Generic placeholder image

Current Vascular Pharmacology

Editor-in-Chief

ISSN (Print): 1570-1611
ISSN (Online): 1875-6212

Research Article

Negatively-charged Liposome Nanoparticles Can Prevent Dyslipidemia and Atherosclerosis Progression in the Rabbit Model

Author(s): Amir Abbas Momtazi-Borojeni, Elham Abdollahi, Mahmoud R. Jaafari, Maciej Banach, Gerald F. Watts and Amirhossein Sahebkar*

Volume 20, Issue 1, 2022

Published on: 20 August, 2021

Page: [69 - 76] Pages: 8

DOI: 10.2174/1570161119666210820115150

Price: $65

Abstract

Background and Aim: Negatively charged nanoliposomes have a strong attraction towards plasma lipoprotein particles and can thereby regulate lipid metabolism. Here, the impact of such nanoliposomes on dyslipidaemia and progression of atherosclerosis was investigated in a rabbit model.

Methods: Two sets of negatively-charged nanoliposome formulations including [Hydrogenated Soy Phosphatidylcholine (HSPC)/1,2-distearoyl-sn-glycero-3- phosphoglycerol (DSPG)] and [1,2- Dimyristoyl-sn-glycero-3-phosphorylcholine (DMPC)/1,2-Dimyristoyl-sn-glycero-3-phosphorylcholine (DMPG)/Cholesterol] were evaluated. Rabbits fed a high-cholesterol diet were randomly divided into 3 groups (n=5/group) intravenously administrated with HSPC/DSPG formulation (DSPG group; 100 mmol/kg), DMPC/DMPG formulation (DMPG group; 100 mmol/kg), or the normal saline (control group; 0.9% NaCl) over a 4-week period. The atherosclerotic lesions of the aortic arch wall were studied using haematoxylin and eosin staining.

Results: Both DSPG and DMPG nanoliposome formulations showed a nano-sized range in diameter with a negatively-charged surface and a polydispersity index of <0.1. After 4 weeks administration, the nanoliposome formulations decreased triglycerides (-62±3% [DSPG group] and -58±2% [DMPG group]), total cholesterol (-58±9% [DSPG group] and -37±5% [DMPG group]), and lowdensity lipoprotein cholesterol (-64±6% [DSPG group] and -53±10% [DMPG group]) levels, and increased high-density lipoprotein cholesterol (+67±28% [DSPG group] and +35±19% [DMPG group]) levels compared with the controls. The nanoliposomes showed a significant decrease in the severity of atherosclerotic lesions: mean values of the intima to media ratio in DMPG (0.96±0.1 fold) and DSPG (0.54±0.02 fold) groups were found to be significantly lower than that in the control (1.2±0.2 fold) group (p<0.05).

Conclusion: Anionic nanoliposomes containing [HSPC/DSPG] and [DMPC/DMPG] correct dyslipidaemia and inhibit the progression of atherosclerosis.

Keywords: Atherosclerosis, anionic nanoliposome, dyslipidaemia, phosphoglycerol, nanoparticles, lipoprotein.

Graphical Abstract
[1]
Tabas I, Williams KJ, Borén J. Subendothelial lipoprotein retention as the initiating process in atherosclerosis: Update and therapeutic implications. Circulation 2007; 116(16): 1832-44.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.106.676890] [PMID: 17938300]
[2]
Borén J, Chapman MJ, Krauss RM, et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease: Pathophysiological, genetic, and therapeutic insights: A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J 2020; 41(24): 2313-30.
[http://dx.doi.org/10.1093/eurheartj/ehz962] [PMID: 32052833]
[3]
Ferretti G, Bacchetti T, Sahebkar A. Effect of statin therapy on paraoxonase-1 status: A systematic review and meta-analysis of 25 clinical trials. Prog Lipid Res 2015; 60: 50-73.
[http://dx.doi.org/10.1016/j.plipres.2015.08.003] [PMID: 26416579]
[4]
Reiner Ž, Hatamipour M, Banach M, et al. Statins and the COVID-19 main protease: In silico evidence on direct interaction. Arch Med Sci 2020; 16(3): 490-6.
[http://dx.doi.org/10.5114/aoms.2020.94655] [PMID: 32399094]
[5]
Sahebkar A, Serban C, Ursoniu S, et al. The impact of statin therapy on plasma levels of von Willebrand factor antigen. Systematic review and meta-analysis of randomised placebo-controlled trials. Thromb Haemost 2016; 115(3): 520-32.
[http://dx.doi.org/10.1160/th15-08-0620] [PMID: 26632869]
[6]
Serban C, Sahebkar A, Ursoniu S, et al. A systematic review and meta-analysis of the effect of statins on plasma asymmetric dimethylarginine concentrations. Sci Rep 2015; 5: 9902.
[http://dx.doi.org/10.1038/srep09902] [PMID: 25970700]
[7]
Miller M, Stone NJ, Ballantyne C, et al. Triglycerides and cardiovascular disease: A scientific statement from the American Heart Association. Circulation 2011; 123(20): 2292-333.
[http://dx.doi.org/10.1161/CIR.0b013e3182160726] [PMID: 21502576]
[8]
Nordestgaard BG, Benn M, Schnohr P, Tybjaerg-Hansen A. Nonfasting triglycerides and risk of myocardial infarction, ischemic heart disease, and death in men and women. JAMA 2007; 298(3): 299-308.
[http://dx.doi.org/10.1001/jama.298.3.299] [PMID: 17635890]
[9]
Investigators A-H. Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy. N Engl J Med 2011; 365: 2255-67.
[http://dx.doi.org/10.1056/NEJMoa1107579] [PMID: 22085343]
[10]
Wong AW, Xiao J, Kemper D, Kilpatrick TJ, Murray SS. Oligodendroglial expression of TrkB independently regulates myelination and progenitor cell proliferation. J Neurosci 2013; 33(11): 4947-57.
[http://dx.doi.org/10.1523/JNEUROSCI.3990-12.2013] [PMID: 23486965]
[11]
Khera AV, Rader DJ. Future therapeutic directions in reverse cholesterol transport. Curr Atheroscler Rep 2010; 12(1): 73-81.
[http://dx.doi.org/10.1007/s11883-009-0080-0] [PMID: 20425274]
[12]
Sahebkar A, Badiee A, Hatamipour M, Ghayour-Mobarhan M, Jaafari MR. Apolipoprotein B-100-targeted negatively charged nanoliposomes for the treatment of dyslipidemia. Colloids Surf B Biointerfaces 2015; 129: 71-8.
[http://dx.doi.org/10.1016/j.colsurfb.2015.03.012] [PMID: 25829129]
[13]
Krishna SM, Moxon JV, Jose RJ, et al. Anionic nanoliposomes reduced atherosclerosis progression in Low Density Lipoprotein Receptor (LDLR) deficient mice fed a high fat diet. J Cell Physiol 2018; 233(10): 6951-64.
[http://dx.doi.org/10.1002/jcp.26610] [PMID: 29741759]
[14]
Sahebkar A, Badiee A, Ghayour-Mobarhan M, Goldouzian SR, Jaafari MR. A simple and effective approach for the treatment of dyslipidemia using anionic nanoliposomes. Colloids Surf B Biointerfaces 2014; 122: 645-52.
[http://dx.doi.org/10.1016/j.colsurfb.2014.07.045] [PMID: 25139293]
[15]
Kim E-M, Jeong H-J. Liposomes: Biomedical Applications. Chonnam Med J 2021; 57(1): 27-35.
[http://dx.doi.org/10.4068/cmj.2021.57.1.27] [PMID: 33537216]
[16]
Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 2005; 4(2): 145-60.
[http://dx.doi.org/10.1038/nrd1632] [PMID: 15688077]
[17]
Brown MS, Goldstein JL. A receptor-mediated pathway for cholesterol homeostasis. Science 1986; 232(4746): 34-47.
[http://dx.doi.org/10.1126/science.3513311] [PMID: 3513311]
[18]
Amin K, Wasan KM, Albrecht RM, Heath TD. Cell association of liposomes with high fluid anionic phospholipid content is mediated specifically by LDL and its receptor, LDLr. J Pharm Sci 2002; 91(5): 1233-44.
[http://dx.doi.org/10.1002/jps.10075] [PMID: 11977099]
[19]
Amin K, Ng K-Y, Brown CS, Bruno MS, Heath TD. LDL induced association of anionic liposomes with cells and delivery of contents as shown by the increase in potency of liposome dependent drugs. Pharm Res 2001; 18(7): 914-21.
[http://dx.doi.org/10.1023/A:1010971808006] [PMID: 11496949]
[20]
Lauraeus S, Holopainen JM, Taskinen M-R, Kinnunen PK. Aggregation of dimyristoylphosphatidylglycerol liposomes by human plasma low density lipoprotein. Biochim Biophys Acta 1998; 1373(1): 147-62.
[http://dx.doi.org/10.1016/S0005-2736(98)00102-3] [PMID: 9733956]
[21]
Goldberg IJ, Wagner WD, Pang L, et al. The NH2-terminal region of apolipoprotein B is sufficient for lipoprotein association with glycosaminoglycans. J Biol Chem 1998; 273(52): 35355-61.
[http://dx.doi.org/10.1074/jbc.273.52.35355] [PMID: 9857078]
[22]
Rigotti A, Acton SL, Krieger M. The class B scavenger receptors SR-BI and CD36 are receptors for anionic phospholipids. J Biol Chem 1995; 270(27): 16221-4.
[http://dx.doi.org/10.1074/jbc.270.27.16221] [PMID: 7541795]
[23]
Greenspan P, Ryu B-H, Mao F, Gutman RL. Association of negatively-charged phospholipids with low-density lipoprotein (LDL) increases its uptake and the deposition of cholesteryl esters by macrophages. Biochim Biophys Acta 1995; 1257(3): 257-64.
[http://dx.doi.org/10.1016/0005-2760(95)00088-T] [PMID: 7647101]
[24]
Fan J, Kitajima S, Watanabe T, et al. Rabbit models for the study of human atherosclerosis: From pathophysiological mechanisms to translational medicine. Pharmacol Ther 2015; 146: 104-19.
[http://dx.doi.org/10.1016/j.pharmthera.2014.09.009] [PMID: 25277507]
[25]
Close B, Banister K, Baumans V, et al. Recommendations for euthanasia of experimental animals: Part 2. Lab Anim 1997; 31(1): 1-32.
[http://dx.doi.org/10.1258/002367797780600297] [PMID: 9121105]
[26]
Close B, Banister K, Baumans V, et al. Recommendations for euthanasia of experimental animals: Part 1. Lab Anim 1996; 30(4): 293-316.
[http://dx.doi.org/10.1258/002367796780739871] [PMID: 8938617]
[27]
Chekanov VS, Mortada ME, Tchekanov GV, et al. Pathologic and histologic results of electrical impulses in a rabbit model of atherosclerosis: 24-hour versus 8-hour regimen. J Vasc Surg 2002; 35(3): 554-62.
[http://dx.doi.org/10.1067/mva.2002.121756] [PMID: 11877706]
[28]
Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods 2012; 9(7): 671-5.
[http://dx.doi.org/10.1038/nmeth.2089] [PMID: 22930834]
[29]
Dobiásová M, Frohlich J. The plasma parameter log (TG/HDL-C) as an atherogenic index: Correlation with lipoprotein particle size and esterification rate in apoB-lipoprotein-depleted plasma (FER(HDL)). Clin Biochem 2001; 34(7): 583-8.
[http://dx.doi.org/10.1016/S0009-9120(01)00263-6] [PMID: 11738396]
[30]
Hermans MP, Ahn SA, Rousseau MF. The atherogenic dyslipidemia ratio [log(TG)/HDL-C] is associated with residual vascular risk, beta-cell function loss and microangiopathy in type 2 diabetes females. Lipids Health Dis 2012; 11: 132.
[http://dx.doi.org/10.1186/1476-511X-11-132] [PMID: 23046637]
[31]
Niroumand S, Khajedaluee M, Khadem-Rezaiyan M, et al. Atherogenic Index of Plasma (AIP): A marker of cardiovascular disease. Med J Islam Repub Iran 2015; 29: 240.
[PMID: 26793631]
[32]
Ha YC, Barter PJ. Differences in plasma cholesteryl ester transfer activity in sixteen vertebrate species. Comp Biochem Physiol B 1982; 71(2): 265-9.
[http://dx.doi.org/10.1016/0305-0491(82)90252-8] [PMID: 7060347]
[33]
Stamler CJ, Breznan D, Neville TA, Viau FJ, Camlioglu E, Sparks DL. Phosphatidylinositol promotes cholesterol transport in vivo. J Lipid Res 2000; 41(8): 1214-21.
[http://dx.doi.org/10.1016/S0022-2275(20)33428-3] [PMID: 10946008]
[34]
Burgess JW, Boucher J, Neville TA, et al. Phosphatidylinositol promotes cholesterol transport and excretion. J Lipid Res 2003; 44(7): 1355-63.
[http://dx.doi.org/10.1194/jlr.M300062-JLR200] [PMID: 12700341]
[35]
Burgess JW, Neville TA, Rouillard P, Harder Z, Beanlands DS, Sparks DL. Phosphatidylinositol increases HDL-C levels in humans. J Lipid Res 2005; 46(2): 350-5.
[http://dx.doi.org/10.1194/jlr.M400438-JLR200] [PMID: 15576836]
[36]
Masson D, Athias A, Lagrost L. Evidence for electronegativity of plasma high density lipoprotein-3 as one major determinant of human cholesteryl ester transfer protein activity. J Lipid Res 1996; 37(7): 1579-90.
[http://dx.doi.org/10.1016/S0022-2275(20)39140-9] [PMID: 8827528]
[37]
Sparks DL, Chatterjee C, Young E, Renwick J, Pandey NR. Lipoprotein charge and vascular lipid metabolism. Chem Phys Lipids 2008; 154(1): 1-6.
[http://dx.doi.org/10.1016/j.chemphyslip.2008.04.006] [PMID: 18502203]
[38]
Boucher JG, Nguyen T, Sparks DL. Lipoprotein electrostatic properties regulate hepatic lipase association and activity. Biochem Cell Biol 2007; 85(6): 696-708.
[http://dx.doi.org/10.1139/O07-137] [PMID: 18059528]
[39]
Saxena U, Goldberg IJ. Interaction of lipoprotein lipase with glycosaminoglycans and apolipoprotein C-II: Effects of free-fatty-acids. Biochim Biophys Acta 1990; 1043(2): 161-8.
[http://dx.doi.org/10.1016/0005-2760(90)90291-5] [PMID: 2317527]
[40]
Zhaorigetu S, Rodriguez-Aguayo C, Sood AK, Lopez-Berestein G, Walton BL. Delivery of negatively charged liposomes into the atherosclerotic plaque of apolipoprotein E-deficient mouse aortic tissue. J Liposome Res 2014; 24(3): 182-90.
[http://dx.doi.org/10.3109/08982104.2013.863208] [PMID: 24443972]
[41]
Alberti S, Schuster G, Parini P, et al. Hepatic cholesterol metabolism and resistance to dietary cholesterol in LXRbeta-deficient mice. J Clin Invest 2001; 107(5): 565-73.
[http://dx.doi.org/10.1172/JCI9794] [PMID: 11238557]
[42]
Kennedy MA, Barrera GC, Nakamura K, et al. ABCG1 has a critical role in mediating cholesterol efflux to HDL and preventing cellular lipid accumulation. Cell Metab 2005; 1(2): 121-31.
[http://dx.doi.org/10.1016/j.cmet.2005.01.002] [PMID: 16054053]
[43]
McNeish J, Aiello RJ, Guyot D, et al. High density lipoprotein deficiency and foam cell accumulation in mice with targeted disruption of ATP-binding cassette transporter-1. Proc Natl Acad Sci USA 2000; 97(8): 4245-50.
[http://dx.doi.org/10.1073/pnas.97.8.4245] [PMID: 10760292]
[44]
Venkateswaran A, Laffitte BA, Joseph SB, et al. Control of cellular cholesterol efflux by the nuclear oxysterol receptor LXR α. Proc Natl Acad Sci USA 2000; 97(22): 12097-102.
[http://dx.doi.org/10.1073/pnas.200367697] [PMID: 11035776]
[45]
Repa JJ, Mangelsdorf DJ. The liver X receptor gene team: Potential new players in atherosclerosis. Nat Med 2002; 8(11): 1243-8.
[http://dx.doi.org/10.1038/nm1102-1243] [PMID: 12411951]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy