Generic placeholder image

Current Nanomaterials

Editor-in-Chief

ISSN (Print): 2405-4615
ISSN (Online): 2405-4623

Mini-Review Article

Green Synthesis of Metal and Metal-oxide Nanoparticles Pertinent to Catharanthus roseus and Moringa oleifera - A Review

Author(s): Anjum Mobeen Syeda, Habeeb Khadri and Khateef Riazunnisa*

Volume 7, Issue 2, 2022

Published on: 08 September, 2021

Page: [84 - 92] Pages: 9

DOI: 10.2174/2405461506666210908142533

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Biological synthesis via greener routes attained eclectic interest for research investigators due to its reliable, sustainable, eco-friendly, and non-toxic nature since numerous efforts have been made laterally with reflective applications by synthesizing diverse nanomaterials, including metals/metal oxides, hybrid, and bioinspired materials during the past era.

Objective: The present review aims to report, update and uncover all the minutiae concerning two medicinal plant sources allied with diversified metal and non-metal nanoparticle synthesis through a greener approach.

Methods: The ornamental, medicinal plants such as Catharanthus roseus and Moringa oleifera have been broadly studied for the synthesis of varied nanoparticles because of their innumerable secondary metabolites, which may act as bio-reducing and stabilizing agents synthesized by metallic/ metal oxides, and non-metallic precursors such as silver, gold, sulphur, copper oxide, iron oxide, ruthenium oxide nanoparticles by means of either leaf infusions or part/whole plant.

Conclusion: This report highlights a phenomenon of exploiting different parts of these two plants with their widespread applications in varied scientific domains, which may act as a promising drug candidate for drug delivery mechanisms by means of a nano approach.

Keywords: Catharanthus roseus, Moringa oleifera, ruthenium oxide nanoparticles, silver, nanotechnology, drug delivery.

« Previous
Graphical Abstract
[1]
Patil SP. Ficus carica assisted green synthesis of metal nanoparticles: A mini review. Biotechnol Rep (Amst) 2020; 28: e00569.
[http://dx.doi.org/10.1016/j.btre.2020.e00569] [PMID: 34094890]
[2]
Beattie IR, Haverkamp RG. Silver and gold nanoparticles in plants: Sites for the reduction to metal. Metallomics 2011; 3(6): 628-32.
[http://dx.doi.org/10.1039/c1mt00044f] [PMID: 21611658]
[3]
Gan PP, Li SFY. Potential of plant as a biological factory to synthesize gold and silver nanoparticles and their applications. Rev Environ Sci Biotechnol 2011; 11: 169-206.
[http://dx.doi.org/10.1007/s11157-012-9278-7]
[4]
Iravani S. Green synthesis of metal nanoparticles using plants. Green Chem 2011; 13: 2638-50.
[http://dx.doi.org/10.1039/c1gc15386b]
[5]
Kandasamy K, Alikunhi NM, Manickaswami G, Nabikhan A, Ayyavu G. Synthesis of silver nanoparticles by coastal plant Prosopis chilensis (L) and their efficacy in controlling vibriosis in shrimp Penaeus monodon. Appl Nanosci 2012; 3: 65-73.
[http://dx.doi.org/10.1007/s13204-012-0064-1]
[6]
Park Y, Hong YN, Weyers A, Kim YS, Linhardt RJ. Polysaccharides and phytochemicals: A natural reservoir for the green synthesis of gold and silver nanoparticles. IET Nanobiotechnol 2011; 5(3): 69-78.
[http://dx.doi.org/10.1049/iet-nbt.2010.0033] [PMID: 21913788]
[7]
Anastas PT, Zimmerman JB. Green nanotechnology why we need a green nano award and how to make it happen. Washington, DC: Woodrow Wilson International Center for Scholars 2007.
[8]
Hutchison JE. Greener nanoscience: A proactive approach to advancing applications and reducing implications of nanotechnology. ACS Nano 2008; 2(3): 395-402.
[http://dx.doi.org/10.1021/nn800131j] [PMID: 19206562]
[9]
P PS, T KS. Antioxidant, antibacterial and cytotoxic potential of silver nanoparticles synthesized using terpenes rich extract of Lantana camara L. leaves. Biochem Biophys Rep 2017; 10: 76-81.
[http://dx.doi.org/10.1016/j.bbrep.2017.03.002] [PMID: 29114571]
[10]
El-Rafie MH, El-Naggar ME, Ramadan MA, Fouda MMG, Al-Deyab SS, Hebeish A. Environmental synthesis of silver nanoparticles using hydroxypropyl starch and their characterization. Carbohydr Polym 2011; 86: 630-5.
[http://dx.doi.org/10.1016/j.carbpol.2011.04.088]
[11]
Hebeis AA, Shaheen TI, Fouda MMG, El- Naggar ME. Eco-friendly microwave-assisted green and rapid synthesis of well stabilized gold and core-shell silver-gold nanoparticles. Carbohydr Polym 2015; 136: 1128-36.
[http://dx.doi.org/10.1016/j.carbpol.2015.10.003]
[12]
Hussein J, El-Naggar ME, Latif YA, et al. Solvent-free and one-pot synthesis of silver and zinc oxide nanoparticles: Activity toward cell membrane component and insulin signaling pathway in experimental diabetes. Colloids Surf B Biointerfaces 2018; 170: 76-84.
[http://dx.doi.org/10.1016/j.colsurfb.2018.05.058] [PMID: 29883845]
[13]
Hussein J, Attia MF, El Bana M, et al. Solid state synthesis of docosahexaenoic acid-loaded zinc oxide nanoparticles as a potential antidiabetic agent in rats. Int J Biol Macromol 2019; 140: 1305-14.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.08.201] [PMID: 31449866]
[14]
Hussein J, El-Naggar ME, Fouda MMG, et al. The efficiency of blackberry loaded AgNPs, AuNPs and Ag@AuNPs mediated pectin in the treatment of cisplatin-induced cardiotoxicity in experimental rats. Int J Biol Macromol 2020; 159: 1084-93.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.05.115] [PMID: 32442568]
[15]
Abdelgawad AM, El-Naggar ME, Eisa WH, Rojas OJ. Cleaner and large scale production of silver nanoparticles mediated by soy protein via solid state synthesis. J Clean Prod 2016; 144: 501-10.
[16]
Sharma VK, Yngard RA, Lin Y. Silver nanoparticles: Green synthesis and their antimicrobial activities. Adv Colloid Interface Sci 2009; 145(1-2): 83-96.
[http://dx.doi.org/10.1016/j.cis.2008.09.002] [PMID: 18945421]
[17]
Roy S, Das TK. Plant mediated green synthesis of silver nanoparticles-a review. Int J Plant Biol Res 2015; 3(3): 1044.
[18]
Kalishwaralal K, Deepak V, Pandian SRK, et al. Biosynthesis of silver and gold nanoparticles using Brevibacterium casei. Colloids Surf B Biointerfaces 2010; 77(2): 257-62.
[http://dx.doi.org/10.1016/j.colsurfb.2010.02.007] [PMID: 20197229]
[19]
Guin D, Manorama VS, Radha S, Nigam AK. Synthesis of iron oxide nanoparticles of narrow size distribution of polysaccharide templates. Bull Mater Sci 2006; 29: 617.
[http://dx.doi.org/10.1007/s12034-006-0013-2]
[20]
Willis AL, Chen Z, He J, Zhu Y, Turro NJ. Metal acetylacetonates as general precursors for the synthesis of early transition metal oxide nanomaterials. J Nanomater 2007; 2007: 014858.
[21]
Antony JJ, Sivalingam P, Siva D, Kamalakkannan SK, Anbarasu R. Comparative evaluation of antibacterial activity of silver nanoparticles synthesized using Rhizophora apiculata and glucose. Colloids Surf B Biointerf 2011; 98: 65-72.
[22]
Logeswari P, Silambarasan S, Abraham J. Synthesis of silver nanoparticles using plant extracts and analysis of their antimicrobial activity. J Saudi Chem Soc 2012; 4: 23-45.
[http://dx.doi.org/10.1016/j.jscs.2012.04.007]
[23]
Suriyakalaa U, Antony JJ, Suganya S, et al. Hepato curative activity of biosynthesized silver nanoparticles fabricated using Andrographis paniculate. Colloids Surf B Biointerfaces 2013; 102: 189-94.
[24]
Gurunathan S, Kyung-Jin L, Kalishwaralal K, Sheikpranbabu S, Vaidyanathan R, Eom SH. Antiangiogenic properties of silver nanoparticles. Biomater 2009; 30: 6341-50.
[http://dx.doi.org/10.1016/j.biomaterials.2009.08.008]
[25]
Suman TY, Radhika Rajasree SR, Kanchana A, Elizabeth SB. Biosynthesis, characterization and cytotoxic effect of plant mediated silver nanoparticles using Morinda citrifolia root extract. Colloids Surf B Biointerfaces 2013; 106: 74-8.
[http://dx.doi.org/10.1016/j.colsurfb.2013.01.037] [PMID: 23434694]
[26]
Swarnalatha C, Rachela S, Ranjan P, Baradwaj P. Evaluation of in vitro antidiabetic activity of Sphaeranthus Amaranthoides silver nanoparticles. Int J Nanomat Biostr 2012; 2: 25-9.
[27]
Reichelt KV, Hoffmann-Lucke P, Hartmann B, et al. Phytochemical characterization of South African bush tea (Athrixia phylicoides DC). S Afr J Bot 2012; 83: 1-8.
[http://dx.doi.org/10.1016/j.sajb.2012.07.006]
[28]
Gopalakrishnan R, Loganathan B, Dinesh S, Raghu K. Strategic green synthesis, characterization and catalytic application to 4-nitrophenol reduction of palladium nanoparticles. J Cluster Sci 2017; 28: 2123-31.
[http://dx.doi.org/10.1007/s10876-017-1207-z]
[29]
Sharma JK, Akhtar MS, Ameen S, Srivastva P, Singh G. Green synthesis of CuO nanoparticles with leaf extract of Calotropis gigantea and its dye sensitized solar cells applications. J Alloys Compd 2015; 632: 321-5.
[http://dx.doi.org/10.1016/j.jallcom.2015.01.172]
[30]
Ramakrishna G, Nagabhushana H, Daruka PD, et al. Spectroscopic properties of red emitting Eu3+ doped Y2SiO5 nanophosphors for WLED’s on the basis of JuddOfelt analysis: Calotropis gigantea latex mediated synthesis. J Lumin 2016; 181: 153-63.
[http://dx.doi.org/10.1016/j.jlumin.2016.08.050]
[31]
Wang S, Jia F, Wang X, et al. Fabrication of ZnO nanoparticles modified by uniformly dispersed Ag nanoparticles: Enhancement of gas sensing performance. ACS Omega 2020; 5(10): 5209-18.
[http://dx.doi.org/10.1021/acsomega.9b04243] [PMID: 32201809]
[32]
Priyanka T, Sujata M. A study on potential phytopharmaceuticals assets in Catharanthus roseus L. (Alba). Int J Life Sci Biotechnol Pharma Res 2016; 5: 1.
[33]
Alba BMA, Bhise SB. Comparative study on antioxidant properties of Catharanthus roseus and Catharanthus alba. Int J Pharma Tech 2011; 3(3): 1551-6.
[34]
Sridevi V, Chandana Lakshmi MVV. A review on subsistence and significance of Medical plants available in Andhra University Visakhapatnam. Inter J of Eng and Inno Tech 2013; 3(2): 326-32.
[35]
Renjini KR, Gopakumar G, Latha MS. The medicinal properties of phytochemicals in Catharanthus roseus - a review. Eur J Pharm Med Res 2017; 4(11): 545-51.
[36]
Kirtikar KR, Basu BD. Indian medicinal plants, Bishan singh, Mahendra pal singh, New cannaugt place, Deherudun. (second edition, reprint.). 1975; 1: pp. 676-83.
[37]
Parrotte JA. Healing plants of peninsular India. England: CABI publishing 2001; p. 528.
[38]
Asma N, Awang SM, Md Irfan H, Shahzad MA, Syarhabil MA. An updated review on Catharanthus roseus: phytochemical and pharmacological analysis. Ind Res J Pharm Sci 2016; 3(2): 631-53.
[39]
Mishra JN, Navneet KV. A brief study on Catharanthus roseus: A review. Inter J Res in Pharm and Pharma Sci 2017; 2(2): 20-3.
[40]
Bennouna J, Delord JP, Campone M, Nguyen L. Vinflunine: A new microtubule inhibitor agent. Clin Cancer Res 2008; 14(6): 1625-32.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-2219] [PMID: 18347163]
[41]
Navnidhi C, Amolakdeep K, Sandeep M, Garg MK, Sajad AS, Anil P. Bioactive compounds, associated health benefits and safety considerations of Moringa oleifera L.: An updated review. Nutr Food Sci 2020; 51(2): 255-77.
[http://dx.doi.org/10.1108/NFS-03-2020-0087]
[42]
Chhikara N, Kushwaha K, Sharma P, Gat Y, Panghal A. Bioactive compounds of beetroot and utilization in food processing industry: A critical review. Food Chem 2019; 272: 192-200.
[http://dx.doi.org/10.1016/j.foodchem.2018.08.022] [PMID: 30309532]
[43]
Chhikara N, Kour R, Jaglan S, Gupta P, Gat Y, Panghal A. Citrus medica: nutritional, phytochemical composition and health benefits - A review. Food Funct 2018; 9(4): 1978-92.
[http://dx.doi.org/10.1039/C7FO02035J] [PMID: 29594287]
[44]
Gawande MB, Goswami A, Felpin FX, et al. Cu and Cu-based nanoparticles: Synthesis and applications in catalysis. Chemi rev 2016; 116(6): 3722-811.
[http://dx.doi.org/10.1021/acs.chemrev.5b00482]
[45]
Pagar T, Ghotekar S, Pagar K, Pansambal S, Oza R. A review on bio-synthesized Co3O4 nanoparticles using plant extracts and their diverse applications. J Chem Rev 2019; 1(4): 260-70.
[http://dx.doi.org/10.33945/SAMI/jcr.2019.4.2]
[46]
Nikam A, Pagar T, Ghotekar S, Pagar K, Pansambal S. A review on plant extract mediated green synthesis of zirconia nanoparticles and their miscellaneous applications. J Chem Rev 2019; 1(3): 154-63.
[http://dx.doi.org/10.33945/SAMI/JCR.2019.3.1]
[47]
Biswas D, Nandy S, Mukherjee A, et al. Moringa oleifera Lam. and derived phytochemicals as promising antiviral agents: A review. S Afr J Bot 2020; 129: 272-82.
[http://dx.doi.org/10.1016/j.sajb.2019.07.049]
[48]
Gurunathan S, Han J, Park JH, Kim JH. A green chemistry approach for synthesizing biocompatible gold nanoparticles. Nanoscale Res Lett 2014; 9(1): 248.
[http://dx.doi.org/10.1186/1556-276X-9-248] [PMID: 24940177]
[49]
Hafiza RR, Salman HS, Tariq K, Christophe H, Nathalie GG, Bilal HA. Melatonin-stimulated biosynthesis of antimicrobial ZnONPs by enhancing bio-reductive prospective in callus cultures of Catharanthus roseus var. Alba. Artif Cells Nanomed Biotechnol 2018; 46(2): 36-950.
[http://dx.doi.org/10.1080/21691401.2018.1473413]
[50]
Deepa B, Ganesan V. Bioinspired synthesis of selenium nanoparticles using flowers of Catharanthus roseus (L.) G.Don. and Peltophorum pterocarpum (DC.)Backer ex Heyne - a comparison. Inter J Chem Tech Res 2015; 7(2): 725-33.
[51]
Priti P, Mahendra R. Bio-inspired synthesis of sulphur nanoparticles using leaf extract of four medicinal plants with special reference to their antibacterial activity. IET. Nanobiotech 2017; 12(1): 25-31.
[http://dx.doi.org/10.1049/iet-nbt.2017.0079]
[52]
Zaib M, Shahazadi T, Muzammal I, Farooq U. Catharanthus roseus extract mediated synthesis of cobalt nanoparticles: Evaluation of antioxidant, antibacterial, hemolytic and catalytic activities. Inorg Nano-Metal Chem 2020; 50(11): 1-10.
[http://dx.doi.org/10.1080/24701556.2020.1737819]
[53]
Baskar G, Sakthivel D, Garrick BG. Synthesis, characterization and anticancer activity of copper nanobiocomposite synthesized by leaf extract of Catharanthus roseus. Inter J Modern Sci and Tech 2016; 1(3): 92-6.
[54]
Lee HJ, Lee G, Jang NR, Yun JH, Song JY, Kim BS. Biological synthesis of copper nanoparticles using plant extract. Nanotech 1999; 1: 371-4.
[55]
Anjum SM, Riazunnisa K. Fine ultra-small ruthenium oxide nanoparticle synthesis by using Catharanthus roseus and Moringa oleifera leaf extracts and their efficacy towards in vitro assays, antimicrobial activity and catalytic: Adsorption kinetic studies using methylene blue dye. J Clust Sci 2021; 1-5.
[http://dx.doi.org/10.1007/s10876-021-02037-0]
[56]
Rajalakshmi BG, Komathi SKS, Poongodi N, Sasikala T, Banuraviganesh B. Antimicrobial activity and phytochemical screening of Catharanthus roseus. Int J Sci Res 2012; 2(10): 1-2.
[57]
Ponarulselvam S, Panneerselvam C, Murugan K, Aarthi N, Kalimuthu K, Thangamani S. Synthesis of silver nanoparticles using leaves of Catharanthus roseus Linn. G. Don and their antiplasmodial activities. Asian Pac J Trop Biomed 2012; 2(7): 574-80.
[http://dx.doi.org/10.1016/S2221-1691(12)60100-2] [PMID: 23569974]
[58]
Kotakadi VS, Gaddam SA, Subba Rao Y, Prasad TNVKV, Varada Reddy A, Sai Gopal DV. Biofabrication of silver nanoparticles using Andrographis paniculata. Eur J Med Chem 2014; 73: 135-40.
[http://dx.doi.org/10.1016/j.ejmech.2013.12.004] [PMID: 24389508]
[59]
Shittu OK, Stephen DI, Kure AH. Functionalization of biosynthesized gold nanoparticle from aqueous leaf extract of Catharanthus roseus for antibacterial studies. Afr J Biomed Res 2017; 20: 195-202.
[60]
Anjum SM, Habeeb Khadri C, Riazunnisa K. Green synthesis of silver nanoparticles by Catharanthus roseus and their catalytic activity. India: Roshan publishers 2017; 64-9.
[61]
Al-Shmgani HSA, Mohammed WH, Sulaiman GM, Saadoon AH. Biosynthesis of silver nanoparticles from Catharanthus roseus leaf extract and assessing their antioxidant, antimicrobial, and wound-healing activities. Artif Cells Nanomed Biotechnol 2017; 45(6): 1-7.
[http://dx.doi.org/10.1080/21691401.2016.1220950] [PMID: 27534756]
[62]
Zulaikha SG, Nazri IM, Hazwani AN. Characterisation of silver nanoparticles using a standardised Catharanthus roseus aqueous extract. Mal J Med Health Sci 2018; 14(Suppl. 1): 120-5.
[63]
Vaidya SR, Chepte SD, Thorat MG, et al. Comparative efficacy of green synthesized silver nanoparticles of Azadirachta indica and Catharanthus roseus on wound healing in goats. J EntomoL Zool Stu 2019; 7(4): 1336-9.
[64]
Ke Y, Al Aboody MS, Alturaiki W, et al. Photosynthesized gold nanoparticles from Catharanthus roseus induces caspase-mediated apoptosis in cervical cancer cells (HeLa). Artif Cells Nanomed Biotechnol 2019; 47(1): 1938-46.
[http://dx.doi.org/10.1080/21691401.2019.1614017] [PMID: 31099261]
[65]
Sujatha RK, Iswarya D. The biosynthesis Of Catharanthus roseus leaves based gold nanoparticles (Aunps) and their antimicrobial and anticancer applications. Res J Lifesci Bioinfo Pharma Chem Sci 2019; 5(3): 350.
[66]
Vajravathi L, Madhava CR, Roja Rani P, et al. Green synthesis of silver nanoparticles and evaluation of their antibacterial activity against multidrug-resistant bacteria and wound healing efficacy using a murine model. Antibiotics (Basel) 2020; 9: 902.
[http://dx.doi.org/10.3390/antibiotics9120902]
[67]
Harsh K, Bhardwaj K. Kuˇca K, Anu K, Nepovimova E, Verma R, and Dinesh K. Kuˇca K, Anu K, Nepovimova E, Verma R, and Dinesh K. Flower-based green synthesis of metallic nanoparticles: applications beyond fragrance. Nanomaterials (Basel) 2020; 10: 766.
[http://dx.doi.org/10.3390/nano10040766]
[68]
Prashant K, Ghotekar S, Pagar T, Pansambal S, Rajeshwari O, Dhananjay M. Plant extract assisted eco-benevolent synthesis of selenium nanoparticles-a review on plant parts involved, characterization and their recent applications. J Chem Rev 2020; 2(3): 157-68.
[69]
Monika G. Biosynthesized silver nanoparticles using Catharanthus roseus and their antibacterial efficacy in synergy with antibiotics; a future advancement in nanomedicine. Asian J Pharm Clin Res 2021; 14(2): 116-24.
[70]
Silveira C, Shimabuku QL, Silva MF, Bergamasco R. Iron-oxide nanoparticles by the green synthesis method using Moringa oleifera leaf extract for fluoride removal. Environ Technol 2017; 1-11.
[PMID: 28823221]
[71]
Hassanien R, Abed-Elmageed AAI, Dalal ZH. Eco-friendly approach to synthesize selenium nanoparticles: Photocatalytic degradation of sunset yellow azo dye and anticancer activity. ChemistrySelect 2019; 4: 9018-90.
[http://dx.doi.org/10.1002/slct.201901267]
[72]
Prasad TN, Elumalai EK. Biofabrication of Ag nanoparticles using Moringa oleifera leaf extract and their antimicrobial activity. Asian Pac J Trop Biomed 2011; 1(6): 439-42.
[http://dx.doi.org/10.1016/S2221-1691(11)60096-8] [PMID: 23569809]
[73]
Anand ACK, Gengan RM, Phulukdaree A. Agroforestry waste Moringa oleifera petals mediated green synthesis of gold nanoparticles and their anti-cancer and catalytic activity. J Ind Eng Chem 2014; 21: 1105-11.
[http://dx.doi.org/10.1016/j.jiec.2014.05.021]
[74]
Belliraj TS, Nanda A, Ragunathan R. In-vitro hepatoprotective activity of Moringa oleifera mediated synthesis of gold nanoparticles. J Chem Pharm Res 2015; 7: 781-8.
[75]
Anand K, Gengan RM, Phulukdaree A, Chuturgoon A. Agroforestry waste Moringa oleifera petals mediated green synthesis of gold nanoparticles and their anti-cancer and catalytic activity. J Ind Eng Chem 2015; 21: 1105-11.
[http://dx.doi.org/10.1016/j.jiec.2014.05.021]
[76]
Al-Kalifawi EJ. Green synthesis of silver nanoparticles using leaf extract of Al-Rawag tree (Moringa oleifera Lamarck) cultivated in Iraq and efficacy the antimicrobial activity. Mesop Environ J 2016; 39-48.
[77]
Tiloke C, Phulukdaree A, Anand K, Gengan RM, Chuturgoon AA. Moringa oleifera gold nanoparticles modulate oncogenes, tumor suppressor genes, and caspase-9 splice variants in A549 cells. J Cell Biochem 2016; 117(10): 2302-14.
[http://dx.doi.org/10.1002/jcb.25528] [PMID: 26923760]
[78]
Moodley JS, Krishna SB, Pillay K, Sershen Govender P. Green synthesis of silver nanoparticles from Moringa oleifera leaf extracts and its antimicrobial potential. Adv Nat Sci Nanosci Nanotechnol 2018; 9(1): 1-10.
[http://dx.doi.org/10.1088/2043-6254/aaabb2]
[79]
Anjum Mobeen S, Vidya Vani M, Riazunnisa K. Eco-friendly synthesis of silver nanoparticles by using Moringa oleifera leaf extract as reducing agent and their catalytic activity with MB dye. In: Weiman Y, Jibin KP, Praveen GL, Thomas S, Kalarikkal N, Eds. Emer Tren Adv Spectro. Rivers publishers 2019; pp. 69-79.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy