, J.W.; Kim, B.C.; Baek, J.Y.; Kim, S.Y.; Kim, D.Y. Dipeptidyl peptidase 10, a novel prognostic marker in colorectal cancer. Yonsei Med. J., 2013, 54(6), 1362-1369.
[http://dx.doi.org/10.3349/ymj.2013.54.6.1362] [PMID: 24142639]
[53]
Kaushik, S.; Sowdhamini, R. Distribution, classification, domain architectures and evolution of prolyl oligopeptidases in prokaryotic lineages. BMC Genomics, 2014, 15(1), 985-997.
[http://dx.doi.org/10.1186/1471-2164-15-985] [PMID: 25407321]
[54]
Myöhänen, T.T.; Pyykkö, E.; Männistö, P.T.; Carpen, O. Distribution of prolyl oligopeptidase in human peripheral tissues and in ovarian and colorectal tumors. J. Histochem. Cytochem., 2012, 60(9), 706-715.
[http://dx.doi.org/10.1369/0022155412453051] [PMID: 22740343]
[55]
Babkova, K.; Korabecny, J.; Soukup, O.; Nepovimova, E.; Jun, D.; Kuca, K. Prolyl oligopeptidase and its role in the organism: attention to the most promising and clinically relevant inhibitors. Future Med. Chem., 2017, 9(10), 1015-1038.
[http://dx.doi.org/10.4155/fmc-2017-0030] [PMID: 28632451]
[56]
Maes, M.B.; Martinet, W.; Schrijvers, D.M.; Van der Veken, P.; De Meyer, G.R.; Augustyns, K.; Lambeir, A.M.; Scharpé, S.; De Meester, I. Dipeptidyl peptidase II and leukocyte cell death. Biochem. Pharmacol., 2006, 72(1), 70-79.
[http://dx.doi.org/10.1016/j.bcp.2006.04.009] [PMID: 16725115]
[57]
Skidgel, R.A.; Wickstrom, E.; Kumamoto, K.; Erdös, E.G. Rapid radioassay for prolylcarboxypeptidase (angiotensinase C). Anal. Biochem., 1981, 118(1), 113-119.
[http://dx.doi.org/10.1016/0003-2697(81)90165-2] [PMID: 7337205]
[58]
Bruschetta, G.; Jin, S.; Kim, J.D.; Diano, S. Prolyl carboxypeptidase in Agouti-related Peptide neurons modulates food intake and body weight. Mol. Metab., 2018, 10, 28-38.
[http://dx.doi.org/10.1016/j.molmet.2018.02.003] [PMID: 29459251]
[59]
Wallingford, N.; Perroud, B.; Gao, Q.; Coppola, A.; Gyengesi, E.; Liu, Z.W.; Gao, X.B.; Diament, A.; Haus, K.A.; Shariat-Madar, Z.; Mahdi, F.; Wardlaw, S.L.; Schmaier, A.H.; Warden, C.H.; Diano, S. Prolylcarboxypeptidase regulates food intake by inactivating alpha-MSH in rodents. J. Clin. Invest., 2009, 119(8), 2291-2303.
[PMID: 19620781]
[60]
Jeong, J.K.; Diano, S. Prolyl carboxypeptidase mRNA expression in the mouse brain. Brain Res., 2014, 1542, 85-92.
[http://dx.doi.org/10.1016/j.brainres.2013.10.031] [PMID: 24161824]
[61]
Röhrborn, D.; Wronkowitz, N.; Eckel, J. DPP4 in Diabetes. Front. Immunol., 2015, 6, 386-405.
[http://dx.doi.org/10.3389/fimmu.2015.00386] [PMID: 26284071]
[62]
Costante, R.; Stefanucci, A.; Carradori, S.; Novellino, E.; Mollica, A. DPP-4 inhibitors: a patent review (2012 - 2014). Expert Opin. Ther. Pat., 2015, 25(2), 209-236.
[http://dx.doi.org/10.1517/13543776.2014.991309] [PMID: 25482888]
[63]
Sun, A.L.; Deng, J.T.; Guan, G.J.; Chen, S.H.; Liu, Y.T.; Cheng, J.; Li, Z.W.; Zhuang, X.H.; Sun, F.D.; Deng, H.P. Dipeptidyl peptidase-IV is a potential molecular biomarker in diabetic kidney disease. Diab. Vasc. Dis. Res., 2012, 9(4), 301-308.
[http://dx.doi.org/10.1177/1479164111434318] [PMID: 22388283]
[64]
Joo, K.W.; Kim, S.; Ahn, S.Y.; Chin, H.J.; Chae, D.W.; Lee, J.; Han, J.S.; Na, K.Y. Dipeptidyl peptidase IV inhibitor attenuates kidney injury in rat remnant kidney. BMC Nephrol., 2013, 14, 98-108.
[http://dx.doi.org/10.1186/1471-2369-14-98] [PMID: 23621921]
[65]
Liu, W.J.; Xie, S.H.; Liu, Y.N.; Kim, W.; Jin, H.Y.; Park, S.K.; Shao, Y.M.; Park, T.S. Dipeptidyl peptidase IV inhibitor attenuates kidney injury in streptozotocin-induced diabetic rats. J. Pharmacol. Exp. Ther., 2012, 340(2), 248-255.
[http://dx.doi.org/10.1124/jpet.111.186866] [PMID: 22025647]
[66]
Elzefzafy, W.M.; Abd Elrahman, S.; Mohmmed, Z.A.; Atef, N. Diagnostic utility of serum dipeptidyl peptidase (DPP- IV)/CD26 as a serum marker in Egyptian patients with colorectal cancer. J. Immunoassay Immunochem., 2020, 41(4), 729-744.
[http://dx.doi.org/10.1080/15321819.2020.1744642] [PMID: 32223519]
[67]
Pinto-Lopes, P.; Afonso, J.; Pinto-Lopes, R.; Rocha, C.; Lago, P.; Gonçalves, R.; Tavares De Sousa, H.; Macedo, G.; Camila Dias, C.; Magro, F. Serum Dipeptidyl Peptidase 4: A Predictor of Disease Activity and Prognosis in Inflammatory Bowel Disease. Inflamm. Bowel Dis., 2020, 26(11), 1707-1719.
[http://dx.doi.org/10.1093/ibd/izz319] [PMID: 31912883]
[68]
Raj, V.S.; Mou, H.; Smits, S.L.; Dekkers, D.H.; Müller, M.A.; Dijkman, R.; Muth, D.; Demmers, J.A.; Zaki, A.; Fouchier, R.A.; Thiel, V.; Drosten, C.; Rottier, P.J.; Osterhaus, A.D.; Bosch, B.J.; Haagmans, B.L. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature, 2013, 495(7440), 251-254.
[http://dx.doi.org/10.1038/nature12005] [PMID: 23486063]
[69]
Li, Y.; Zhang, Z.; Yang, L.; Lian, X.; Xie, Y.; Li, S.; Xin, S.; Cao, P.; Lu, J. .The MERS-CoV receptor DPP4 as a candidate binding target of the SARS-CoV-2 spike. iScience, 2020, 23(6), 101160..
[http://dx.doi.org/10.1016/j.isci.2020.101160] [PMID: 32405622]
[70]
Drucker, D.J. Coronavirus infections and type 2 diabetes-shared pathways with therapeutic implications. Endocr. Rev., 2020, 41(3), 457-470.
[http://dx.doi.org/10.1210/endrev/bnaa011] [PMID: 32294179]
[71]
Fadini, G.P.; Morieri, M.L.; Longato, E.; Bonora, B.M.; Pinelli, S.; Selmin, E.; Voltan, G.; Falaguasta, D.; Tresso, S.; Costantini, G.; Sparacino, G.; Di Camillo, B.; Tramontan, L.; Cattelan, A.M.; Vianello, A.; Fioretto, P.; Vettor, R.; Avogaro, A. Exposure to dipeptidyl-peptidase-4 inhibitors and COVID-19 among people with type 2 diabetes: A case-control study. Diabetes Obes. Metab., 2020, 22(10), 1946-1950.
[http://dx.doi.org/10.1111/dom.14097] [PMID: 32463179]
[72]
Rao, P.P.N.; Pham, A.T.; Shakeri, A.; El Shatshat, A.; Zhao, Y.; Karuturi, R.C.; Hefny, A.A. Drug repurposing: dipeptidyl peptidase IV (DPP4) inhibitors as potential agents to treat SARS-CoV-2 (2019-nCoV) infection. Pharmaceuticals (Basel), 2021, 14(1), 44-60.
[http://dx.doi.org/10.3390/ph14010044] [PMID: 33430081]
[73]
Pal, R.; Banerjee, M.; Mukherjee, S.; Bhogal, R.S.; Kaur, A.; Bhadada, S.K. Dipeptidyl peptidase-4 inhibitor use and mortality in COVID-19 patients with diabetes mellitus: an updated systematic review and meta-analysis. Ther. Adv. Endocrinol. Metab., 2021, 122042018821996482
[http://dx.doi.org/10.1177/2042018821996482] [PMID: 33680425]
[74]
Zhu, L.; She, Z.G.; Cheng, X.; Qin, J.J.; Zhang, X.J.; Cai, J.; Lei, F.; Wang, H.; Xie, J.; Wang, W.; Li, H.; Zhang, P.; Song, X.; Chen, X.; Xiang, M.; Zhang, C.; Bai, L.; Xiang, D.; Chen, M.M.; Liu, Y.; Yan, Y.; Liu, M.; Mao, W.; Zou, J.; Liu, L.; Chen, G.; Luo, P.; Xiao, B.; Zhang, C.; Zhang, Z.; Lu, Z.; Wang, J.; Lu, H.; Xia, X.; Wang, D.; Liao, X.; Peng, G.; Ye, P.; Yang, J.; Yuan, Y.; Huang, X.; Guo, J.; Zhang, B.H.; Li, H. Association of blood glucose control and outcomes in patients with COVID-19 and pre-existing type 2 diabetes. Cell Metab., 2020, 31(6), 1068-1077.e3.
[http://dx.doi.org/10.1016/j.cmet.2020.04.021] [PMID: 32369736]
[75]
Lyseng-Williamson, K.A. Sitagliptin. Drugs, 2007, 67(4), 587-597.
[http://dx.doi.org/10.2165/00003495-200767040-00007] [PMID: 17352516]
[76]
Ahrén, B.; Landin-Olsson, M.; Jansson, P.A.; Svensson, M.; Holmes, D.; Schweizer, A. Inhibition of dipeptidyl peptidase-4 reduces glycemia, sustains insulin levels, and reduces glucagon levels in type 2 diabetes. J. Clin. Endocrinol. Metab., 2004, 89(5), 2078-2084.
[http://dx.doi.org/10.1210/jc.2003-031907] [PMID: 15126524]
[77]
Fura, A.; Khanna, A.; Vyas, V.; Koplowitz, B.; Chang, S.Y.; Caporuscio, C.; Boulton, D.W.; Christopher, L.J.; Chadwick, K.D.; Hamann, L.G.; Humphreys, W.G.; Kirby, M. Pharmacokinetics of the dipeptidyl peptidase 4 inhibitor saxagliptin in rats, dogs, and monkeys and clinical projections. Drug Metab. Dispos., 2009, 37(6), 1164-1171.
[http://dx.doi.org/10.1124/dmd.108.026088] [PMID: 19251818]
[78]
Metzler, W.J.; Yanchunas, J.; Weigelt, C.; Kish, K.; Klei, H.E.; Xie, D.; Zhang, Y.; Corbett, M.; Tamura, J.K.; He, B.; Hamann, L.G.; Kirby, M.S.; Marcinkeviciene, J. Involvement of DPP-IV catalytic residues in enzyme-saxagliptin complex formation. Protein Sci., 2008, 17(2), 240-250.
[http://dx.doi.org/10.1110/ps.073253208] [PMID: 18227430]
[79]
Thomas, L.; Eckhardt, M.; Langkopf, E.; Tadayyon, M.; Himmelsbach, F.; Mark, M. (R)-8-(3-amino-piperidin-1-yl)-7-but-2-ynyl-3-methyl-1-(4-methyl-quinazolin-2-ylmethyl)-3,7-dihydro-purine-2,6-dione (BI 1356), a novel xanthine-based dipeptidyl peptidase 4 inhibitor, has a superior potency and longer duration of action compared with other dipeptidyl peptidase-4 inhibitors. J. Pharmacol. Exp. Ther., 2008, 325(1), 175-182.
[http://dx.doi.org/10.1124/jpet.107.135723] [PMID: 18223196]
[80]
Agrawal, R.; Bahare, R.S.; Jain, P.; Dikshit, S.N.; Ganguly, S. Novel serine protease dipeptidyl peptidase IV inhibitor: alogliptin. Mini Rev. Med. Chem., 2012, 12(13), 1345-1358.
[http://dx.doi.org/10.2174/13895575112091345] [PMID: 22512582]
[81]
Burness, C.B. Omarigliptin: first global approval. Drugs, 2015, 75(16), 1947-1952.
[http://dx.doi.org/10.1007/s40265-015-0493-8] [PMID: 26507988]
[82]
Kim, S.E.; Yi, S.; Shin, K.H.; Kim, T.E.; Kim, M.J.; Kim, Y.H.; Yoon, S.H.; Cho, J.Y.; Shin, S.G.; Jang, I.J.; Yu, K.S. Evaluation of the pharmacokinetic interaction between the dipeptidyl peptidase IV inhibitor LC15-0444 and pioglitazone in healthy volunteers. Int. J. Clin. Pharmacol. Ther., 2012, 50(1), 17-23.
[http://dx.doi.org/10.5414/CP201568] [PMID: 22192641]
[83]
Mattei, P.; Boehringer, M.; Di Giorgio, P.; Fischer, H.; Hennig, M.; Huwyler, J.; Koçer, B.; Kuhn, B.; Loeffler, B.M.; Macdonald, A.; Narquizian, R.; Rauber, E.; Sebokova, E.; Sprecher, U. Discovery of carmegliptin: a potent and long-acting dipeptidyl peptidase IV inhibitor for the treatment of type 2 diabetes. Bioorg. Med. Chem. Lett., 2010, 20(3), 1109-1113.
[http://dx.doi.org/10.1016/j.bmcl.2009.12.024] [PMID: 20031405]
[84]
Pattzi, H.M.; Pitale, S.; Alpizar, M.; Bennett, C.; O’Farrell, A.M.; Li, J.; Cherrington, J.M.; Guler, H.P. Dutogliptin, a selective DPP4 inhibitor, improves glycaemic control in patients with type 2 diabetes: a 12-week, double-blind, randomized, placebo-controlled, multicentre trial. Diabetes Obes. Metab., 2010, 12(4), 348-355.
[http://dx.doi.org/10.1111/j.1463-1326.2010.01195.x] [PMID: 20380656]
[85]
Gupta, R.; Walunj, S.S.; Tokala, R.K.; Parsa, K.V.; Singh, S.K.; Pal, M. Emerging drug candidates of dipeptidyl peptidase IV (DPP IV) inhibitor class for the treatment of Type 2 Diabetes. Curr. Drug Targets, 2009, 10(1), 71-87.
[http://dx.doi.org/10.2174/138945009787122860] [PMID: 19149538]
[86]
Joshi, B.K.; Ramsey, B.; Johnson, B.; Patterson, D.E.; Powers, J.; Facchine, K.L.; Osterhout, M.; Leblanc, M.P.; Bryant-Mills, R.; Copley, R.C.; Sides, S.L. Elucidating the pathways of degradation of denagliptin. J. Pharm. Sci., 2010, 99(7), 3030-3040.
[http://dx.doi.org/10.1002/jps.22069] [PMID: 20112433]
[87]
Yoshida, T.; Akahoshi, F.; Sakashita, H.; Kitajima, H.; Nakamura, M.; Sonda, S.; Takeuchi, M.; Tanaka, Y.; Ueda, N.; Sekiguchi, S.; Ishige, T.; Shima, K.; Nabeno, M.; Abe, Y.; Anabuki, J.; Soejima, A.; Yoshida, K.; Takashina, Y.; Ishii, S.; Kiuchi, S.; Fukuda, S.; Tsutsumiuchi, R.; Kosaka, K.; Murozono, T.; Nakamaru, Y.; Utsumi, H.; Masutomi, N.; Kishida, H.; Miyaguchi, I.; Hayashi, Y. Discovery and preclinical profile of teneligliptin (3-[(2S,4S)-4-[4-(3-methyl-1-phenyl-1H-pyrazol-5-yl)piperazin-1-yl]pyrrolidin-2-ylcarbonyl]thiazolidine): a highly potent, selective, long-lasting and orally active dipeptidyl peptidase IV inhibitor for the treatment of type 2 diabetes. Bioorg. Med. Chem., 2012, 20(19), 5705-5719.
[http://dx.doi.org/10.1016/j.bmc.2012.08.012] [PMID: 22959556]
[88]
Inagaki, N.; Onouchi, H.; Sano, H.; Funao, N.; Kuroda, S.; Kaku, K. SYR-472, a novel once-weekly dipeptidyl peptidase-4 (DPP-4) inhibitor, in type 2 diabetes mellitus: a phase 2, randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol., 2014, 2(2), 125-132.
[http://dx.doi.org/10.1016/S2213-8587(13)70149-9] [PMID: 24622716]
[89]
Cho, T.P.; Gang, L.Z.; Long, Y.F.; Yang, W.; Qian, W.; Lei, Z.; Jing, L.J.; Ying, F.; Ke, Y.P.; Ying, L.; Jun, F. Synthesis and biological evaluation of bicyclo[3.3.0] octane derivatives as dipeptidyl peptidase 4 inhibitors for the treatment of type 2 diabetes. Bioorg. Med. Chem. Lett., 2010, 20(12), 3521-3525.
[http://dx.doi.org/10.1016/j.bmcl.2010.04.138] [PMID: 20488704]
[90]
Piñeiro-Sánchez, M.L.; Goldstein, L.A.; Dodt, J.; Howard, L.; Yeh, Y.; Tran, H.; Argraves, W.S.; Chen, W.T. Identification of the 170-kDa melanoma membrane-bound gelatinase (seprase) as a serine integral membrane protease. J. Biol. Chem., 1997, 272(12), 7595-7601.
[http://dx.doi.org/10.1074/jbc.272.12.7595] [PMID: 9065413]
[91]
Wong, P.F.; Gall, M.G.; Bachovchin, W.W.; McCaughan, G.W.; Keane, F.M.; Gorrell, M.D. Neuropeptide Y is a physiological substrate of fibroblast activation protein: Enzyme kinetics in blood plasma and expression of Y2R and Y5R in human liver cirrhosis and hepatocellular carcinoma. Peptides, 2016, 75, 80-95.
[http://dx.doi.org/10.1016/j.peptides.2015.11.004] [PMID: 26621486]
[92]
Jia, J.; Martin, T.A.; Ye, L.; Meng, L.; Xia, N.; Jiang, W.G.; Zhang, X. Fibroblast activation protein-α promotes the growth and migration of lung cancer cells via the PI3K and sonic hedgehog pathways. Int. J. Mol. Med., 2018, 41(1), 275-283.
[http://dx.doi.org/10.3892/ijmm.2017.3224] [PMID: 29115573]
[93]
Chen, W.T.; Kelly, T. Seprase complexes in cellular invasiveness. Cancer Metastasis Rev., 2003, 22(2-3), 259-269.
[http://dx.doi.org/10.1023/A:1023055600919] [PMID: 12785000]
[94]
Huang, Y.; Wang, S.; Kelly, T. Seprase promotes rapid tumor growth and increased microvessel density in a mouse model of human breast cancer. Cancer Res., 2004, 64(8), 2712-2716.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-3184] [PMID: 15087384]
[95]
Zeng, C.; Wen, M.; Liu, X. Fibroblast activation protein in osteosarcoma cells promotes angiogenesis via AKT and ERK signaling pathways. Oncol. Lett., 2018, 15(4), 6029-6035.
[http://dx.doi.org/10.3892/ol.2018.8027] [PMID: 29552230]
[96]
Levy, M.T.; McCaughan, G.W.; Marinos, G.; Gorrell, M.D. Intrahepatic expression of the hepatic stellate cell marker fibroblast activation protein correlates with the degree of fibrosis in hepatitis C virus infection. Liver, 2002, 22(2), 93-101.
[http://dx.doi.org/10.1034/j.1600-0676.2002.01503.x] [PMID: 12028401]
[97]
Abbas, O.; Richards, J.E.; Mahalingam, M. Fibroblast-activation protein: a single marker that confidently differentiates morpheaform/infiltrative basal cell carcinoma from desmoplastic trichoepithelioma. Mod. Pathol., 2010, 23(11), 1535-1543.
[http://dx.doi.org/10.1038/modpathol.2010.142] [PMID: 20711172]
[98]
Watanabe, S.; Noma, K.; Ohara, T.; Kashima, H.; Sato, H.; Kato, T.; Urano, S.; Katsube, R.; Hashimoto, Y.; Tazawa, H.; Kagawa, S.; Shirakawa, Y.; Kobayashi, H.; Fujiwara, T. Photoimmunotherapy for cancer-associated fibroblasts targeting fibroblast activation protein in human esophageal squamous cell carcinoma. Cancer Biol. Ther., 2019, 20(9), 1234-1248.
[http://dx.doi.org/10.1080/15384047.2019.1617566] [PMID: 31185791]
[99]
Pleshkan, V.V.; Alekseenko, I.V.; Tyulkina, D.V.; Kyzmich, A.I.; Zinovyeva, M.V.; Sverdlov, E.D. Fibroblast activation protein (Fap) as a possible target of the antitumor strategy. Mol. Gen. Mikrobiol. Virusol., 2016, 34(3), 90-97.
[http://dx.doi.org/10.18821/0208-0613-2016-34-3-90-97] [PMID: 30383930]
[100]
Loktev, A.; Lindner, T.; Burger, E.M.; Altmann, A.; Giesel, F.; Kratochwil, C.; Debus, J.; Marmé, F.; Jäger, D.; Mier, W.; Haberkorn, U. Development of fibroblast activation protein-targeted radiotracers with improved tumor retention. J. Nucl. Med., 2019, 60(10), 1421-1429.
[http://dx.doi.org/10.2967/jnumed.118.224469] [PMID: 30850501]
[101]
Chen, M.; Xu, G.; Fan, M.; Jia, H.; Xiao, L.; Lang, J. Anti-tumour effects of a xenogeneic fibroblast activation protein-based whole cell tumour vaccine in murine tumour models. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 4182-4193.
[http://dx.doi.org/10.1080/21691401.2019.1687498] [PMID: 31722575]
[102]
Edosada, C.Y.; Quan, C.; Wiesmann, C.; Tran, T.; Sutherlin, D.; Reynolds, M.; Elliott, J.M.; Raab, H.; Fairbrother, W.; Wolf, B.B. Selective inhibition of fibroblast activation protein protease based on dipeptide substrate specificity. J. Biol. Chem., 2006, 281(11), 7437-7444.
[http://dx.doi.org/10.1074/jbc.M511112200] [PMID: 16410248]
[103]
Sun, Z.H.; Zou, L.W.; Yang, L. Research progress in fibroblast activation protein. Prog Biochem Biophys, 2020, 47(1), 39-52.
[104]
Okondo, M.C.; Johnson, D.C.; Sridharan, R.; Go, E.B.; Chui, A.J.; Wang, M.S.; Poplawski, S.E.; Wu, W.; Liu, Y.; Lai, J.H.; Sanford, D.G.; Arciprete, M.O.; Golub, T.R.; Bachovchin, W.W.; Bachovchin, D.A. DPP8 and DPP9 inhibition induces pro-caspase-1-dependent monocyte and macrophage pyroptosis. Nat. Chem. Biol., 2017, 13(1), 46-53.
[http://dx.doi.org/10.1038/nchembio.2229] [PMID: 27820798]
[105]
Taabazuing, C.Y.; Okondo, M.C.; Bachovchin, D.A. Pyroptosis and apoptosis pathways engage in bidirectional crosstalk in monocytes and macrophages. Cell Chem. Biol., 2017, 24(4), 507-514.e4.
[http://dx.doi.org/10.1016/j.chembiol.2017.03.009] [PMID: 28392147]
[106]
Spagnuolo, P.A.; Hurren, R.; Gronda, M.; MacLean, N.; Datti, A.; Basheer, A.; Lin, F.H.; Wang, X.; Wrana, J.; Schimmer, A.D. Inhibition of intracellular dipeptidyl peptidases 8 and 9 enhances parthenolide’s anti-leukemic activity. Leukemia, 2013, 27(6), 1236-1244.
[http://dx.doi.org/10.1038/leu.2013.9] [PMID: 23318959]
[107]
Brunetti, M.; Holth, A.; Panagopoulos, I.; Staff, A.C.; Micci, F.; Davidson, B. Expression and clinical role of the dipeptidyl peptidases DPP8 and DPP9 in ovarian carcinoma. Virchows Archiv Int. J. Pathol., 2019, 474(2), 177-185.
[http://dx.doi.org/10.1007/s00428-018-2487-x] [PMID: 30467600]
[108]
Chen, Y.; Gall, M.G.; Zhang, H.; Keane, F.M.; McCaughan, G.W.; Yu, D.M.; Gorrell, M.D. Dipeptidyl peptidase 9 enzymatic activity influences the expression of neonatal metabolic genes. Exp. Cell Res., 2016, 342(1), 72-82.
[http://dx.doi.org/10.1016/j.yexcr.2016.02.020] [PMID: 26930324]
[109]
Zhang, H.; Chen, Y.; Wadham, C.; McCaughan, G.W.; Keane, F.M.; Gorrell, M.D. Dipeptidyl peptidase 9 subcellular localization and a role in cell adhesion involving focal adhesion kinase and paxillin. Biochim. Biophys. Acta, 2015, 1853(2), 470-480.
[http://dx.doi.org/10.1016/j.bbamcr.2014.11.029] [PMID: 25486458]
[110]
Gall, M.G.; Chen, Y.; Vieira de Ribeiro, A.J.; Zhang, H.; Bailey, C.G.; Spielman, D.S.; Yu, D.M.; Gorrell, M.D. Targeted inactivation of dipeptidyl peptidase 9 enzymatic activity causes mouse neonate lethality. PLoS One, 2013, 8(11)e78378
[http://dx.doi.org/10.1371/journal.pone.0078378] [PMID: 24223149]
[111]
Walter, R. Partial purification and characterization of post-proline cleaving enzyme: enzymatic inactivation of neurohypophyseal hormones by kidney preparations of various species. Biochim. Biophys. Acta, 1976, 422(1), 138-158.
[http://dx.doi.org/10.1016/0005-2744(76)90015-2] [PMID: 2300]
[112]
Männistö, P.T.; García-Horsman, J.A. Mechanism of Action of Prolyl Oligopeptidase (PREP) in Degenerative Brain Diseases: Has Peptidase Activity Only a Modulatory Role on the Interactions of PREP with Proteins? Front. Aging Neurosci., 2017, 9, 27.
[http://dx.doi.org/10.3389/fnagi.2017.00027] [PMID: 28261087]
[113]
Nagatsu, T. Prolyl oligopeptidase and dipeptidyl peptidase II/dipeptidyl peptidase IV ratio in the cerebrospinal fluid in Parkinson’s disease: historical overview and future prospects. J. Neural Transm. (Vienna), 2017, 124(6), 739-744.
[http://dx.doi.org/10.1007/s00702-016-1604-8] [PMID: 27503084]
[114]
Bellemère, G.; Morain, P.; Vaudry, H.; Jégou, S. Effect of S 17092, a novel prolyl endopeptidase inhibitor, on substance P and alpha-melanocyte-stimulating hormone breakdown in the rat brain. J. Neurochem., 2003, 84(5), 919-929.
[http://dx.doi.org/10.1046/j.1471-4159.2003.01536.x] [PMID: 12603817]
[115]
Browne, P.; O’Cuinn, G. An evaluation of the role of a pyroglutamyl peptidase, a post-proline cleaving enzyme and a post-proline dipeptidyl amino peptidase, each purified from the soluble fraction of guinea-pig brain, in the degradation of thyroliberin in vitro. Eur. J. Biochem., 1983, 137(1-2), 75-87.
[http://dx.doi.org/10.1111/j.1432-1033.1983.tb07797.x] [PMID: 6140164]
[116]
García-Horsman, J.A.; Männistö, P.T.; Venäläinen, J.I. On the role of prolyl oligopeptidase in health and disease. Neuropeptides, 2007, 41(1), 1-24.
[http://dx.doi.org/10.1016/j.npep.2006.10.004] [PMID: 17196652]
[117]
Kim, J.D.; Toda, C.; D’Agostino, G.; Zeiss, C.J.; DiLeone, R.J.; Elsworth, J.D.; Kibbey, R.G.; Chan, O.; Harvey, B.K.; Richie, C.T.; Savolainen, M.; Myöhänen, T.; Jeong, J.K.; Diano, S. Hypothalamic prolyl endopeptidase (PREP) regulates pancreatic insulin and glucagon secretion in mice. Proc. Natl. Acad. Sci. USA, 2014, 111(32), 11876-11881.
[http://dx.doi.org/10.1073/pnas.1406000111] [PMID: 25071172]
[118]
Xu, S.; Lind, L.; Zhao, L.; Lindahl, B.; Venge, P. Plasma prolylcarboxypeptidase (angiotensinase C) is increased in obesity and diabetes mellitus and related to cardiovascular dysfunction. Clin. Chem., 2012, 58(7), 1110-1115.
[http://dx.doi.org/10.1373/clinchem.2011.179291] [PMID: 22539806]
[119]
Mallela, J.; Yang, J.; Shariat-Madar, Z. Prolylcarboxypeptidase: a cardioprotective enzyme. Int. J. Biochem. Cell Biol., 2009, 41(3), 477-481.
[http://dx.doi.org/10.1016/j.biocel.2008.02.022] [PMID: 18396440]
[120]
Kehoe, K.; Brouns, R.; Verkerk, R.; Engelborghs, S.; De Deyn, P.P.; Hendriks, D.; De Meester, I. Prolyl carboxypeptidase activity decline correlates with severity and short-term outcome in acute ischemic stroke. Neurochem. Res., 2015, 40(1), 81-88.
[http://dx.doi.org/10.1007/s11064-014-1468-y] [PMID: 25370794]
[121]
Page, M.J.; Di Cera, E. Serine peptidases: classification, structure and function. Cell. Mol. Life Sci., 2008, 65(7-8), 1220-1236.
[http://dx.doi.org/10.1007/s00018-008-7565-9] [PMID: 18259688]
[122]
Windeløv, J.A.; Wewer Albrechtsen, N.J.; Kuhre, R.E.; Jepsen, S.L.; Hornburg, D.; Pedersen, J.; Jensen, E.P.; Galsgaard, K.D.; Winther-Sørensen, M.; Ørgaard, A.; Deacon, C.F.; Mann, M.; Kissow, H.; Hartmann, B.; Holst, J.J. Why is it so difficult to measure glucagon-like peptide-1 in a mouse? Diabetologia, 2017, 60(10), 2066-2075.
[http://dx.doi.org/10.1007/s00125-017-4347-7] [PMID: 28669086]
[123]
Rosenblum, J.S.; Kozarich, J.W. Prolyl peptidases: a serine protease subfamily with high potential for drug discovery. Curr. Opin. Chem. Biol., 2003, 7(4), 496-504.
[http://dx.doi.org/10.1016/S1367-5931(03)00084-X] [PMID: 12941425]
[124]
Yasuda, N.; Nagakura, T.; Inoue, T.; Yamazaki, K.; Katsutani, N.; Takenaka, O.; Clark, R.; Matsuura, F.; Emori, E.; Yoshikawa, S.; Kira, K.; Ikuta, H.; Okada, T.; Saeki, T.; Asano, O.; Tanaka, I. E3024, 3-but-2-ynyl-5-methyl-2-piperazin-1-yl-3,5-dihydro-4H-imidazo[4,5-d]pyridazin-4-one tosylate, is a novel, selective and competitive dipeptidyl peptidase-IV inhibitor. Eur. J. Pharmacol., 2006, 548(1-3), 181-187.
[http://dx.doi.org/10.1016/j.ejphar.2006.08.011] [PMID: 16973152]
[125]
Pei, Z.; Li, X.; Longenecker, K.; von Geldern, T.W.; Wiedeman, P.E.; Lubben, T.H.; Zinker, B.A.; Stewart, K.; Ballaron, S.J.; Stashko, M.A.; Mika, A.K.; Beno, D.W.; Long, M.; Wells, H.; Kempf-Grote, A.J.; Madar, D.J.; McDermott, T.S.; Bhagavatula, L.; Fickes, M.G.; Pireh, D.; Solomon, L.R.; Lake, M.R.; Edalji, R.; Fry, E.H.; Sham, H.L.; Trevillyan, J.M. Discovery, structure-activity relationship, and pharmacological evaluation of (5-substituted-pyrrolidinyl-2-carbonyl)-2-cyanopyrrolidines as potent dipeptidyl peptidase IV inhibitors. J. Med. Chem., 2006, 49(12), 3520-3535.
[http://dx.doi.org/10.1021/jm051283e] [PMID: 16759095]
[126]
Mantle, D. Characterization of dipeptidyl and tripeptidyl aminopeptidases in human kidney soluble fraction. Clin. Chim. Acta, 1991, 196(2-3), 135-142.
[http://dx.doi.org/10.1016/0009-8981(91)90066-l] [PMID: 1674238]
[127]
Thoma, R.; Löffler, B.; Stihle, M.; Huber, W.; Ruf, A.; Hennig, M. Structural basis of proline-specific exopeptidase activity as observed in human dipeptidyl peptidase-IV. Structure, 2003, 11(8), 947-959.
[http://dx.doi.org/10.1016/S0969-2126(03)00160-6] [PMID: 12906826]
[128]
Zou, L.W.; Wang, P.; Qian, X.K.; Feng, L.; Yu, Y.; Wang, D.D.; Jin, Q.; Hou, J.; Liu, Z.H.; Ge, G.B.; Yang, L. A highly specific ratiometric two-photon fluorescent probe to detect dipeptidyl peptidase IV in plasma and living systems. Biosens. Bioelectron., 2017, 90, 283-289.
[http://dx.doi.org/10.1016/j.bios.2016.11.068] [PMID: 27923191]
[129]
Gong, Q.; Shi, W.; Li, L.; Wu, X.; Ma, H. Ultrasensitive fluorescent probes reveal an adverse action of dipeptide peptidase IV and fibroblast activation protein during proliferation of cancer cells. Anal. Chem., 2016, 88(16), 8309-8314.
[http://dx.doi.org/10.1021/acs.analchem.6b02231] [PMID: 27444320]
[130]
Lorey, S.; Stöckel-Maschek, A.; Faust, J.; Brandt, W.; Stiebitz, B.; Gorrell, M.D.; Kähne, T.; Mrestani-Klaus, C.; Wrenger, S.; Reinhold, D.; Ansorge, S.; Neubert, K. Different modes of dipeptidyl peptidase IV (CD26) inhibition by oligopeptides derived from the N-terminus of HIV-1 Tat indicate at least two inhibitor binding sites. Eur. J. Biochem., 2003, 270(10), 2147-2156.
[http://dx.doi.org/10.1046/j.1432-1033.2003.03568.x] [PMID: 12752434]
[131]
O’Reilly, P.J.; Hardison, M.T.; Jackson, P.L.; Xu, X.; Snelgrove, R.J.; Gaggar, A.; Galin, F.S.; Blalock, J.E. Neutrophils contain prolyl endopeptidase and generate the chemotactic peptide, PGP, from collagen. J. Neuroimmunol., 2009, 217(1-2), 51-54.
[http://dx.doi.org/10.1016/j.jneuroim.2009.09.020] [PMID: 19875179]
[132]
Shariat-Madar, Z.; Mahdi, F.; Schmaier, A.H. Recombinant prolylcarboxypeptidase activates plasma prekallikrein. Blood, 2004, 103(12), 4554-4561.
[http://dx.doi.org/10.1182/blood-2003-07-2510] [PMID: 14996700]
[133]
Shibuya-Saruta, H.; Kasahara, Y.; Hashimoto, Y. Human serum dipeptidyl peptidase IV (DPPIV) and its unique properties. J. Clin. Lab. Anal., 1996, 10(6), 435-440.
[http://dx.doi.org/10.1002/(SICI)1098-2825(1996)10:6<435:AID-JCLA21>3.0.CO;2-X] [PMID: 8951616]
[134]
Tenorio-Laranga, J.; Coret-Ferrer, F.; Casanova-Estruch, B.; Burgal, M.; García-Horsman, J.A. Prolyl oligopeptidase is inhibited in relapsing-remitting multiple sclerosis. J. Neuroinflammation, 2010, 7, 23.
[http://dx.doi.org/10.1186/1742-2094-7-23] [PMID: 20370893]
[135]
Fajtová, P.; Štefanić, S.; Hradilek, M.; Dvořák, J.; Vondrášek, J.; Jílková, A.; Ulrychová, L.; McKerrow, J.H.; Caffrey, C.R.; Mareš, M.; Horn, M. Prolyl oligopeptidase from the blood fluke Schistosoma mansoni: from functional analysis to anti-schistosomal inhibitors. PLoS Negl. Trop. Dis., 2015, 9(6)e0003827
[http://dx.doi.org/10.1371/journal.pntd.0003827] [PMID: 26039195]
[136]
Tran, T.; Quan, C.; Edosada, C.Y.; Mayeda, M.; Wiesmann, C.; Sutherlin, D.; Wolf, B.B. Synthesis and structure-activity relationship of N-acyl-Gly-, N-acyl-Sar- and N-blocked-boroPro inhibitors of FAP, DPP4, and POP. Bioorg. Med. Chem. Lett., 2007, 17(5), 1438-1442.
[http://dx.doi.org/10.1016/j.bmcl.2006.11.072] [PMID: 17174090]
[137]
Durinx, C.; Lambeir, A.M.; Bosmans, E.; Falmagne, J.B.; Berghmans, R.; Haemers, A.; Scharpé, S.; De Meester, I. Molecular characterization of dipeptidyl peptidase activity in serum: soluble CD26/dipeptidyl peptidase IV is responsible for the release of X-Pro dipeptides. Eur. J. Biochem., 2000, 267(17), 5608-5613.
[http://dx.doi.org/10.1046/j.1432-1327.2000.01634.x] [PMID: 10951221]
[138]
Caporale, C.; Fontanella, A.; Petrilli, P.; Pucci, P.; Molinaro, M.F.; Picone, D.; Auricchio, S. Isolation and characterization of dipeptidyl peptidase IV from human meconium. Functional role of beta-casomorphins. FEBS Lett., 1985, 184(2), 273-277.
[http://dx.doi.org/10.1016/0014-5793(85)80621-9] [PMID: 2860011]
[139]
Macfarlane, S.; Macfarlane, G.T. Formation of a dipeptidyl arylamidase by Bacteroides splanchnicus NCTC 10825 with specificities towards glycylprolyl-x and valylalanine-x substrates. J. Med. Microbiol., 1997, 46(7), 547-555.
[http://dx.doi.org/10.1099/00222615-46-7-547] [PMID: 9236738]
[140]
Kaszuba, K.; Róg, T.; Danne, R.; Canning, P.; Fülöp, V.; Juhász, T.; Szeltner, Z.; St Pierre, J.F.; García-Horsman, A.; Männistö, P.T.; Karttunen, M.; Hokkanen, J.; Bunker, A. Molecular dynamics, crystallography and mutagenesis studies on the substrate gating mechanism of prolyl oligopeptidase. Biochimie, 2012, 94(6), 1398-1411.
[http://dx.doi.org/10.1016/j.biochi.2012.03.012] [PMID: 22484394]
[141]
Heinis, C.; Alessi, P.; Neri, D. Engineering a thermostable human prolyl endopeptidase for antibody-directed enzyme prodrug therapy. Biochemistry, 2004, 43(20), 6293-6303.
[http://dx.doi.org/10.1021/bi0361160] [PMID: 15147213]
[142]
Ogawa, F.; Takeda, M.; Miyanaga, K.; Tani, K.; Yamazawa, R.; Ito, K.; Tarui, A.; Sato, K.; Omote, M. Development of a fluorogenic small substrate for dipeptidyl peptidase-4. Beilstein J. Org. Chem., 2017, 13, 2690-2697.
[http://dx.doi.org/10.3762/bjoc.13.267] [PMID: 29564006]
[143]
Kawaguchi, M.; Okabe, T.; Terai, T.; Hanaoka, K.; Kojima, H.; Minegishi, I.; Nagano, T. A time-resolved fluorescence probe for dipeptidyl peptidase 4 and its application in inhibitor screening. Chemistry, 2010, 16(45), 13479-13486.
[http://dx.doi.org/10.1002/chem.201001077] [PMID: 20938933]
[144]
Wang, Y.; Wu, X.; Cheng, Y.; Zhao, X. A fluorescent switchable AIE probe for selective imaging of dipeptidyl peptidase-4 in vitro and in vivo and its application in screening DPP-4 inhibitors. Chem. Commun. (Camb.), 2016, 52(17), 3478-3481.
[http://dx.doi.org/10.1039/C5CC08921B] [PMID: 26812581]
[145]
Lai, K.S.; Ho, N.H.; Cheng, J.D.; Tung, C.H. Selective fluorescence probes for dipeptidyl peptidase activity-fibroblast activation protein and dipeptidyl peptidase IV. Bioconjug. Chem., 2007, 18(4), 1246-1250.
[http://dx.doi.org/10.1021/bc0603586] [PMID: 17489551]
[146]
Liu, T.; Ning, J.; Wang, B.; Dong, B.; Li, S.; Tian, X.; Yu, Z.; Peng, Y.; Wang, C.; Zhao, X.; Huo, X.; Sun, C.; Cui, J.; Feng, L.; Ma, X. Activatable near-infrared fluorescent probe for dipeptidyl peptidase IV and its bioimaging applications in living cells and animals. Anal. Chem., 2018, 90(6), 3965-3973.
[http://dx.doi.org/10.1021/acs.analchem.7b04957] [PMID: 29493228]
[147]
Zhang, J.; Qian, X.K.; Song, P.F.; Li, X.D.; Wang, A.Q.; Huo, H.; Yao, J.C.; Zhang, G.M.; Zou, L.W. A high-throughput screening assay for dipeptidyl peptidase-IV inhibitors using human plasma. Anal. Methods, 2021, 13(24), 2671-2678.
[http://dx.doi.org/10.1039/D1AY00415H] [PMID: 34036983]
[148]
Ma, H.; Qian, X.K.; Zhang, J.; Jin, Q.; Zou, L.W.; Liu, S.Q.; Ge, G.B. Accurate and sensitive detection of dipeptidyl peptidase-IV activity by liquid chromatography with fluorescence detection. Anal Methods-Uk, 2020, 12(6), 848-854.
[http://dx.doi.org/10.1039/C9AY02610J]
[149]
Ivanov, I.; Tasheva, D.; Todorova, R.; Dimitrova, M. Synthesis and use of 4-peptidylhydrazido-N-hexyl-1,8-naphthalimides as fluorogenic histochemical substrates for dipeptidyl peptidase IV and tripeptidyl peptidase I. Eur. J. Med. Chem., 2009, 44(1), 384-392.
[http://dx.doi.org/10.1016/j.ejmech.2008.02.036] [PMID: 18410982]
[150]
Ogasawara, A.; Kamiya, M.; Sakamoto, K.; Kuriki, Y.; Fujita, K.; Komatsu, T.; Ueno, T.; Hanaoka, K.; Onoyama, H.; Abe, H.; Tsuji, Y.; Fujishiro, M.; Koike, K.; Fukayama, M.; Seto, Y.; Urano, Y. Red Fluorescence Probe Targeted to Dipeptidylpeptidase-IV for Highly Sensitive Detection of Esophageal Cancer. Bioconjug. Chem., 2019, 30(4), 1055-1060.
[http://dx.doi.org/10.1021/acs.bioconjchem.9b00198] [PMID: 30920803]
[151]
Onoyama, H.; Kamiya, M.; Kuriki, Y.; Komatsu, T.; Abe, H.; Tsuji, Y.; Yagi, K.; Yamagata, Y.; Aikou, S.; Nishida, M.; Mori, K.; Yamashita, H.; Fujishiro, M.; Nomura, S.; Shimizu, N.; Fukayama, M.; Koike, K.; Urano, Y.; Seto, Y. Rapid and sensitive detection of early esophageal squamous cell carcinoma with fluorescence probe targeting dipeptidylpeptidase IV. Sci. Rep., 2016, 6, 26399.
[http://dx.doi.org/10.1038/srep26399] [PMID: 27245876]
[152]
Guo, X.; Mu, S.; Li, J.; Zhang, Y.; Liu, X.; Zhang, H.; Gao, H. Fabrication of a water-soluble near-infrared fluorescent probe for selective detection and imaging of dipeptidyl peptidase IV in biological systems. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(4), 767-775.
[http://dx.doi.org/10.1039/C9TB02301A] [PMID: 31897456]
[153]
Xing, J.; Gong, Q.; Zou, R.; Li, Z.; Xia, Y.; Yu, Z.; Ye, Y.; Xiang, L.; Wu, A. A novel fibroblast activation protein-targeted near-infrared fluorescent off-on probe for cancer cell detection, in vitro and in vivo imaging. J. Mater. Chem. B Mater. Biol. Med., 2018, 6(10), 1449-1451.
[http://dx.doi.org/10.1039/C7TB03303F] [PMID: 32254208]
[154]
Leiting, B.; Pryor, K.D.; Wu, J.K.; Marsilio, F.; Patel, R.A.; Craik, C.S.; Ellman, J.A.; Cummings, R.T.; Thornberry, N.A. Catalytic properties and inhibition of proline-specific dipeptidyl peptidases II, IV and VII. Biochem. J., 2003, 371(Pt 2), 525-532.
[http://dx.doi.org/10.1042/bj20021643] [PMID: 12529175]
[155]
Dikov, A.; Dimitrova, M.; Pajpanova, T.; Krieg, R.; Halbhuber, K.J. Histochemical method for dipeptidyl aminopeptidase II with a new anthraquinonyl hydrazide substrate. Cell. Mol. Biol., 2000, 46(7), 1213-1218.
[PMID: 11075950]
[156]
Graaf, Cd.; Donnelly, D.; Wootten, D.; Lau, J.; Sexton, P.M.; Miller, L.J.; Ahn, J.M.; Liao, J.; Fletcher, M.M.; Yang, D.; Brown, A.J.; Zhou, C.; Deng, J.; Wang, M.W. Glucagon-Like Peptide-1 and Its Class B G Protein-Coupled Receptors: A Long March to Therapeutic Successes. Pharmacol. Rev., 2016, 68(4), 954-1013.
[http://dx.doi.org/10.1124/pr.115.011395] [PMID: 27630114]
[157]
Cheang, J.Y.; Moyle, P.M. Glucagon-Like Peptide-1 (GLP-1)-Based Therapeutics: Current Status and Future Opportunities beyond Type 2 Diabetes. ChemMedChem, 2018, 13(7), 662-671.
[http://dx.doi.org/10.1002/cmdc.201700781] [PMID: 29430842]
[158]
Knudsen, L.B.; Lau, J. The discovery and development of liraglutide and semaglutide. Front. Endocrinol. (Lausanne), 2019, 10, 155.
[http://dx.doi.org/10.3389/fendo.2019.00155] [PMID: 31031702]
[159]
Jarmołowska, B.; Bukało, M.; Fiedorowicz, E.; Cieślińska, A.; Kordulewska, N.K.; Moszyńska, M.; Świątecki, A.; Kostyra, E. Role of milk-derived opioid peptides and proline dipeptidyl peptidase-4 in autism spectrum disorders. Nutrients, 2019, 11(1), 87.
[http://dx.doi.org/10.3390/nu11010087] [PMID: 30621149]
[160]
Dugardin, C.; Cudennec, B.; Tourret, M.; Caron, J.; Guérin-Deremaux, L.; Behra-Miellet, J.; Lefranc-Millot, C.; Ravallec, R. Explorative screening of bioactivities generated by plant-based proteins after in vitro static gastrointestinal digestion. Nutrients, 2020, 12(12), 3746.
[http://dx.doi.org/10.3390/nu12123746] [PMID: 33291464]
[161]
Taghipour, Y.D.; Hajialyani, M.; Naseri, R.; Hesari, M.; Mohammadi, P.; Stefanucci, A.; Mollica, A.; Farzaei, M.H.; Abdollahi, M. Nanoformulations of natural products for management of metabolic syndrome. Int. J. Nanomedicine, 2019, 14, 5303-5321.
[http://dx.doi.org/10.2147/IJN.S213831] [PMID: 31406461]
[162]
Stefanucci, A.; Dimmito, M.P.; Tenore, G.; Pieretti, S.; Minosi, P.; Zengin, G.; Sturaro, C.; Calo, G.; Novellino, E.; Cichelli, A.; Mollica, A. Plant-derived peptides rubiscolin-6, soymorphin-6 and their c-terminal amide derivatives: Pharmacokinetic properties and biological activity. J. Funct. Foods, 2020, 73104154
[http://dx.doi.org/10.1016/j.jff.2020.104154]
[163]
Edosada, C.Y.; Quan, C.; Tran, T.; Pham, V.; Wiesmann, C.; Fairbrother, W.; Wolf, B.B. Peptide substrate profiling defines fibroblast activation protein as an endopeptidase of strict Gly(2)-Pro(1)-cleaving specificity. FEBS Lett., 2006, 580(6), 1581-1586.
[http://dx.doi.org/10.1016/j.febslet.2006.01.087] [PMID: 16480718]
[164]
Szeltner, Z.; Polgár, L. Structure, function and biological relevance of prolyl oligopeptidase. Curr. Protein Pept. Sci., 2008, 9(1), 96-107.
[http://dx.doi.org/10.2174/138920308783565723] [PMID: 18336325]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy