Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Bacteriocins: Recent Advances in its Application as an Antimicrobial Alternative

Author(s): Hadis Fathizadeh, Farzaneh Pakdel, Mahmood Saffari, Davoud Esmaeili, Mansooreh Momen Heravi, Sounkalo Dao, Khudaverdi Ganbarov and Hossein Samadi Kafil*

Volume 23, Issue 8, 2022

Published on: 07 September, 2021

Page: [1028 - 1040] Pages: 13

DOI: 10.2174/1389201022666210907121254

Price: $65

Open Access Journals Promotions 2
Abstract

Due to the emergence and development of antibiotic resistance in the treatment of bacterial infections, efforts to discover new antimicrobial agents have increased. One of these antimicrobial agents is a compound produced by a large number of bacteria called bacteriocin. Bacteriocins are small ribosomal polypeptides that can exert their antibacterial effects against bacteria close to their producer strain or even non-closely-relatedstrains. Adequate knowledge of the structure and functional mechanisms of bacteriocins and their spectrum of activity, as well as knowledge of the mechanisms of possible resistance to these compounds, will lead to further development of their use as an alternative to antibiotics. Furthermore, most bacteria that live in the gastrointestinal tract (GIT) have the ability to produce bacteriocins, which spread throughout the GIT. Despite antimicrobial studies in vitro, our knowledge of bacteriocins in the GIT and the migration of these bacteriocins from the epithelial barrier is low. Hence, in this study, we reviewed general information about bacteriocins, such as classification, mechanism of action and resistance, emphasizing their presence, stability, and spectrum of activity in the GIT.

Keywords: Antimicrobial peptides, antibacterial activity, bacteriocins, polypeptides, gastrointestinal tract, gut blood barrier.

Graphical Abstract
[1]
Cavera, V.L.; Arthur, T.D.; Kashtanov, D.; Chikindas, M.L. Bacteriocins and their position in the next wave of conventional antibiotics. Int. J. Antimicrob. Agents, 2015, 46(5), 494-501.
[http://dx.doi.org/10.1016/j.ijantimicag.2015.07.011] [PMID: 26341839]
[2]
Sharma, K.; Aaghaz, S.; Shenmar, K.; Jain, R. Short Antimicrobial Peptides. Recent Pat Antiinfect Drug Discov, 2018, 13(1), 12-52.
[http://dx.doi.org/10.2174/1574891X13666180628105928] [PMID: 29952266]
[3]
Hanifi, G.; Samadi Kafil, H.; Tayebi Khosroshahi, H.; Shapouri, R.; Asgharzadeh, M. Lactobacilli species diversity in gut microbiota of renal failure patients. J. King Saud Univ. Sci., 2020.
[http://dx.doi.org/10.1016/j.jksus.2020.03.015]
[4]
Nagao, J-I. Properties and applications of lantibiotics, a class of bacteriocins produced by Gram-positive bacteria. J. Oral Biosci., 2009, 51(3), 158-164.
[http://dx.doi.org/10.1016/S1349-0079(09)80024-8]
[5]
Rea, M.C.; Clayton, E.; O’Connor, P.M.; Shanahan, F.; Kiely, B.; Ross, R.P.; Hill, C. Antimicrobial activity of lacticin 3,147 against clinical Clostridium difficile strains. J. Med. Microbiol., 2007, 56(Pt 7), 940-946.
[http://dx.doi.org/10.1099/jmm.0.47085-0] [PMID: 17577060]
[6]
Piper, C.; Draper, L.A.; Cotter, P.D.; Ross, R.P.; Hill, C. A comparison of the activities of lacticin 3147 and nisin against drug-resistant Staphylococcus aureus and Enterococcus species. J. Antimicrob. Chemother., 2009, 64(3), 546-551.
[http://dx.doi.org/10.1093/jac/dkp221] [PMID: 19561147]
[7]
Héchard, Y.; Sahl, H-G. Mode of action of modified and unmodified bacteriocins from Gram-positive bacteria. Biochimie, 2002, 84(5-6), 545-557.
[http://dx.doi.org/10.1016/S0300-9084(02)01417-7] [PMID: 12423799]
[8]
Kirkup, B.C., Jr Bacteriocins as oral and gastrointestinal antibiotics: Theoretical considerations, applied research, and practical applications. Curr. Med. Chem., 2006, 13(27), 3335-3350.
[http://dx.doi.org/10.2174/092986706778773068] [PMID: 17168847]
[9]
Jabbari, V.; Khiabani, M.S.; Mokarram, R.R.; Hassanzadeh, A.M.; Ahmadi, E.; Gharenaghadeh, S.; Karimi, N.; Kafil, H.S. Lactobacillus plantarum as a probiotic potential from Kouzeh Cheese (Traditional Iranian Cheese) and its antimicrobial activity. Probiotics Antimicrob. Proteins, 2017, 9(2), 189-193.
[http://dx.doi.org/10.1007/s12602-017-9255-0] [PMID: 28155128]
[10]
Destoumieux-Garzón, D.; Peduzzi, J.; Thomas, X.; Djediat, C.; Rebuffat, S. Parasitism of iron-siderophore receptors of Escherichia coli by the siderophore-peptide microcin E492m and its unmodified counterpart. Biometals, 2006, 19(2), 181-191.
[http://dx.doi.org/10.1007/s10534-005-4452-9] [PMID: 16718603]
[11]
Wiedemann, I.; Breukink, E.; van Kraaij, C.; Kuipers, O.P.; Bierbaum, G.; de Kruijff, B.; Sahl, H-G. Specific binding of nisin to the peptidoglycan precursor lipid II combines pore formation and inhibition of cell wall biosynthesis for potent antibiotic activity. J. Biol. Chem., 2001, 276(3), 1772-1779.
[http://dx.doi.org/10.1074/jbc.M006770200] [PMID: 11038353]
[12]
Metlitskaya, A.; Kazakov, T.; Kommer, A.; Pavlova, O.; Praetorius-Ibba, M.; Ibba, M.; Krasheninnikov, I.; Kolb, V.; Khmel, I.; Severinov, K. Aspartyl-tRNA synthetase is the target of peptide nucleotide antibiotic Microcin C. J. Biol. Chem., 2006, 281(26), 18033-18042.
[http://dx.doi.org/10.1074/jbc.M513174200] [PMID: 16574659]
[13]
Kazakov, T.; Vondenhoff, G.H.; Datsenko, K.A.; Novikova, M.; Metlitskaya, A.; Wanner, B.L.; Severinov, K. Escherichia coli peptidase A, B, or N can process translation inhibitor microcin C. J. Bacteriol., 2008, 190(7), 2607-2610.
[http://dx.doi.org/10.1128/JB.01956-07] [PMID: 18223070]
[14]
Vincent, P.A.; Morero, R.D. The structure and biological aspects of peptide antibiotic microcin J25. Curr. Med. Chem., 2009, 16(5), 538-549.
[http://dx.doi.org/10.2174/092986709787458461] [PMID: 19199920]
[15]
Güllüce, M.; Karadayı, M.; Barış, Ö. Bacteriocins: Promising natural antimicrobials. Local Environ., 2013, 3, 6.
[16]
Balciunas, E.M.; Martinez, F.A.C.; Todorov, S.D.; de Melo Franco, B.D.G.; Converti, A.; de Souza Oliveira, R.P. Novel biotechnological applications of bacteriocins: A review. Food Control, 2013, 32(1), 134-142.
[http://dx.doi.org/10.1016/j.foodcont.2012.11.025]
[17]
Riley, M.A.; Wertz, J.E. Bacteriocins: Evolution, ecology, and application. Annu. Rev. Microbiol., 2002, 56(1), 117-137.
[http://dx.doi.org/10.1146/annurev.micro.56.012302.161024] [PMID: 12142491]
[18]
Jabbari, V.; Mokarram, R.R.; Khiabani, M.S.; Askari, F.; Ahmadi, E.; Mohammad Hassanzadeh, A.; Buick Aghazadeh, S.; Asgharzadeh, M. Molecular Identification of Lactobacillus acidophilus as a probiotic potential from traditional doogh samples and evaluation of their antimicrobial activity against some pathogenic bacteria. Biomed. Res., 2017, 28(4), 1458-1463.
[19]
Fernández, L.; Delgado, S.; Herrero, H.; Maldonado, A.; Rodríguez, J.M. The bacteriocin nisin, an effective agent for the treatment of staphylococcal mastitis during lactation. J. Hum. Lact., 2008, 24(3), 311-316.
[http://dx.doi.org/10.1177/0890334408317435] [PMID: 18689718]
[20]
Cleveland, J.; Montville, T.J.; Nes, I.F.; Chikindas, M.L. Bacteriocins: Safe, natural antimicrobials for food preservation. Int. J. Food Microbiol., 2001, 71(1), 1-20.
[http://dx.doi.org/10.1016/S0168-1605(01)00560-8] [PMID: 11764886]
[21]
Piper, C.; Hill, C.; Cotter, P.D.; Ross, R.P. Bioengineering of a Nisin A-producing Lactococcus lactis to create isogenic strains producing the natural variants Nisin F, Q and Z. Microb. Biotechnol., 2011, 4(3), 375-382.
[http://dx.doi.org/10.1111/j.1751-7915.2010.00207.x] [PMID: 21375711]
[22]
da Silva Malheiros, P.; Daroit, D.J.; da Silveira, N.P.; Brandelli, A. Effect of nanovesicle-encapsulated nisin on growth of Listeria monocytogenes in milk. Food Microbiol., 2010, 27(1), 175-178.
[http://dx.doi.org/10.1016/j.fm.2009.09.013] [PMID: 19913710]
[23]
Naghmouchi, K.; Le Lay, C.; Baah, J.; Drider, D. Antibiotic and antimicrobial peptide combinations: Synergistic inhibition of Pseudomonas fluorescens and antibiotic-resistant variants. Res. Microbiol., 2012, 163(2), 101-108.
[http://dx.doi.org/10.1016/j.resmic.2011.11.002] [PMID: 22172555]
[24]
Donia, M.S.; Fischbach, M.A. Human microbiota. Small molecules from the human microbiota. Science, 2015, 349(6246), 1254766.
[http://dx.doi.org/10.1126/science.1254766] [PMID: 26206939]
[25]
Browne, H.P.; Neville, B.A.; Forster, S.C.; Lawley, T.D. Transmission of the gut microbiota: Spreading of health. Nat. Rev. Microbiol., 2017, 15(9), 531-543.
[http://dx.doi.org/10.1038/nrmicro.2017.50] [PMID: 28603278]
[26]
Donia, M.S.; Cimermancic, P.; Schulze, C.J.; Wieland Brown, L.C.; Martin, J.; Mitreva, M.; Clardy, J.; Linington, R.G.; Fischbach, M.A. A systematic analysis of biosynthetic gene clusters in the human microbiome reveals a common family of antibiotics. Cell, 2014, 158(6), 1402-1414.
[http://dx.doi.org/10.1016/j.cell.2014.08.032] [PMID: 25215495]
[27]
Dicks, L.M.T.; Dreyer, L.; Smith, C.; van Staden, A.D. A review: The fate of bacteriocins in the human gastro-intestinal tract: do they cross the gut–blood barrier? Front. Microbiol., 2018, 9, 2297.
[http://dx.doi.org/10.3389/fmicb.2018.02297] [PMID: 30323796]
[28]
Gardiner, G.E.; Rea, M.C.; O’Riordan, B.; O’Connor, P.; Morgan, S.M.; Lawlor, P.G.; Lynch, P.B.; Cronin, M.; Ross, R.P.; Hill, C. Fate of the two-component lantibiotic lacticin 3147 in the gastrointestinal tract. Appl. Environ. Microbiol., 2007, 73(21), 7103-7109.
[http://dx.doi.org/10.1128/AEM.01117-07] [PMID: 17766459]
[29]
Kafil, H.S.; Mobarez, A.M.; Moghadam, M.F. Adhesion and virulence factor properties of Enterococci isolated from clinical samples in Iran. Indian J. Pathol. Microbiol., 2013, 56(3), 238-242.
[http://dx.doi.org/10.4103/0377-4929.120375] [PMID: 24152500]
[30]
Ingham, A.; Ford, M.; Moore, R.J.; Tizard, M. The bacteriocin piscicolin 126 retains antilisterial activity in vivo. J. Antimicrob. Chemother., 2003, 51(6), 1365-1371.
[http://dx.doi.org/10.1093/jac/dkg229] [PMID: 12716771]
[31]
Riboulet-Bisson, E.; Sturme, M.H.; Jeffery, I.B.; O’Donnell, M.M.; Neville, B.A.; Forde, B.M.; Claesson, M.J.; Harris, H.; Gardiner, G.E.; Casey, P.G.; Lawlor, P.G.; O’Toole, P.W.; Ross, R.P. Effect of Lactobacillus salivarius bacteriocin Abp118 on the mouse and pig intestinal microbiota. PLoS One, 2012, 7(2), e31113.
[http://dx.doi.org/10.1371/journal.pone.0031113] [PMID: 22363561]
[32]
Cascales, E.; Buchanan, S.K.; Duché, D.; Kleanthous, C.; Lloubès, R.; Postle, K.; Riley, M.; Slatin, S.; Cavard, D. Colicin biology. Microbiol. Mol. Biol. Rev., 2007, 71(1), 158-229.
[http://dx.doi.org/10.1128/MMBR.00036-06] [PMID: 17347522]
[33]
Rea, M.C.; Ross, R.P.; Cotter, P.D.; Hill, C. Classification of bacteriocins from Gram-positive bacteria. In: Prokaryotic antimicrobial peptides; Springer, 2011; pp. 29-53.
[http://dx.doi.org/10.1007/978-1-4419-7692-5_3]
[34]
McAuliffe, O.; Ross, R.P.; Hill, C. Lantibiotics: structure, biosynthesis and mode of action. FEMS Microbiol. Rev., 2001, 25(3), 285-308.
[http://dx.doi.org/10.1111/j.1574-6976.2001.tb00579.x] [PMID: 11348686]
[35]
Alvarez-Sieiro, P.; Montalbán-López, M.; Mu, D.; Kuipers, O.P. Bacteriocins of lactic acid bacteria: extending the family. Appl. Microbiol. Biotechnol., 2016, 100(7), 2939-2951.
[http://dx.doi.org/10.1007/s00253-016-7343-9] [PMID: 26860942]
[36]
Haas, W.; Shepard, B.D.; Gilmore, M.S. Two-component regulator of Enterococcus faecalis cytolysin responds to quorum-sensing autoinduction. Nature, 2002, 415(6867), 84-87.
[http://dx.doi.org/10.1038/415084a] [PMID: 11780122]
[37]
Mathur, H.; Rea, M.C.; Cotter, P.D.; Hill, C.; Ross, R.P. The sactibiotic subclass of bacteriocins: An update. Curr. Protein Pept. Sci., 2015, 16(6), 549-558.
[http://dx.doi.org/10.2174/1389203716666150515124831] [PMID: 26031307]
[38]
Rea, M.C.; Sit, C.S.; Clayton, E.; O’Connor, P.M.; Whittal, R.M.; Zheng, J.; Vederas, J.C.; Ross, R.P.; Hill, C.; Thuricin, C.D. Thuricin CD, a posttranslationally modified bacteriocin with a narrow spectrum of activity against Clostridium difficile. Proc. Natl. Acad. Sci. USA, 2010, 107(20), 9352-9357.
[http://dx.doi.org/10.1073/pnas.0913554107] [PMID: 20435915]
[39]
Mathur, H.; Fallico, V.; O’Connor, P.M.; Rea, M.C.; Cotter, P.D.; Hill, C.; Ross, R.P. Insights into the mode of action of the sactibiotic thuricin CD. Front. Microbiol., 2017, 8, 696.
[http://dx.doi.org/10.3389/fmicb.2017.00696] [PMID: 28473822]
[40]
Maksimov, M.O.; Pan, S.J.; James Link, A. Lasso peptides: Structure, function, biosynthesis, and engineering. Nat. Prod. Rep., 2012, 29(9), 996-1006.
[http://dx.doi.org/10.1039/c2np20070h] [PMID: 22833149]
[41]
Hegemann, J.D.; Zimmermann, M.; Xie, X.; Marahiel, M.A. Lasso peptides: An intriguing class of bacterial natural products. Acc. Chem. Res., 2015, 48(7), 1909-1919.
[http://dx.doi.org/10.1021/acs.accounts.5b00156] [PMID: 26079760]
[42]
Wilson, K.A.; Kalkum, M.; Ottesen, J.; Yuzenkova, J.; Chait, B.T.; Landick, R.; Muir, T.; Severinov, K.; Darst, S.A. Structure of microcin J25, a peptide inhibitor of bacterial RNA polymerase, is a lassoed tail. J. Am. Chem. Soc., 2003, 125(41), 12475-12483.
[http://dx.doi.org/10.1021/ja036756q] [PMID: 14531691]
[43]
Cui, Y.; Zhang, C.; Wang, Y.; Shi, J.; Zhang, L.; Ding, Z.; Qu, X.; Cui, H. Class IIa bacteriocins: diversity and new developments. Int. J. Mol. Sci., 2012, 13(12), 16668-16707.
[http://dx.doi.org/10.3390/ijms131216668] [PMID: 23222636]
[44]
Nissen-Meyer, J.; Oppegård, C.; Rogne, P.; Haugen, H.S.; Kristiansen, P.E. Structure and mode-of-action of the two-peptide (Class-IIb) bacteriocins. Probiotics Antimicrob. Proteins, 2010, 2(1), 52-60.
[http://dx.doi.org/10.1007/s12602-009-9021-z] [PMID: 20383320]
[45]
Mills, S.; Stanton, C.; Hill, C.; Ross, R.P. New developments and applications of bacteriocins and peptides in foods. Annu. Rev. Food Sci. Technol., 2011, 2, 299-329.
[http://dx.doi.org/10.1146/annurev-food-022510-133721] [PMID: 22129385]
[46]
Kawai, Y.; Saitoh, B.; Takahashi, O.; Kitazawa, H.; Saito, T.; Nakajima, H.; Itoh, T. Primary amino acid and DNA sequences of gassericin T, a lactacin F-family bacteriocin produced by Lactobacillus gasseri SBT2055. Biosci. Biotechnol. Biochem., 2000, 64(10), 2201-2208.
[http://dx.doi.org/10.1271/bbb.64.2201] [PMID: 11129595]
[47]
Dalmau, M.; Maier, E.; Mulet, N.; Viñas, M.; Benz, R. Bacterial membrane injuries induced by lactacin F and nisin. Int. Microbiol., 2002, 5(2), 73-80.
[http://dx.doi.org/10.1007/s10123-002-0063-2] [PMID: 12180783]
[48]
Tahara, T.; Oshimura, M.; Umezawa, C.; Kanatani, K. Isolation, partial characterization, and mode of action of Acidocin J1132, a two-component bacteriocin produced by Lactobacillus acidophilus JCM 1132. Appl. Environ. Microbiol., 1996, 62(3), 892-897.
[http://dx.doi.org/10.1128/aem.62.3.892-897.1996] [PMID: 8975617]
[49]
Maqueda, M.; Sánchez-Hidalgo, M.; Fernández, M.; Montalbán-López, M.; Valdivia, E.; Martínez-Bueno, M. Genetic features of circular bacteriocins produced by Gram-positive bacteria. FEMS Microbiol. Rev., 2008, 32(1), 2-22.
[http://dx.doi.org/10.1111/j.1574-6976.2007.00087.x] [PMID: 18034824]
[50]
Maqueda, M.; Gálvez, A.; Bueno, M.M.; Sanchez-Barrena, M.J.; González, C.; Albert, A.; Rico, M.; Valdivia, E. Peptide AS-48: prototype of a new class of cyclic bacteriocins. Curr. Protein Pept. Sci., 2004, 5(5), 399-416.
[http://dx.doi.org/10.2174/1389203043379567] [PMID: 15544535]
[51]
Kawai, Y.; Saito, T.; Toba, T.; Samant, S.K.; Itoh, T. Isolation and characterization of a highly hydrophobic new bacteriocin (gassericin A) from Lactobacillus gasseri LA39. Biosci. Biotechnol. Biochem., 1994, 58(7), 1218-1221.
[http://dx.doi.org/10.1271/bbb.58.1218] [PMID: 7765246]
[52]
Zschüttig, A.; Zimmermann, K.; Blom, J.; Goesmann, A.; Pöhlmann, C.; Gunzer, F. Identification and characterization of microcin S, a new antibacterial peptide produced by probiotic Escherichia coli G3/10. PLoS One, 2012, 7(3), e33351.
[http://dx.doi.org/10.1371/journal.pone.0033351] [PMID: 22479389]
[53]
Inoue, T.; Tomita, H.; Ike, Y. Bac 32, a novel bacteriocin widely disseminated among clinical isolates of Enterococcus faecium. Antimicrob. Agents Chemother., 2006, 50(4), 1202-1212.
[http://dx.doi.org/10.1128/AAC.50.4.1202-1212.2006] [PMID: 16569830]
[54]
Dimitrijević, R.; Stojanović, M.; Zivković, I.; Petersen, A.; Jankov, R.M.; Dimitrijević, L.; Gavrović-Jankulović, M. The identification of a low molecular mass bacteriocin, rhamnosin A, produced by Lactobacillus rhamnosus strain 68. J. Appl. Microbiol., 2009, 107(6), 2108-2115.
[http://dx.doi.org/10.1111/j.1365-2672.2009.04539.x] [PMID: 19796123]
[55]
Ley, R.E.; Peterson, D.A.; Gordon, J.I. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell, 2006, 124(4), 837-848.
[http://dx.doi.org/10.1016/j.cell.2006.02.017] [PMID: 16497592]
[56]
Mai, V.; Draganov, P.V. Recent advances and remaining gaps in our knowledge of associations between gut microbiota and human health. World J. Gastroenterol., 2009, 15(1), 81-85.
[http://dx.doi.org/10.3748/wjg.15.81] [PMID: 19115471]
[57]
Jandhyala, S.M.; Talukdar, R.; Subramanyam, C.; Vuyyuru, H.; Sasikala, M.; Nageshwar Reddy, D. Role of the normal gut microbiota. World J. Gastroenterol., 2015, 21(29), 8787-8803.
[http://dx.doi.org/10.3748/wjg.v21.i29.8787] [PMID: 26269668]
[58]
Dahroud, B.D.; Mokarram, R.R.; Khiabani, M.S.; Hamishehkar, H.; Bialvaei, A.Z.; Yousefi, M.; Kafil, H.S. Low intensity ultrasound increases the fermentation efficiency of Lactobacillus casei subsp.casei ATTC 39392. Int. J. Biol. Macromol., 2016, 86, 462-467.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.01.103] [PMID: 26836618]
[59]
Hansen, R.; Thomson, J.M.; El-Omar, E.M.; Hold, G.L. The role of infection in the aetiology of inflammatory bowel disease. J. Gastroenterol., 2010, 45(3), 266-276.
[http://dx.doi.org/10.1007/s00535-009-0191-y] [PMID: 20076977]
[60]
Cotter, P.D.; Ross, R.P.; Hill, C. Bacteriocins - a viable alternative to antibiotics? Nat. Rev. Microbiol., 2013, 11(2), 95-105.
[http://dx.doi.org/10.1038/nrmicro2937] [PMID: 23268227]
[61]
Nelson, R.L.; Kelsey, P.; Leeman, H.; Meardon, N.; Patel, H.; Paul, K.; Rees, R.; Taylor, B.; Wood, E.; Malakun, R. Antibiotic treatment for Clostridium difficile-associated diarrhea in adults. Cochrane Database Syst. Rev., 2011, (9), CD004610.
[PMID: 21901692]
[62]
Langdon, A.; Crook, N.; Dantas, G. The effects of antibiotics on the microbiome throughout development and alternative approaches for therapeutic modulation. Genome Med., 2016, 8(1), 39.
[http://dx.doi.org/10.1186/s13073-016-0294-z] [PMID: 27074706]
[63]
Giangaspero, A.; Sandri, L.; Tossi, A. Amphipathic alpha helical antimicrobial peptides. Eur. J. Biochem., 2001, 268(21), 5589-5600.
[http://dx.doi.org/10.1046/j.1432-1033.2001.02494.x] [PMID: 11683882]
[64]
Zelezetsky, I.; Tossi, A. Alpha-helical antimicrobial peptides--using a sequence template to guide structure-activity relationship studies. Biochim. Biophys. Acta, 2006, 1758(9), 1436-1449.
[http://dx.doi.org/10.1016/j.bbamem.2006.03.021] [PMID: 16678118]
[65]
Reddy, K.V.; Aranha, C.; Gupta, S.M.; Yedery, R.D. Evaluation of antimicrobial peptide nisin as a safe vaginal contraceptive agent in rabbits: In vitro and in vivo studies. Reproduction, 2004, 128(1), 117-126.
[http://dx.doi.org/10.1530/rep.1.00028] [PMID: 15232069]
[66]
Drider, D.; Bendali, F.; Naghmouchi, K.; Chikindas, M.L. Bacteriocins: Not only antibacterial agents. Probiotics Antimicrob. Proteins, 2016, 8(4), 177-182.
[http://dx.doi.org/10.1007/s12602-016-9223-0] [PMID: 27481236]
[67]
Chikindas, M.L.; Weeks, R.; Drider, D.; Chistyakov, V.A.; Dicks, L.M. Functions and emerging applications of bacteriocins. Curr. Opin. Biotechnol., 2018, 49, 23-28.
[http://dx.doi.org/10.1016/j.copbio.2017.07.011] [PMID: 28787641]
[68]
Rea, M.C.; Dobson, A.; O’Sullivan, O.; Crispie, F.; Fouhy, F.; Cotter, P.D.; Shanahan, F.; Kiely, B.; Hill, C.; Ross, R.P. Effect of broad- and narrow-spectrum antimicrobials on Clostridium difficile and microbial diversity in a model of the distal colon. Proc. Natl. Acad. Sci. USA, 2011, 108(Suppl. 1), 4639-4644.
[http://dx.doi.org/10.1073/pnas.1001224107] [PMID: 20616009]
[69]
Boakes, S.; Ayala, T.; Herman, M.; Appleyard, A.N.; Dawson, M.J.; Cortés, J. Generation of an actagardine A variant library through saturation mutagenesis. Appl. Microbiol. Biotechnol., 2012, 95(6), 1509-1517.
[http://dx.doi.org/10.1007/s00253-012-4041-0] [PMID: 22526797]
[70]
Le Blay, G.; Lacroix, C.; Zihler, A.; Fliss, I. In vitro inhibition activity of nisin A, nisin Z, pediocin PA-1 and antibiotics against common intestinal bacteria. Lett. Appl. Microbiol., 2007, 45(3), 252-257.
[http://dx.doi.org/10.1111/j.1472-765X.2007.02178.x] [PMID: 17718835]
[71]
Bernbom, N.; Jelle, B.; Brogren, C.H.; Vogensen, F.K.; Nørrung, B.; Licht, T.R. Pediocin PA-1 and a pediocin producing Lactobacillus plantarum strain do not change the HMA rat microbiota. Int. J. Food Microbiol., 2009, 130(3), 251-257.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2009.02.003] [PMID: 19251334]
[72]
Bouttefroy, A.; Millière, J.B. Nisin-curvaticin 13 combinations for avoiding the regrowth of bacteriocin resistant cells of Listeria monocytogenes ATCC 15313. Int. J. Food Microbiol., 2000, 62(1-2), 65-75.
[http://dx.doi.org/10.1016/S0168-1605(00)00372-X] [PMID: 11139023]
[73]
Vignolo, G.; Palacios, J.; Farías, M.E.; Sesma, F.; Schillinger, U.; Holzapfel, W.; Oliver, G. Combined effect of bacteriocins on the survival of various Listeria species in broth and meat system. Curr. Microbiol., 2000, 41(6), 410-416.
[http://dx.doi.org/10.1007/s002840010159] [PMID: 11080390]
[74]
Drissi, F.; Buffet, S.; Raoult, D.; Merhej, V. Common occurrence of antibacterial agents in human intestinal microbiota. Front. Microbiol., 2015, 6, 441.
[http://dx.doi.org/10.3389/fmicb.2015.00441] [PMID: 25999943]
[75]
Van Zyl, W.F. Gastrointestinal persistence of the probiotic bacteria Lactobacillus plantarum 423 and Enterococcus mundtii ST4SA, and their anti-listerial activity; Stellenbosch: Stellenbosch University, 2018.
[76]
Corr, S.C.; Li, Y.; Riedel, C.U.; O’Toole, P.W.; Hill, C.; Gahan, C.G. Bacteriocin production as a mechanism for the anti-infective activity of Lactobacillus salivarius UCC118. Proc. Natl. Acad. Sci. USA, 2007, 104(18), 7617-7621.
[http://dx.doi.org/10.1073/pnas.0700440104] [PMID: 17456596]
[77]
Bron, P.A.; Grangette, C.; Mercenier, A.; de Vos, W.M.; Kleerebezem, M. Identification of Lactobacillus plantarum genes that are induced in the gastrointestinal tract of mice. J. Bacteriol., 2004, 186(17), 5721-5729.
[http://dx.doi.org/10.1128/JB.186.17.5721-5729.2004] [PMID: 15317777]
[78]
Farhadi, A.; Banan, A.; Fields, J.; Keshavarzian, A. Intestinal barrier: An interface between health and disease. J. Gastroenterol. Hepatol., 2003, 18(5), 479-497.
[http://dx.doi.org/10.1046/j.1440-1746.2003.03032.x] [PMID: 12702039]
[79]
Spadoni, I.; Zagato, E.; Bertocchi, A.; Paolinelli, R.; Hot, E.; Di Sabatino, A.; Caprioli, F.; Bottiglieri, L.; Oldani, A.; Viale, G.; Penna, G.; Dejana, E.; Rescigno, M. A gut-vascular barrier controls the systemic dissemination of bacteria. Science, 2015, 350(6262), 830-834.
[http://dx.doi.org/10.1126/science.aad0135] [PMID: 26564856]
[80]
Dreyer, L. The ability of antimicrobial peptides to migrate across the gastrointestinal epithelial and vascular endothelial barriers; Stellenbosch: Stellenbosch University, 2018.
[81]
Rashid, R.; Veleba, M.; Kline, K.A. Focal targeting of the bacterial envelope by antimicrobial peptides. Front. Cell Dev. Biol., 2016, 4, 55.
[http://dx.doi.org/10.3389/fcell.2016.00055] [PMID: 27376064]
[82]
Jack, R.W.; Tagg, J.R.; Ray, B. Bacteriocins of gram-positive bacteria. Microbiol. Rev., 1995, 59(2), 171-200.
[http://dx.doi.org/10.1128/mr.59.2.171-200.1995] [PMID: 7603408]
[83]
Christensen, D.P.; Hutkins, R.W. Collapse of the proton motive force in Listeria monocytogenes caused by a bacteriocin produced by Pediococcus acidilactici. Appl. Environ. Microbiol., 1992, 58(10), 3312-3315.
[http://dx.doi.org/10.1128/aem.58.10.3312-3315.1992] [PMID: 1444365]
[84]
Suda, S.; Cotter, P.D.; Hill, C.; Ross, R.P. Lacticin 3147--biosynthesis, molecular analysis, immunity, bioengineering and applications. Curr. Protein Pept. Sci., 2012, 13(3), 193-204.
[http://dx.doi.org/10.2174/138920312800785021] [PMID: 21827422]
[85]
Piper, C.; Draper, L.A.; Cotter, P.D.; Ross, R.P.; Hill, C. A comparison of the activities of lacticin 3147 and nisin against drug-resistant Staphylococcus aureus and Enterococcus species. J. Antimicrob. Chemother., 2009, Sep. 64(3), 546-551.
[86]
Gravesen, A.; Ramnath, M.; Rechinger, K.B.; Andersen, N.; Jänsch, L.; Héchard, Y.; Hastings, J.W.; Knøchel, S. High-level resistance to class IIa bacteriocins is associated with one general mechanism in Listeria monocytogenes. Microbiology, 2002, 148(Pt 8), 2361-2369.
[http://dx.doi.org/10.1099/00221287-148-8-2361] [PMID: 12177330]
[87]
Ramnath, M.; Beukes, M.; Tamura, K.; Hastings, J.W. Absence of a putative mannose-specific phosphotransferase system enzyme IIAB component in a leucocin A-resistant strain of Listeria monocytogenes, as shown by two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Appl. Environ. Microbiol., 2000, 66(7), 3098-3101.
[http://dx.doi.org/10.1128/AEM.66.7.3098-3101.2000] [PMID: 10877813]
[88]
Ramnath, M.; Arous, S.; Gravesen, A.; Hastings, J.W.; Héchard, Y. Expression of mptC of Listeria monocytogenes induces sensitivity to class IIa bacteriocins in Lactococcus lactis. Microbiology, 2004, 150(Pt 8), 2663-2668.
[http://dx.doi.org/10.1099/mic.0.27002-0] [PMID: 15289562]
[89]
Kouwen, T.R.; Trip, E.N.; Denham, E.L.; Sibbald, M.J.; Dubois, J.Y.; van Dijl, J.M. The large mechano-sensitive channel MscL determines bacterial susceptibility to the bacteriocin sublancin 168. Antimicrob. Agents Chemother., 2009, 53(11), 4702-4711.
[http://dx.doi.org/10.1128/AAC.00439-09] [PMID: 19738010]
[90]
Gabrielsen, C.; Brede, D.A.; Hernández, P.E.; Nes, I.F.; Diep, D.B. The maltose ABC transporter in Lactococcus lactis facilitates high-level sensitivity to the circular bacteriocin garvicin ML. Antimicrob. Agents Chemother., 2012, 56(6), 2908-2915.
[http://dx.doi.org/10.1128/AAC.00314-12] [PMID: 22411612]
[91]
Novikova, M.; Metlitskaya, A.; Datsenko, K.; Kazakov, T.; Kazakov, A.; Wanner, B.; Severinov, K. The Escherichia coli Yej transporter is required for the uptake of translation inhibitor microcin C. J. Bacteriol., 2007, 189(22), 8361-8365.
[http://dx.doi.org/10.1128/JB.01028-07] [PMID: 17873039]
[92]
Lancaster, L.E.; Savelsbergh, A.; Kleanthous, C.; Wintermeyer, W.; Rodnina, M.V. Colicin E3 cleavage of 16S rRNA impairs decoding and accelerates tRNA translocation on Escherichia coli ribosomes. Mol. Microbiol., 2008, 69(2), 390-401.
[http://dx.doi.org/10.1111/j.1365-2958.2008.06283.x] [PMID: 18485067]
[93]
Parks, W.M.; Bottrill, A.R.; Pierrat, O.A.; Durrant, M.C.; Maxwell, A. The action of the bacterial toxin, microcin B17, on DNA gyrase. Biochimie, 2007, 89(4), 500-507.
[http://dx.doi.org/10.1016/j.biochi.2006.12.005] [PMID: 17276574]
[94]
Cotter, P.D.; Hill, C.; Ross, R.P. Bacteriocins: developing innate immunity for food. Nat. Rev. Microbiol., 2005, 3(10), 777-788.
[http://dx.doi.org/10.1038/nrmicro1273] [PMID: 16205711]
[95]
Galvin, M.; Hill, C.; Ross, R.P. Lacticin 3147 displays activity in buffer against gram-positive bacterial pathogens which appear insensitive in standard plate assays. Lett. Appl. Microbiol., 1999, 28(5), 355-358.
[http://dx.doi.org/10.1046/j.1365-2672.1999.00550.x] [PMID: 10347889]
[96]
Okuda, K.; Zendo, T.; Sugimoto, S.; Iwase, T.; Tajima, A.; Yamada, S.; Sonomoto, K.; Mizunoe, Y. Effects of bacteriocins on methicillin-resistant Staphylococcus aureus biofilm. Antimicrob. Agents Chemother., 2013, 57(11), 5572-5579.
[http://dx.doi.org/10.1128/AAC.00888-13] [PMID: 23979748]
[97]
Camargo, A.C.; de Paula, O.A.L.; Todorov, S.D.; Nero, L.A. In vitro evaluation of bacteriocins activity against Listeria monocytogenes biofilm formation. Appl. Biochem. Biotechnol., 2016, 178(6), 1239-1251.
[http://dx.doi.org/10.1007/s12010-015-1941-3] [PMID: 26660467]
[98]
Gómez, N.C.; Abriouel, H.; Grande, M.A.; Pulido, R.P.; Gálvez, A. Effect of enterocin AS-48 in combination with biocides on planktonic and sessile Listeria monocytogenes. Food Microbiol., 2012, 30(1), 51-58.
[http://dx.doi.org/10.1016/j.fm.2011.12.013] [PMID: 22265283]
[99]
Kim, N-N.; Kim, W.J.; Kang, S-S. Anti-biofilm effect of crude bacteriocin derived from Lactobacillus brevis DF01 on Escherichia coli and Salmonella typhimurium. Food Control, 2019, 98, 274-280.
[http://dx.doi.org/10.1016/j.foodcont.2018.11.004]
[100]
Memar, M.Y.; Raei, P.; Alizadeh, N.; Akbari Aghdam, M.; Kafil, H.S. Carvacrol and thymol: Strong antimicrobial agents against resistant isolates. Rev. Med. Microbiol., 2017, 28(2), 63-68.
[http://dx.doi.org/10.1097/MRM.0000000000000100]
[101]
Kafil, H.S.; Mobarez, A.M.; Moghadam, M.F.; Hashemi, Z.S.; Yousefi, M. Gentamicin induces efaA expression and biofilm formation in Enterococcus faecalis. Microb. Pathog., 2016, 92, 30-35.
[http://dx.doi.org/10.1016/j.micpath.2015.12.008] [PMID: 26724739]
[102]
Aghazadeh, M.; Zahedi Bialvaei, A.; Aghazadeh, M.; Kabiri, F.; Saliani, N.; Yousefi, M.; Eslami, H.; Samadi Kafil, H. Survey of the antibiofilm and antimicrobial effects of Zingiber officinale (in vitro Study). Jundishapur J. Microbiol., 2016, 9(2), e30167.
[http://dx.doi.org/10.5812/jjm.30167] [PMID: 27127591]
[103]
Mantovani, H.C.; Russell, J.B. Nisin resistance of Streptococcus bovis. Appl. Environ. Microbiol., 2001, 67(2), 808-813.
[http://dx.doi.org/10.1128/AEM.67.2.808-813.2001] [PMID: 11157247]
[104]
van Schaik, W.; Gahan, C.G.; Hill, C. Acid-adapted Listeria monocytogenes displays enhanced tolerance against the lantibiotics nisin and lacticin 3147. J. Food Prot., 1999, 62(5), 536-539.
[http://dx.doi.org/10.4315/0362-028X-62.5.536] [PMID: 10340677]
[105]
Kramer, N.E.; van Hijum, S.A.; Knol, J.; Kok, J.; Kuipers, O.P. Transcriptome analysis reveals mechanisms by which Lactococcus lactis acquires nisin resistance. Antimicrob. Agents Chemother., 2006, 50(5), 1753-1761.
[http://dx.doi.org/10.1128/AAC.50.5.1753-1761.2006] [PMID: 16641446]
[106]
Kjos, M.; Nes, I.F.; Diep, D.B. Mechanisms of resistance to bacteriocins targeting the mannose phosphotransferase system. Appl. Environ. Microbiol., 2011, 77(10), 3335-3342.
[http://dx.doi.org/10.1128/AEM.02602-10] [PMID: 21421780]
[107]
Sun, Z.; Zhong, J.; Liang, X.; Liu, J.; Chen, X.; Huan, L. Novel mechanism for nisin resistance via proteolytic degradation of nisin by the nisin resistance protein NSR. Antimicrob. Agents Chemother., 2009, 53(5), 1964-1973.
[http://dx.doi.org/10.1128/AAC.01382-08] [PMID: 19273681]
[108]
del Castillo, F.J.; del Castillo, I.; Moreno, F. Construction and characterization of mutations at codon 751 of the Escherichia coli gyrB gene that confer resistance to the antimicrobial peptide microcin B17 and alter the activity of DNA gyrase. J. Bacteriol., 2001, 183(6), 2137-2140.
[http://dx.doi.org/10.1128/JB.183.6.2137-2140.2001] [PMID: 11222617]
[109]
Yuzenkova, J.; Delgado, M.; Nechaev, S.; Savalia, D.; Epshtein, V.; Artsimovitch, I.; Mooney, R.A.; Landick, R.; Farias, R.N.; Salomon, R.; Severinov, K. Mutations of bacterial RNA polymerase leading to resistance to microcin j25. J. Biol. Chem., 2002, 277(52), 50867-50875.
[http://dx.doi.org/10.1074/jbc.M209425200] [PMID: 12401787]
[110]
Mulet-Powell, N.; Lacoste-Armynot, A.M.; Viñas, M.; Simeon de Buochberg, M. Interactions between pairs of bacteriocins from lactic bacteria. J. Food Prot., 1998, 61(9), 1210-1212.
[http://dx.doi.org/10.4315/0362-028X-61.9.1210] [PMID: 9766080]
[111]
Parente, E.; Giglio, M.A.; Ricciardi, A.; Clementi, F. The combined effect of nisin, leucocin F10, pH, NaCl and EDTA on the survival of Listeria monocytogenes in broth. Int. J. Food Microbiol., 1998, 40(1-2), 65-75.
[http://dx.doi.org/10.1016/S0168-1605(98)00021-X] [PMID: 9600612]
[112]
Huc, T.; Pham, K.; Skrzypecki, J.; Ufnal, M. Significance of gut-blood barrier in health and disease. Eur. J. Biol. Res., 2016, 6(3), 193-200.
[113]
Field, D.; Begley, M.; O’Connor, P.M.; Daly, K.M.; Hugenholtz, F.; Cotter, P.D.; Hill, C.; Ross, R.P. Bioengineered nisin A derivatives with enhanced activity against both Gram positive and Gram negative pathogens. PLoS One, 2012, 7(10), e46884.
[http://dx.doi.org/10.1371/journal.pone.0046884] [PMID: 23056510]
[114]
Iancu, C.; Grainger, A.; Field, D.; Cotter, P.D.; Hill, C.; Ross, R.P. Comparison of the Potency of the Lipid II Targeting Antimicrobials Nisin, Lacticin 3147 and Vancomycin Against Gram-Positive Bacteria. Probiotics Antimicrob. Proteins, 2012, 4(2), 108-115.
[http://dx.doi.org/10.1007/s12602-012-9095-x] [PMID: 26781852]
[115]
McAuliffe, O.; Ryan, M.P.; Ross, R.P.; Hill, C.; Breeuwer, P.; Abee, T. Lacticin 3147, a broad-spectrum bacteriocin which selectively dissipates the membrane potential. Appl. Environ. Microbiol., 1998, 64(2), 439-445.
[http://dx.doi.org/10.1128/AEM.64.2.439-445.1998] [PMID: 9464377]
[116]
Dobson, A.; Crispie, F.; Rea, M.C.; O’Sullivan, O.; Casey, P.G.; Lawlor, P.G.; Cotter, P.D.; Ross, P.; Gardiner, G.E.; Hill, C. Fate and efficacy of lacticin 3147-producing Lactococcus lactis in the mammalian gastrointestinal tract. FEMS Microbiol. Ecol., 2011, 76(3), 602-614.
[http://dx.doi.org/10.1111/j.1574-6941.2011.01069.x] [PMID: 21314706]
[117]
Gebhart, D.; Lok, S.; Clare, S.; Tomas, M.; Stares, M.; Scholl, D.; Donskey, C.J.; Lawley, T.D.; Govoni, G.R. A modified R-type bacteriocin specifically targeting Clostridium difficile prevents colonization of mice without affecting gut microbiota diversity. MBio, 2015, 6(2), e02368-e14.
[http://dx.doi.org/10.1128/mBio.02368-14] [PMID: 25805733]
[118]
Gebhart, D.; Williams, S.R.; Bishop-Lilly, K.A.; Govoni, G.R.; Willner, K.M.; Butani, A.; Sozhamannan, S.; Martin, D.; Fortier, L.C.; Scholl, D. Novel high-molecular-weight, R-type bacteriocins of Clostridium difficile. J. Bacteriol., 2012, 194(22), 6240-6247.
[http://dx.doi.org/10.1128/JB.01272-12] [PMID: 22984261]
[119]
Zhao, S.; Han, J.; Bie, X.; Lu, Z.; Zhang, C.; Lv, F. Purification and characterization of plantaricin JLA-9: a novel bacteriocin against Bacillus spp. produced by Lactobacillus plantarum JLA-9 from Suan-Tsai, a traditional Chinese fermented cabbage. J. Agric. Food Chem., 2016, 64(13), 2754-2764.
[http://dx.doi.org/10.1021/acs.jafc.5b05717] [PMID: 26985692]
[120]
Bartoloni, A.; Mantella, A.; Goldstein, B.P.; Dei, R.; Benedetti, M.; Sbaragli, S.; Paradisi, F. In-vitro activity of nisin against clinical isolates of Clostridium difficile. J. Chemother., 2004, 16(2), 119-121.
[http://dx.doi.org/10.1179/joc.2004.16.2.119] [PMID: 15216943]
[121]
Chai, C.; Lee, K.S.; Oh, S.W. Synergistic inhibition of Clostridium difficile with nisin-lysozyme combination treatment. Anaerobe, 2015, 34, 24-26.
[http://dx.doi.org/10.1016/j.anaerobe.2015.04.003] [PMID: 25863312]
[122]
Field, D.; Quigley, L.; O’Connor, P.M.; Rea, M.C.; Daly, K.; Cotter, P.D.; Hill, C.; Ross, R.P. Studies with bioengineered Nisin peptides highlight the broad-spectrum potency of Nisin V. Microb. Biotechnol., 2010, 3(4), 473-486.
[http://dx.doi.org/10.1111/j.1751-7915.2010.00184.x] [PMID: 21255345]
[123]
Lay, C.L.; Dridi, L.; Bergeron, M.G.; Ouellette, M.; Fliss, I.L. Nisin is an effective inhibitor of Clostridium difficile vegetative cells and spore germination. J. Med. Microbiol., 2016, 65(2), 169-175.
[http://dx.doi.org/10.1099/jmm.0.000202] [PMID: 26555543]
[124]
Le Lay, C.; Fernandez, B.; Hammami, R.; Ouellette, M.; Fliss, I. On Lactococcus lactis UL719 competitivity and nisin (Nisaplin(®)) capacity to inhibit Clostridium difficile in a model of human colon. Front. Microbiol., 2015, 6, 1020.
[http://dx.doi.org/10.3389/fmicb.2015.01020] [PMID: 26441942]
[125]
Castiglione, F.; Lazzarini, A.; Carrano, L.; Corti, E.; Ciciliato, I.; Gastaldo, L.; Candiani, P.; Losi, D.; Marinelli, F.; Selva, E.; Parenti, F. Determining the structure and mode of action of microbisporicin, a potent lantibiotic active against multiresistant pathogens. Chem. Biol., 2008, 15(1), 22-31.
[http://dx.doi.org/10.1016/j.chembiol.2007.11.009] [PMID: 18215770]
[126]
Fagundes, P.C.; Farias, F.M.; Santos, O.C.; de Oliveira, N.E.; da Paz, J.A.; Ceotto-Vigoder, H.; Alviano, D.S.; Romanos, M.T.; Bastos, M.C. The antimicrobial peptide aureocin A53 as an alternative agent for biopreservation of dairy products. J. Appl. Microbiol., 2016, 121(2), 435-444.
[http://dx.doi.org/10.1111/jam.13189] [PMID: 27225974]
[127]
Castellano, P.; Vignolo, G. Inhibition of Listeria innocua and Brochothrix thermosphacta in vacuum-packaged meat by addition of bacteriocinogenic Lactobacillus curvatus CRL705 and its bacteriocins. Lett. Appl. Microbiol., 2006, 43(2), 194-199.
[http://dx.doi.org/10.1111/j.1472-765X.2006.01933.x] [PMID: 16869904]
[128]
Lee, J.H.; Li, X.; O’Sullivan, D.J. Transcription analysis of a lantibiotic gene cluster from Bifidobacterium longum DJO10A. Appl. Environ. Microbiol., 2011, 77(17), 5879-5887.
[http://dx.doi.org/10.1128/AEM.00571-11] [PMID: 21742926]
[129]
Ivanova, I.; Kabadjova, P.; Pantev, A.; Danova, S.; Dousset, X. Detection, purification and partial characterization of a novel bacteriocin substance produced by Lactococcus lactis subsp. lactis B14 isolated from boza-Bulgarian traditional cereal beverage. Biocatalysis, 2000, 41(6), 47-53.
[130]
Lü, X.; Yi, L.; Dang, J.; Dang, Y.; Liu, B. Purification of novel bacteriocin produced by Lactobacillus coryniformis MXJ 32 for inhibiting bacterial foodborne pathogens including antibiotic-resistant microorganisms. Food Control, 2014, 46, 264-271.
[http://dx.doi.org/10.1016/j.foodcont.2014.05.028]
[131]
Niu, W.W.; Neu, H.C. Activity of mersacidin, a novel peptide, compared with that of vancomycin, teicoplanin, and daptomycin. Antimicrob. Agents Chemother., 1991, 35(5), 998-1000.
[http://dx.doi.org/10.1128/AAC.35.5.998] [PMID: 1649577]
[132]
Therdtatha, P.; Tandumrongpong, C.; Pilasombut, K.; Matsusaki, H.; Keawsompong, S.; Nitisinprasert, S. Characterization of antimicrobial substance from Lactobacillus salivarius KL-D4 and its application as biopreservative for creamy filling. Springerplus, 2016, 5(1), 1060.
[http://dx.doi.org/10.1186/s40064-016-2693-4] [PMID: 27462508]
[133]
Gong, H.; Meng, X.; Wang, H. Plantaricin MG active against Gram-negative bacteria produced by Lactobacillus plantarum KLDS1. 0391 isolated from “Jiaoke”, a traditional fermented cream from China. Food Control, 2010, 21(1), 89-96.
[http://dx.doi.org/10.1016/j.foodcont.2009.04.005]
[134]
Kers, J.A.; DeFusco, A.W.; Park, J.H.; Xu, J.; Pulse, M.E.; Weiss, W.J.; Handfield, M. OG716: Designing a fit-for-purpose lantibiotic for the treatment of Clostridium difficile infections. PLoS One, 2018, 13(6), e0197467.
[http://dx.doi.org/10.1371/journal.pone.0197467] [PMID: 29894469]
[135]
Alegría, A.; Delgado, S.; Roces, C.; López, B.; Mayo, B. Bacteriocins produced by wild Lactococcus lactis strains isolated from traditional, starter-free cheeses made of raw milk. Int. J. Food Microbiol., 2010, 143(1-2), 61-66.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2010.07.029] [PMID: 20708289]
[136]
Sawa, N.; Koga, S.; Okamura, K.; Ishibashi, N.; Zendo, T.; Sonomoto, K. Identification and characterization of novel multiple bacteriocins produced by Lactobacillus sakei D98. J. Appl. Microbiol., 2013, 115(1), 61-69.
[http://dx.doi.org/10.1111/jam.12226] [PMID: 23594273]
[137]
Saleh, F.; El-Sayed, E. In Isolation and characterization of bacteriocins produced by Bifidobacterium lactis BB-12 and Bifidobacterium longum BB-46, 9th Egyptian conference for dairy science and technology. International Agriculture Centre, Cairo, Egypt, 2004, p. 9-11.
[138]
Gao, Y.; Li, D.; Liu, S.; Zhang, L. The sactibiotic subclass of bacteriocins: An update. Curr. Protein Pept. Sci., 2015, 16(6), 549-558.
[139]
Laviña, M.; Gaggero, C.; Moreno, F. Microcin H47, a chromosome-encoded microcin antibiotic of Escherichia coli. J. Bacteriol., 1990, 172(11), 6585-6588.
[http://dx.doi.org/10.1128/jb.172.11.6585-6588.1990] [PMID: 2228975]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy