Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Research Article

Kaempferol-3-O-Rhamnoside Inhibits the Proliferation of Jurkat Cells Through Jun Amino-Terminal Kinase Signaling

Author(s): Melisa Intan Barliana*, Ajeng Diantini, Anas Subarnas and Rizky Abdulah

Volume 12, Issue 4, 2022

Published on: 21 December, 2021

Article ID: e260821195843 Pages: 7

DOI: 10.2174/2210315511666210826102427

open access plus

Abstract

Background: Indonesian herbal medicine has become target of new drugs against diseases, including cancer. The high incidence and mortality rate of cancer, anticancer resistance, and side effects of chemotherapy contribute to the urgency of researching novel anticancer drugs. A natural product from Schima wallichii Korth., an Indonesian herbal medicine empirically used for many diseases, has shown anticancer activity in MCF-7 and LNCaP cells.

Objective: In this study, we investigated the antiproliferative mechanism of the active compound of S. wallichii, kaempferol-3-O-rhamnoside, against Jurkat cells.

Methods: Treated cells were analyzed using a proliferation assay and real time-reverse transcriptase polymerase chain reaction for IL-2 mRNA measurement. The mechanism of antiproliferative activity was assesed by western blotting analysis for Mitogen Activated Protein Kinases (MAPKs).

Results: Kaempferol-3-O-rhamnoside has an antiproliferative activity at IC50 of 76.3 μM and slightly inhibited IL-2 mRNA expression. The mechanism to inhibit Jurkat cells proliferation was through the stimulation of phosphorylated Jun amino-terminal kinase.

Conclusion: The present study observed the molecular mechanism of antiproliferative activity of kaempferol-3-O-rhamnoside.

Keywords: Antiproliferation, herbal medicine, IL-2, MAP Kinase, Schima wallichii, Jurkat cells.

Graphical Abstract
[1]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2017. CA Cancer J. Clin., 2017, 67(1), 7-30.
[http://dx.doi.org/10.3322/caac.21387] [PMID: 28055103]
[2]
Indonesian Ministry of Health. Basic Health Research 2018; Indonesian Ministry of Health Jakarta, 2018.
[3]
Savard, J.; Ivers, H.; Savard, M.H.; Morin, C.M. Cancer treatments and their side effects are associated with aggravation of insomnia: Results of a longitudinal study. Cancer, 2015, 121(10), 1703-1711.
[http://dx.doi.org/10.1002/cncr.29244] [PMID: 25677509]
[4]
Davis, K.M.; Kelly, S.P.; Luta, G.; Tomko, C.; Miller, A.B.; Taylor, K.L. The association of long-term treatment-related side effects with cancer-specific and general quality of life among prostate cancer survivors. Urology, 2014, 84(2), 300-306.
[http://dx.doi.org/10.1016/j.urology.2014.04.036] [PMID: 24975711]
[5]
Pedersen, B.; Koktved, D.P.; Nielsen, L.L. Living with side effects from cancer treatment--a challenge to target information. Scand. J. Caring Sci., 2013, 27(3), 715-723.
[http://dx.doi.org/10.1111/j.1471-6712.2012.01085.x] [PMID: 23034150]
[6]
Chen, A.Y.; Chen, Y.C. A review of the dietary flavonoid, kaempferol on human health and cancer chemoprevention. Food Chem., 2013, 138(4), 2099-2107.
[http://dx.doi.org/10.1016/j.foodchem.2012.11.139] [PMID: 23497863]
[7]
Miranda-Filho, A.; Piñeros, M.; Ferlay, J.; Soerjomataram, I.; Monnereau, A.; Bray, F. Epidemiological patterns of leukaemia in 184 countries: A population-based study. Lancet Haematol., 2018, 5(1), e14-e24.
[http://dx.doi.org/10.1016/S2352-3026(17)30232-6] [PMID: 29304322]
[8]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[9]
Sharma, S.B.; Gupta, R. Drug development from natural resource: A systematic approach. Mini Rev. Med. Chem., 2015, 15(1), 52-57.
[http://dx.doi.org/10.2174/138955751501150224160518] [PMID: 25986040]
[10]
Sen, T.; Samanta, S.K. Medicinal plants, human health and biodiversity: A broad review. Adv. Biochem. Eng. Biotechnol., 2015, 147, 59-110.
[http://dx.doi.org/10.1007/10_2014_273] [PMID: 25001990]
[11]
Dituri, F.; Mazzocca, A.; Giannelli, G.; Antonaci, S. PI3K functions in cancer progression, anticancer immunity and immune evasion by tumors. Clin. Dev. Immunol., 2011, 2011, 947858.
[http://dx.doi.org/10.1155/2011/947858] [PMID: 22046194]
[12]
Anderson, J.G.; Taylor, A.G. Use of complementary therapies for cancer symptom management: Results of the 2007 National Health Interview Survey. J. Altern. Complement. Med., 2012, 18(3), 235-241.
[http://dx.doi.org/10.1089/acm.2011.0022] [PMID: 22420737]
[13]
Yoshida, T.; Chou, T.; Nitta, A.; Okuda, T. Tannins and related polyphenols of theaceous plants. IV. monomeric and dimerichydrolyzable tannins having a dilactonizedvaloneoyl group from Schima wallichii Korth. Chem. Pharm. Bull. (Tokyo), 1991, 39(9), 2247-2251.
[http://dx.doi.org/10.1248/cpb.39.2247]
[14]
Barma, A.D.; Mohanty, J.P.; Pal, P.; Bhuyan, N.R. In vitro evaluation of Schima wallichii (DC.)Korth.fruit for potential antibacterial activity. J Appl Pharm, 2015, 5(9), 124-126.
[http://dx.doi.org/10.7324/JAPS.2015.50923]
[15]
Diantini, A.; Subarnas, A.; Lestari, K.; Halimah, E.; Susilawati, Y.; Supriyatna, ; Julaeha, E.; Achmad, T.H.; Suradji, E.W.; Yamazaki, C.; Kobayashi, K.; Koyama, H.; Abdulah, R. Kaempferol-3-O-rhamnoside isolated from the leaves of Schima wallichii Korth. inhibits MCF-7 breast cancer cell proliferation through activation of the caspase cascade pathway. Oncol. Lett., 2012, 3(5), 1069-1072.
[http://dx.doi.org/10.3892/ol.2012.596] [PMID: 22783393]
[16]
Halimah, E.; Diantini, A.; Destiani, D.P.; Pradipta, I.S.; Sastramihardja, H.S.; Lestari, K.; Subarnas, A.; Abdulah, R.; Koyama, H. Induction of caspase cascade pathway by kaempferol-3-O-rhamnoside in LNCaP prostate cancer cell lines. Biomed. Rep., 2015, 3(1), 115-117.
[http://dx.doi.org/10.3892/br.2014.385] [PMID: 25469259]
[17]
Lee, J.G.; Jang, J.Y.; Fang, T.; Xu, Y.; Yan, J.J.; Ryu, J.H.; Jeon, H.J.; Koo, T.Y.; Kim, D.K.; Oh, K.H.; Kim, T.J.; Yang, J. Identification of human B-1 helper T cells with a Th1-like memory phenotype and high integrin CD49d expression. Front. Immunol., 2018, 9, 1617.
[http://dx.doi.org/10.3389/fimmu.2018.01617] [PMID: 30061889]
[18]
Wojdylo, A.; Oszmianski, J.; Czemerys, R. Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chem., 2007, 105, 940-949.
[http://dx.doi.org/10.1016/j.foodchem.2007.04.038]
[19]
Seifried, H.E.; Anderson, D.E.; Fisher, E.I.; Milner, J.A. A review of the interaction among dietary antioxidants and reactive oxygen species. J. Nutr. Biochem., 2007, 18(9), 567-579.
[http://dx.doi.org/10.1016/j.jnutbio.2006.10.007] [PMID: 17360173]
[20]
Luo, H.; Jiang, B.H.; King, S.M.; Chen, Y.C. Inhibition of cell growth and VEGF expression in ovarian cancer cells by flavonoids. Nutr. Cancer, 2008, 60(6), 800-809.
[http://dx.doi.org/10.1080/01635580802100851] [PMID: 19005980]
[21]
Sak, K. Cytotoxicity of dietary flavonoids on different human cancer types. Pharmacogn. Rev., 2014, 8(16), 122-146.
[http://dx.doi.org/10.4103/0973-7847.134247] [PMID: 25125885]
[22]
Peterson, J.J.; Dwyer, J.T.; Jacques, P.F.; McCullough, M.L. Improving the estimation of flavonoid intake for study of health outcomes. Nutr. Rev., 2015, 73(8), 553-576.
[http://dx.doi.org/10.1093/nutrit/nuv008] [PMID: 26084477]
[23]
Chung, M.J.; Pandey, R.P.; Choi, J.W.; Sohng, J.K.; Choi, D.J.; Park, Y.I. Inhibitory effects of kaempferol-3-O-rhamnoside on ovalbumin-induced lung inflammation in a mouse model of allergic asthma. Int. Immunopharmacol., 2015, 25(2), 302-310.
[http://dx.doi.org/10.1016/j.intimp.2015.01.031] [PMID: 25698556]
[24]
Kim, I.R.; Kim, S.E.; Baek, H.S.; Kim, B.J.; Kim, C.H.; Chung, I.K.; Park, B.S.; Shin, S.H. The role of kaempferol-induced autophagy on differentiation and mineralization of osteoblastic MC3T3-E1 cells. BMC Complement. Altern. Med., 2016, 16(1), 333.
[http://dx.doi.org/10.1186/s12906-016-1320-9] [PMID: 27581091]
[25]
Tu, L.Y.; Bai, H.H.; Cai, J.Y.; Deng, S.P. The mechanism of kaempferol induced apoptosis and inhibited proliferation in human cervical cancer SiHa cell: From macro to nano. Scanning, 2016, 38(6), 644-653.
[http://dx.doi.org/10.1002/sca.21312] [PMID: 26890985]
[26]
Qin, Y.; Cui, W.; Yang, X.; Tong, B. Kaempferol inhibits the growth and metastasis of cholangiocarcinoma in vitro and in vivo. Acta Biochim. Biophys. Sin. (Shanghai), 2016, 48(3), 238-245.
[http://dx.doi.org/10.1093/abbs/gmv133] [PMID: 26883800]
[27]
Lee, H.S.; Cho, H.J.; Yu, R.; Lee, K.W.; Chun, H.S.; Park, J.H. Mechanisms underlying apoptosis-inducing effects of Kaempferol in HT-29 human colon cancer cells. Int. J. Mol. Sci., 2014, 15(2), 2722-2737.
[http://dx.doi.org/10.3390/ijms15022722] [PMID: 24549175]
[28]
Lee, J.; Kim, J.H. Kaempferol inhibits pancreatic cancer cell growth and migration through the blockade of EGFR-related pathway in vitro. PLoS One, 2016, 11(5), e0155264.
[http://dx.doi.org/10.1371/journal.pone.0155264] [PMID: 27175782]
[29]
Qian, Y.S.; Ramamurthy, S.; Candasamy, M.; Shadab, M.; Kumar, R.H.; Meka, V.S. Production, characterization and evaluation of kaempferol nanosuspension for improving oral bioavailability. Curr. Pharm. Biotechnol., 2016, 17(6), 549-555.
[http://dx.doi.org/10.2174/1389201017666160127110609] [PMID: 26813303]
[30]
Rodríguez, P.; González-Mujica, F.; Bermúdez, J.; Hasegawa, M. Inhibition of glucose intestinal absorption by kaempferol 3-O-α-rhamnoside purified from Bauhinia megalandra leaves. Fitoterapia, 2010, 81(8), 1220-1223.
[http://dx.doi.org/10.1016/j.fitote.2010.08.007] [PMID: 20727952]
[31]
Sharoar, M.G.; Thapa, A.; Shahnawaz, M.; Ramasamy, V.S.; Woo, E.R.; Shin, S.Y.; Park, I.S. Keampferol-3-O-rhamnoside abrogates amyloid beta toxicity by modulating monomers and remodeling oligomers and fibrils to non-toxic aggregates. J. Biomed. Sci., 2012, 19, 104.
[http://dx.doi.org/10.1186/1423-0127-19-104] [PMID: 23259691]
[32]
Barliana, M.I.; Suradji, E.W.; Abdulah, R.; Diantini, A.; Hatabu, T.; Nakajima-Shimada, J.; Subarnas, A.; Koyama, H. Antiplasmodial properties of kaempferol-3-O-rhamnoside isolated from the leaves of Schima wallichii against chloroquine-resistant Plasmodium falciparum. Biomed. Rep., 2014, 2(4), 579-583.
[http://dx.doi.org/10.3892/br.2014.271] [PMID: 24944812]
[33]
Smith, K.A. Interleukin-2: inception, impact, and implications. Science, 1988, 240(4856), 1169-1176.
[http://dx.doi.org/10.1126/science.3131876] [PMID: 3131876]
[34]
Kalia, V.; Sarkar, S. Regulation of effector and memory CD8 T cell differentiation by IL-2-A balancing act. Front. Immunol., 2018, 9, 2987.
[http://dx.doi.org/10.3389/fimmu.2018.02987] [PMID: 30619342]
[35]
Jiang, T.; Zhou, C.; Ren, S. Role of IL-2 in cancer immunotherapy. OncoImmunology, 2016, 5(6), e1163462.
[http://dx.doi.org/10.1080/2162402X.2016.1163462] [PMID: 27471638]
[36]
Dhupkar, P.; Gordon, N. Interleukin-2: old and new approaches to enhance immune-therapeutic efficacy. Adv. Exp. Med. Biol., 2017, 995, 33-51.
[http://dx.doi.org/10.1007/978-3-319-53156-4_2] [PMID: 28321811]
[37]
Lissoni, P. Therapy implications of the role of interleukin-2 in cancer. Expert Rev. Clin. Immunol., 2017, 13(5), 491-498.
[http://dx.doi.org/10.1080/1744666X.2017.1245146] [PMID: 27782752]
[38]
Li, T.F.; Lin, C.C.; Tsai, H.P.; Hsu, C.H.; Fu, S.L. Effects of kuan-sin-yin decoction on immunomodulation and tumorigenesis in mouse tumor models. BMC Complement. Altern. Med., 2014, 14, 488.
[http://dx.doi.org/10.1186/1472-6882-14-488] [PMID: 25510204]
[39]
Dewanjee, S.; Mandal, V.; Sahu, R.; Dua, T.K.; Manna, A.; Mandal, S.C. Anti-inflammatory activity of a polyphenolic enriched extract of Schima wallichii bark. Nat. Prod. Res., 2011, 25(7), 696-703.
[http://dx.doi.org/10.1080/14786410802560732] [PMID: 19657970]
[40]
Lalhminghlui, K.; Jagetia, G.C. Evaluation of the free-radical scavenging and antioxidant activities of Chilauni, Schima wallichii Korth in vitro. Future Sci. OA, 2018, 4(2), FSO272.
[http://dx.doi.org/10.4155/fsoa-2017-0086] [PMID: 29379645]
[41]
Zou, K.; Yang, S.; Zheng, L.; Yang, C.; Xiong, B. Efficacy and safety of target combined chemotherapy in advanced gastric cancer: A meta-analysis and system review. BMC Cancer, 2016, 16(1), 737.
[http://dx.doi.org/10.1186/s12885-016-2772-5] [PMID: 27633381]
[42]
Ostrand-Rosenberg, S. Immune surveillance: A balance between protumor and antitumor immunity. Curr. Opin. Genet. Dev., 2008, 18(1), 11-18.
[http://dx.doi.org/10.1016/j.gde.2007.12.007] [PMID: 18308558]
[43]
Peranzoni, E.; Rivas-Caicedo, A.; Bougherara, H.; Salmon, H.; Donnadieu, E. Positive and negative influence of the matrix architecture on antitumor immune surveillance. Cell. Mol. Life Sci., 2013, 70(23), 4431-4448.
[http://dx.doi.org/10.1007/s00018-013-1339-8] [PMID: 23649148]
[44]
Mohamed, S.I.A.; Jantan, I.; Haque, M.A. Naturally occurring immunomodulators with antitumor activity: An insight on their mechanisms of action. Int. Immunopharmacol., 2017, 50, 291-304.
[http://dx.doi.org/10.1016/j.intimp.2017.07.010] [PMID: 28734166]
[45]
Sun, Y.; Liu, W.Z.; Liu, T.; Feng, X.; Yang, N.; Zhou, H.F. Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis. J. Recept. Signal Transduct. Res., 2015, 35(6), 600-604.
[http://dx.doi.org/10.3109/10799893.2015.1030412] [PMID: 26096166]
[46]
Chang, L.; Karin, M. Mammalian MAP kinase signalling cascades. Nature, 2001, 410(6824), 37-40.
[http://dx.doi.org/10.1038/35065000] [PMID: 11242034]
[47]
Morrison, D.K. MAP kinase pathways. Cold Spring Harb. Perspect. Biol., 2012, 4(11), a011254.
[http://dx.doi.org/10.1101/cshperspect.a011254] [PMID: 23125017]
[48]
Su, B.; Cheng, J.; Yang, J.; Guo, Z. MEKK2 is required for T-cell receptor signals in JNK activation and interleukin-2 gene expression. J. Biol. Chem., 2001, 276(18), 14784-14790.
[http://dx.doi.org/10.1074/jbc.M010134200] [PMID: 11278622]
[49]
Roy, A.; Manikkam, R. Cytotoxic impact of costunolide isolated from costus speciosus on breast cancer via differential regulation of cell cycle-an in-vitro and in-silico approach. Phytother. Res., 2015, 29(10), 1532-1539.
[http://dx.doi.org/10.1002/ptr.5408] [PMID: 26178525]
[50]
Zhang, C.; Lu, T.; Wang, G.D.; Ma, C.; Zhou, Y.F. Costunolide, an active sesquiterpene lactone, induced apoptosis via ROS-mediated ER stress and JNK pathway in human U2OS cells. Biomed. Pharmacother., 2016, 80, 253-259.
[http://dx.doi.org/10.1016/j.biopha.2016.03.031] [PMID: 27133064]
[51]
Kim, A.; Yim, N.H.; Ma, J.Y. Samsoeum, a traditional herbal medicine, elicits apoptotic and autophagic cell death by inhibiting Akt/mTOR and activating the JNK pathway in cancer cells. BMC Complement. Altern. Med., 2013, 13, 233.
[http://dx.doi.org/10.1186/1472-6882-13-233] [PMID: 24053190]
[52]
Yu, T.; Moh, S.H.; Kim, S.B.; Yang, Y.; Kim, E.; Lee, Y.W.; Cho, C.K.; Kim, K.H.; Yoo, B.C.; Cho, J.Y.; Yoo, H.S. HangAmDan-B, an ethnomedicinal herbal mixture, suppresses inflammatory responses by inhibiting Syk/NF-κB and JNK/ATF-2 pathways. J. Med. Food, 2013, 16(1), 56-65.
[http://dx.doi.org/10.1089/jmf.2012.2374] [PMID: 23256447]

© 2024 Bentham Science Publishers | Privacy Policy