Generic placeholder image

Recent Patents on Biotechnology

Editor-in-Chief

ISSN (Print): 1872-2083
ISSN (Online): 2212-4012

Research Article

In Vivo Treatment Efficacy of Essential Oil Isolated from Seeds of Momordica charantia in Streptozotocin-Induced Diabetes Mellitus

Author(s): Berlin Grace Viswanathan Mariammal*, David Wilson Devarajan, Ruselraj Jerrin, Sundaram Viswanathan, Siddikuzzaman and Rengaswamy Gopal

Volume 15, Issue 4, 2021

Published on: 09 September, 2021

Page: [316 - 331] Pages: 16

DOI: 10.2174/1872208315666210910092105

Price: $65

Open Access Journals Promotions 2
Abstract

Background: All parts of Momordica charantia L. have potential hypoglycemic properties in reversing the metabolic disorder of diabetes mellitus. However, there exists a need for preparing an effective and safer formulation of active phytochemicals. We have also reviewed and analyzed certain patents on such preparatory methods for Momordica charantia L. formulations.

Objective: This study aimed to isolate essential oil from the seeds of Momordica charantia L., analyze its phytochemicals, and study their anti-diabetic effects.

Methods: The essential oil was isolated by the hydrodistillation method and analyzed for phytochemicals by GC-MS. Furthermore, its acute toxicity was tested in rats. Anti-diabetic effects were evaluated in Streptozotocin-induced diabetic rats with 17.5 and 55 mg/kg b.wt of essential oil by evaluating blood glucose, serum lipid profile, liver glycogen, protein, and other serum markers such as ALT, AST, ALP, urea, and creatinine. The histologic changes in the liver, pancreas, and kidney were evaluated using Haematoxylin and Eosin staining.

Results: The phytochemicals having hypoglycaemic and insulin induction potency were identified in the GC-MS analysis. A highly significant (p≤0.01; p≤0.001) reduction in blood glucose was observed from 17.5 mg/kg and 55 mg/kg essential oil treatments, respectively. Diabetes-associated metabolic alterations (p≤0.001) observed in diabetic control rats such as lipid profile, enzymes, glycogen, protein, urea, and creatinine were normalized upon treatment with essential oil. Moreover, the histologic changes in vital organs reversed in treated rats.

Conclusion: The essential oil of Momordica charantia L. seed has promising potency to normalize the metabolic changes of type II diabetes mellitus.

Keywords: Momordica charantia L., cucurbitaceae, GC-MS, essential oil, diabetes mellitus, streptozotocin, phytochemicals.

Graphical Abstract
[1]
Szkudelski T. The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol Res 2001; 50(6): 537-46.
[PMID: 11829314]
[2]
Fernandes NP, Lagishetty CV, Panda VS, Naik SR. An experimental evaluation of the antidiabetic and antilipidemic properties of a standardized Momordica charantia fruit extract. BMC Complement Altern Med 2007; 7: 29-36.
[http://dx.doi.org/10.1186/1472-6882-7-29] [PMID: 17892543]
[3]
Hakkim FL, Girija S, Kumar RS, Jalaludeen M. Effect of aqueous and ethanol extracts of Cassia auriculata L. flowers on diabetes using alloxan induced diabetic rats. Int J Diabetes Metab 2007; 15: 100-6.
[4]
Nakatsu T, Lupo AT Jr, Chinn JW Jr, Kang RK. Biological activity of essential oils and their constituents. Stud Nat Prod Chem 2000; 21: 571-631.
[http://dx.doi.org/10.1016/S1572-5995(00)80014-9]
[5]
Esposito ER, Bystrek MV, Klein JS. An elective course in aromatherapy science. Am J Pharm Educ 2014; 78(4): 79-92.
[http://dx.doi.org/10.5688/ajpe78479] [PMID: 24850941]
[6]
Dunning T. Aromatherapy: overview, safety and quality issues. OA Altern Med 2013; 1: 6-12.
[7]
Wildwood C. The encyclopedia of aromatherapy US Healing Arts Press. 1996.
[8]
Adefegha SA, Olasehinde TA, Oboh G. Essential oil composition, antioxidant, antidiabetic and antihypertensive properties of two Afromomum species. J Oleo Sci 2017; 66(1): 51-63.
[http://dx.doi.org/10.5650/jos.ess16029] [PMID: 27928138]
[9]
Irshaid F, Mansi K, Aburjai T. Antidiabetic effect of essential oil from Artemisia sieberi growing in Jordan in normal and alloxan induced diabetic rats. Pak J Biol Sci 2010; 13(9): 423-30.
[http://dx.doi.org/10.3923/pjbs.2010.423.430] [PMID: 20973395]
[10]
Tahir HU, Sarfraz RA, Ashraf A, Adil S. Chemical composition and antidiabetic activity of essential oils obtained from two spices (Syzygium aromaticum and Cuminum cyminum). Int J Food Prop 2016; 19: 2156-64.
[http://dx.doi.org/10.1080/10942912.2015.1110166]
[11]
Girón LM, Freire V, Alonzo A, Cáceres A. Ethnobotanical survey of the medicinal flora used by the Caribs of Guatemala. J Ethnopharmacol 1991; 34(2-3): 173-87.
[http://dx.doi.org/10.1016/0378-8741(91)90035-C] [PMID: 1795521]
[12]
Lans C, Brown G. Observations on ethnoveterinary medicines in Trinidad and Tobago. Prev Vet Med 1998; 35(2): 125-42.
[http://dx.doi.org/10.1016/S0167-5877(97)00055-X] [PMID: 9646336]
[13]
Yeşilada E, Gürbüz I, Shibata H. Screening of Turkish anti-ulcerogenic folk remedies for anti-Helicobacter pylori activity. J Ethnopharmacol 1999; 66(3): 289-93.
[http://dx.doi.org/10.1016/S0378-8741(98)00219-0] [PMID: 10473175]
[14]
Rizvi SI, Mishra N. Traditional Indian medicines used for the management of diabetes mellitus. J Diabetes Res 2013; 2013: 712092.
[http://dx.doi.org/10.1155/2013/712092] [PMID: 23841105]
[15]
Ng TB, Chan WY, Yeung HW. Proteins with abortifacient, ribosome inactivating, immunomodulatory, antitumor and anti-AIDS activities from Cucurbitaceae plants. Gen Pharmacol 1992; 23(4): 579-90.
[http://dx.doi.org/10.1016/0306-3623(92)90131-3] [PMID: 1397965]
[16]
Raman A, Lau C. Anti-diabetic properties and phytochemistry of Momordica charantia L. (Cucurbitaceae). Phytomedicine 1996; 2(4): 349-62.
[http://dx.doi.org/10.1016/S0944-7113(96)80080-8] [PMID: 23194773]
[17]
Basch E, Gabardi S, Ulbricht C. Bitter melon (Momordica charantia): a review of efficacy and safety. Am J Health Syst Pharm 2003; 60(4): 356-9.
[http://dx.doi.org/10.1093/ajhp/60.4.356] [PMID: 12625217]
[18]
Khan MF, Abutaha N, Nasr FA, Alqahtani AS, Noman OM, Wadaan MAM. Bitter gourd (Momordica charantia) possess developmental toxicity as revealed by screening the seeds and fruit extracts in zebrafish embryos. BMC Complement Altern Med 2019; 19(1): 184-98.
[http://dx.doi.org/10.1186/s12906-019-2599-0] [PMID: 31340810]
[19]
Sharma S, Chauhan VS, Suthar A. Process for preparation of an extract of Momordica charantia. European patent, EP 2667884 B1, 2012.
[20]
Pushpa Khanna. Oil from Momordica charantia L., its method of preparation and uses. US 6964786 B1, 2005.
[21]
Dahab M, Baiting Fu, Osman Elbadri, You-Kai Xu, Ping Zhang. Zanthoxylum myriacanthum var. pubescens essential oil protective potential against diabetic mice nephropathy and its relevant oxidative stress. J Essent Oil-Bear Plants 2019; 22(3): 581-91.
[http://dx.doi.org/10.1080/0972060X.2019.1611485]
[22]
Owolabi MS, Oluwole E Omikorede, Yusuf Kamil A, William NS. The leaf essential oil of Momordica charantia from nigeria is dominated by geijerene and pregeijerene. J Essent Oil-Bear Plants 2013; 16(3): 377-81.
[http://dx.doi.org/10.1080/0972060X.2013.813263]
[23]
Luciana TY, Illana LP de M, José AGS, Jorge MF. Bitter gourd (Momordica charantia L.) seed oil as a naturally rich source of bioactive compounds for nutraceutical purposes. Nutrire 2016; 41: 1-12.
[24]
Kohno H, Yasui Y, Suzuki R, Hosokawa M, Miyashita K, Tanaka T. Dietary seed oil rich in conjugated linolenic acid from bitter melon inhibits azoxymethane-induced rat colon carcinogenesis through elevation of colonic PPARgamma expression and alteration of lipid composition. Int J Cancer 2004; 110(6): 896-901.
[http://dx.doi.org/10.1002/ijc.20179] [PMID: 15170673]
[25]
Braca A, Siciliano T, D’Arrigo M, Germanò MP. Chemical composition and antimicrobial activity of Momordica charantia seed essential oil. Fitoterapia 2008; 79(2): 123-5.
[http://dx.doi.org/10.1016/j.fitote.2007.11.002] [PMID: 18164872]
[26]
Dang HS, Roberts BP, Tocher DA. Thiol-catalysed radical-chain redox rearrangement reactions of benzylidene acetals derived from terpenoid diols. Org Biomol Chem 2003; 1(22): 4073-84.
[http://dx.doi.org/10.1039/b309060b] [PMID: 14664397]
[27]
Keller AC, Ma J, Kavalier A, He K, Brillantes AM, Kennelly EJ. Saponins from the traditional medicinal plant Momordica charantia stimulate insulin secretion in vitro. Phytomedicine 2011; 19(1): 32-7.
[http://dx.doi.org/10.1016/j.phymed.2011.06.019] [PMID: 22133295]
[28]
Ullah K, Sarker MDMR, Khan MS, Mustapha MS, Ullah MK. Anti-diabetic activity of compound “2-[(trimethylsilyl) oxy] - methyl ester (cas) Methyl-o-trim-ethyl-silylsalicylate” Isolated from Pericampylus glaucus (Lam) Merr in STZ-induced diabetic rats. J Basic Clin Pharm 2017; 8: 68-73.
[29]
Oliphant CM, Green GM. Quinolones: a comprehensive review. Am Fam Physician 2002; 65(3): 455-64.
[PMID: 11858629]
[30]
Mohammed A, Ibrahim MA, Tajuddeen N, Aliyu AB, Isah MB. Antidiabetic potential of anthraquinones: a review. Phytother Res 2020; 34(3): 486-504.
[http://dx.doi.org/10.1002/ptr.6544] [PMID: 31773816]
[31]
Grover JK, Gupta SR. Hypoglycemic activity of seeds of Momordica charantia. Eur J Pharmacol 1990; 183: 1026-7.
[http://dx.doi.org/10.1016/0014-2999(90)92880-R]
[32]
Chen Tong, Cooney, Gregory J, James, David E, et al. Use of compounds extracted from Momordica charantia L. in the manufacture of medicaments for prevention and treatment of diabetes and obesity. US2011152208, 2009.
[33]
Jia S, Shen M, Zhang F, Xie J. Recent advances in Momordica charantia: functional components and biological activities. Int J Mol Sci 2017; 18(12): 2555.
[http://dx.doi.org/10.3390/ijms18122555] [PMID: 29182587]
[34]
Luzi L. Pancreas transplantation and diabetic complications. N Engl J Med 1998; 339(2): 115-7.
[http://dx.doi.org/10.1056/NEJM199807093390210] [PMID: 9654544]
[35]
Barakat HA, Vadlamudi S, MacLean P, MacDonald K, Pories WJ. Lipoprotein metabolism in non-insulin-dependent diabetes mellitus. J Nutr Biochem 1996; 7: 586-98.
[http://dx.doi.org/10.1016/S0955-2863(96)00117-9]
[36]
Pushparaj PN, Low HK, Manikandan J, Tan BK, Tan CH. Anti-diabetic effects of Cichorium intybus in streptozotocin-induced diabetic rats. J Ethnopharmacol 2007; 111(2): 430-4.
[http://dx.doi.org/10.1016/j.jep.2006.11.028] [PMID: 17197141]
[37]
Murali B, Upadhyaya UM, Goyal RK. Effect of chronic treatment with Enicostemma littorale in non-insulin-dependent diabetic (NIDDM) rats. J Ethnopharmacol 2002; 81(2): 199-204.
[http://dx.doi.org/10.1016/S0378-8741(02)00077-6] [PMID: 12065151]
[38]
Rosenlund BL. Effects of insulin on free amino acids in plasma and the role of the amino acid metabolism in the etiology of diabetic microangiopathy. Biochem Med Metab Biol 1993; 49(3): 375-91.
[http://dx.doi.org/10.1006/bmmb.1993.1038] [PMID: 8347381]
[39]
Garvey WT. Glucose transport and NIDDM. Diabetes Care 1992; 15(3): 396-417.
[http://dx.doi.org/10.2337/diacare.15.3.396] [PMID: 1559408]
[40]
Pugazhenthi S, Angel JF, Khandelwal RL. Long-term effects of vanadate treatment on glycogen metabolizing and lipogenic enzymes of liver in genetically diabetic (db/db) mice. Metabolism 1991; 40(9): 941-6.
[http://dx.doi.org/10.1016/0026-0495(91)90070-D] [PMID: 1910143]
[41]
Ong KC, Khoo HE. Effects of myricetin on glycemia and glycogen metabolism in diabetic rats. Life Sci 2000; 67(14): 1695-705.
[http://dx.doi.org/10.1016/S0024-3205(00)00758-X] [PMID: 11021354]
[42]
Asayama K, Nakane T, Uchida N, Hayashibe H, Dobashi K, Nakazawa S. Serum antioxidant status in streptozotocin-induced diabetic rat. Horm Metab Res 1994; 26(7): 313-5.
[http://dx.doi.org/10.1055/s-2007-1001693] [PMID: 7959605]
[43]
Sookoian S, Pirola CJ. Alanine and aspartate aminotransferase and glutamine-cycling pathway: Their roles in pathogenesis of metabolic syndrome. World J Gastroenterol 2012; 18(29): 3775-81.
[http://dx.doi.org/10.3748/wjg.v18.i29.3775] [PMID: 22876026]
[44]
Makena W, Hamman WO, Buraimoh AA, Dibal NI, Obaje SG. Therapeutic effects of balanitoside in streptozotocin-induced diabetic rats. J Taibah Univ Med Sci 2018; 13(4): 402-6.
[http://dx.doi.org/10.1016/j.jtumed.2018.01.001] [PMID: 31435355]
[45]
Bora K, Borah M, Chutia H, Nath CK, Das D, Ruram AA. Presence of concurrent derangements of liver function tests in type 2 diabetes and their relationship with glycemic status: a retrospective observational study from Meghalaya. J Lab Physicians 2016; 8(1): 30-5.
[http://dx.doi.org/10.4103/0974-2727.176227] [PMID: 27013810]
[46]
Xie Y, Bowe B, Li T, Xian H, Yan Y, Al-Aly Z. Higher blood urea nitrogen is associated with increased risk of incident diabetes mellitus. Kidney Int 2018; 93(3): 741-52.
[http://dx.doi.org/10.1016/j.kint.2017.08.033] [PMID: 29241622]
[47]
Akrout A, Gonzalez LA, El Jani H, Madrid PC. Antioxidant and antitumor activities of Artemisia campestris and Thymelaea hirsuta from southern Tunisia. Food Chem Toxicol 2011; 49(2): 342-7.
[http://dx.doi.org/10.1016/j.fct.2010.11.003] [PMID: 21075159]
[48]
Kumar S, Vasudeva N, Sharma S. GC-MS analysis and screening of antidiabetic, antioxidant and hypolipidemic potential of Cinnamomum tamala oil in streptozotocin induced diabetes mellitus in rats. Cardiovasc Diabetol 2012; 11: 95.
[http://dx.doi.org/10.1186/1475-2840-11-95] [PMID: 22882757]
[49]
King J. The transferases-alanine and aspartate transaminases. In: J King, Ed. Practical clinical enzymology. Washington D.C.: Van Nostrand 1965; pp. 122-4.
[50]
King J. The hydrolases-acid and alkaline phosphatases. In: J King, Ed. Practical clinical enzymology. Washington D.C.: Van Nostrand 1965; pp. 194-6.
[51]
Allain CC, Poon LS, Chan CS, Richmond W, Fu PC. Enzymatic determination of total serum cholesterol. Clin Chem 1974; 20(4): 470-5.
[http://dx.doi.org/10.1093/clinchem/20.4.470] [PMID: 4818200]
[52]
Van Handel E, Zilversmit DB. Micromethod for the direct determination of serum triglycerides. J Lab Clin Med 1957; 50(1): 152-7.
[PMID: 13439279]
[53]
Warnick GR, Nguyen T, Albers AA. Comparison of improved precipitation methods for quantification of high-density lipoprotein cholesterol. Clin Chem 1985; 31(2): 217-22.
[http://dx.doi.org/10.1093/clinchem/31.2.217] [PMID: 2578337]
[54]
Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 1972; 18(6): 499-502.
[http://dx.doi.org/10.1093/clinchem/18.6.499] [PMID: 4337382]
[55]
Van Der Vies J. Two methods for the determination of glycogen in liver. Biochem J 1954; 57(3): 410-6.
[http://dx.doi.org/10.1042/bj0570410] [PMID: 13181850]
[56]
Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem 1951; 193(1): 265-75.
[http://dx.doi.org/10.1016/S0021-9258(19)52451-6] [PMID: 14907713]
[57]
Berlin Grace VM, Wilson DD, Divyadharshini M, Viswanathan S, Siddikuzzaman Gopal R. A new silver nano-formulation of cassia auriculata flower extract and its anti-diabetic effects. Recent Pat Nanotechnol 2021; Epub ahead of print
[http://dx.doi.org/10.2174/1872210515666210329160523] [PMID: 33781195]
[58]
Siddikuzzaman , Grace VM. Anti-metastatic study of liposome-encapsulated all trans retinoic acid (ATRA) in B16F10 melanoma cells-implanted C57BL/6 mice. Cancer Invest 2014; 32(10): 507-17.
[http://dx.doi.org/10.3109/07357907.2014.964408] [PMID: 25311249]
[59]
Siddikuzzaman , Grace VM. Inhibition of metastatic lung cancer in C57BL/6 mice by liposome encapsulated all trans retinoic acid (ATRA). Int Immunopharmacol 2012; 14(4): 570-9.
[http://dx.doi.org/10.1016/j.intimp.2012.09.008] [PMID: 23021983]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy