Research Article

虫草素作为SARS-CoV-2 RNA依赖性RNA聚合酶(RdRp)的有希望的抑制剂

卷 29, 期 1, 2022

发表于: 20 August, 2021

页: [152 - 162] 页: 11

弟呕挨: 10.2174/0929867328666210820114025

摘要

背景:在中国武汉出现的SARS-CoV-2是一种新的全球威胁,已经造成数百万人死亡,并将继续如此。这场大流行不仅威胁到人的生命,而且还引发了世界各地的经济衰退。研究人员在发现SARSCoV-2发病机制的分子见解和开发疫苗方面取得了重大进展,但仍然没有成功治愈SARS-CoV-2感染患者的方法。目的:本研究提出了一种药物重新定位管道,用于设计和发现一种有效的真菌衍生生物活性代谢物作为抗SARS-CoV-2的候选药物。 方法:选择真菌衍生物"虫草素"研究对SARS-CoV-2的RNA依赖性RNA聚合酶(RdRp)(PDB ID:6M71)的抑制特性。利用化学信息学方法测定了该化合物的药理学特征,分子间相互作用,结合能和稳定性。随后,进行了分子动力学模拟,以更好地了解虫草素与RdRp的结合机理。 结果:药理学资料和检索到的分子动力学模拟轨迹表明,虫草素具有优异的药物相似性和更高的结构稳定性,而RdRp的催化残基(Asp760、Asp761)以及其他活性位点残基(Trp617、Asp618、Tyr619、Trp800、Glu811)在整体模拟过程中表现出较好的稳定性。 结论:药理学研究结果及分子模拟结果显示,虫草素对SARSCoV-2聚合酶(RdRp)具有很强的抑制潜力。因此,强烈建议在实验室中测试虫草素,以确认其对SARS-CoV-2聚合酶(RdRp)的抑制潜力。

关键词: 虫草素,生物活性代谢物,药物再利用,SARS-CoV-2,COVID-19,分子动力学模拟。

[1]
Phelan, A.L.; Katz, R.; Gostin, L.O. The novel coronavirus originating in Wuhan, China: challenges for global health governance. JAMA, 2020, 323(8), 709-710.
[http://dx.doi.org/10.1001/jama.2020.1097] [PMID: 31999307]
[2]
Meng, L.; Hua, F.; Bian, Z. Coronavirus disease 2019 (COVID-19): emerging and future challenges for dental and oral medicine. J. Dent. Res., 2020, 99(5), 481-487.
[http://dx.doi.org/10.1177/0022034520914246] [PMID: 32162995]
[3]
Mahase, E. China coronavirus: WHO declares international emergency as death toll exceeds 200. BMJ, 2020, 368, m408.
[http://dx.doi.org/10.1136/bmj.m408] [PMID: 32005727]
[4]
Wu, C.; Liu, Y.; Yang, Y.; Zhang, P.; Zhong, W.; Wang, Y.; Wang, Q.; Xu, Y.; Li, M.; Li, X.; Zheng, M.; Chen, L.; Li, H. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm. Sin. B, 2020, 10(5), 766-788.
[http://dx.doi.org/10.1016/j.apsb.2020.02.008] [PMID: 32292689]
[5]
Khalaf, K.; Papp, N.; Chou, J.TT.; Hana, D.; Mackiewicz, A.; Kaczmarek, M. SARS-CoV-2: Pathogenesis, and advancements in diagnostics and treatment. Frontiers in Immunology. Frontiers Media S.A., 2020, 11570927
[6]
Robba, C.; Battaglini, D.; Pelosi, P.; Rocco, P.RM. Multiple organ dysfunction in SARS-CoV-2: MODS-CoV-2. Expert Review of Respiratory Medicine, 2020, 14, 865-868.
[7]
CDC COVID Data Tracker. Available from:. https://covid.cdc.gov/covid-data-tracker/#datatracker-home
[8]
WHO Coronavirus (COVID-19) Dashboard. Available from:. https://covid19.who.int/
[9]
Map and charts showing the spread of the novel coronavirus. Available from: . https://graphics.reuters.com/CHINA-HEALTH-MAP/0100B59S39E/index.html
[10]
Ita, K. Coronavirus DIsease (COVID-19): Current status and prospects for drug and vaccine development. Arch. Med. Res., 2020, 52(1), 15-24.
[PMID: 32950264]
[11]
Wang, Q.; Wu, J.; Wang, H.; Gao, Y.; Liu, Q.; Mu, A.; Ji, W.; Yan, L.; Zhu, Y.; Zhu, C.; Fang, X.; Yang, X.; Huang, Y.; Gao, H.; Liu, F.; Ge, J.; Sun, Q.; Yang, X.; Xu, W.; Liu, Z.; Yang, H.; Lou, Z.; Jiang, B.; Guddat, L.W.; Gong, P.; Rao, Z. Structural Basis for RNA Replication by the SARS-CoV-2 Polymerase. Cell, 2020, 182(2), 417-428.e13.
[http://dx.doi.org/10.1016/j.cell.2020.05.034] [PMID: 32526208]
[12]
Pal, M.; Berhanu, G.; Desalegn, C.; Kandi, V. Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2): An Update. Cureus, 2020, 12(3)e7423
[http://dx.doi.org/10.7759/cureus.7423] [PMID: 32337143]
[13]
Zheng, J. SARS-coV-2: An emerging coronavirus that causes a global threat. Int. J. Biol. Sci., 2020, 16(10), 1678-1685.
[14]
Betacoronavirus - an overview | ScienceDirect Topics. Available from:. https://www.sciencedirect.com/topics/ immunology-and-microbiology/betacoronavirus
[15]
Naqvi, A.A.T.; Fatima, K.; Mohammad, T.; Fatima, U.; Singh, I.K.; Singh, A. nsights into SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies: Structural genomics approach. In: Biochimica et Biophysica Acta - Molecular Basis of Disease; Elsevier B.V., 2020; 1866, p. 165878..
[16]
Yan, R.; Zhang, Y.; Li, Y.; Xia, L.; Guo, Y.; Zhou, Q. Structural basis for the recognition of SARS-CoV-2 by fulllength human ACE2. Science (80- ), 2020, 367(6485), 1444-1448. Available from:. http://science.sciencemag.org/
[17]
Hu, B.; Guo, H.; Zhou, P.; Shi, Z.L. Characteristics of SARS-CoV-2 and COVID-19.In: Nature Reviews Microbiology; Nature Research, 2020; 19, pp. 141-154. Available from: , www.nature.com/nrmicro
[18]
Hasan, A.; Paray, B.A.; Hussain, A.; Qadir, F.A.; Attar, F.; Aziz, F.M. A review on the cleavage priming of the spike protein on coronavirus by angiotensin-converting enzyme-2 and furin. J. Biomol. Struct. Dyn., 2020, 39(8), 3025-3033.
[http://dx.doi.org/10.1080/07391102.2020.1754293] [PMID: 32274964]
[19]
Romano, M.; Ruggiero, A.; Squeglia, F.; Maga, G.; Berisio, R. A Structural View of SARS-CoV-2 RNA Replication Machinery: RNA Synthesis, Proofreading and Final Capping. Cells, 2020, 9(5), 1267.
[http://dx.doi.org/10.3390/cells9051267] [PMID: 32443810]
[20]
Michel, C.J.; Mayer, C.; Poch, O.; Thompson, J.D. Characterization of accessory genes in coronavirus genomes. Virol. J., 2020, 17(1), 131.
[http://dx.doi.org/10.1186/s12985-020-01402-1] [PMID: 32854725]
[21]
Elfiky, A.A.; Mahdy, S.M.; Elshemey, W.M. Quantitative structure-activity relationship and molecular docking revealed a potency of anti-hepatitis C virus drugs against human corona viruses. J. Med. Virol., 2017, 89(6), 1040-1047.
[http://dx.doi.org/10.1002/jmv.24736] [PMID: 27864902]
[22]
Gao, Y.; Yan, L.; Huang, Y.; Liu, F.; Zhao, Y.; Cao, L. Structure of the RNA-dependent RNA polymerase from COVID-19 virus. Science (80- ), 2020, 368(6492), 779-82..
[23]
Jiang, Y.; Yin, W. Xu, HE RNA-dependent RNA polymerase: Structure, mechanism, and drug discovery for COVID-19. Biochem. Biophys. Res. Commun., 2020, 538, 47.
[24]
Kirchdoerfer, R.N.; Ward, A.B. Structure of the SARS-CoV nsp12 polymerase bound to nsp7 and nsp8 co-factors. Nat. Commun., 2019, 10(1), 2342.
[http://dx.doi.org/10.1038/s41467-019-10280-3] [PMID: 31138817]
[25]
Baby, K.; Maity, S.; Mehta, C.H.; Suresh, A.; Nayak, U.Y.; Nayak, Y. Targeting SARS-CoV-2 RNA-dependent RNA polymerase: An in silico drug repurposing for COVID-19. F1000 Research 2020.9, 1166..
[http://dx.doi.org/10.12688/f1000research.26359.1] [PMID: 3204411]
[26]
Appleby, TC; Perry, JK; Murakami, E; Barauskas, O; Feng, J J; Cho, A Structural basis for RNA replication by the hepatitis C virus polymerase. Science (80-), 2015, 347(6223), 771-775..
[27]
Gong, P.; Peersen, O.B. Structural basis for active site closure by the poliovirus RNA-dependent RNA polymerase. Proc. Natl. Acad. Sci. USA, 2010, 107(52), 22505-22510.
[http://dx.doi.org/10.1073/pnas.1007626107] [PMID: 21148772]
[28]
Elfiky, A.A. Zika viral polymerase inhibition using anti-HCV drugs both in market and under clinical trials. J. Med. Virol., 2016, 88(12), 2044-2051.
[http://dx.doi.org/10.1002/jmv.24678] [PMID: 27604059]
[29]
Elfiky, A.A. Zika virus: novel guanosine derivatives revealed strong binding and possible inhibition of the polymerase. Future Virol., 2017, 12(12), 721-728.
[http://dx.doi.org/10.2217/fvl-2017-0081]
[30]
Elfiky, A.A. Novel guanosine derivatives as anti-HCV NS5b polymerase: a QSAR and molecular docking study. Med. Chem., 2019, 15(2), 130-137.
[http://dx.doi.org/10.2174/1573406414666181015152511] [PMID: 30324891]
[31]
Elfiky, A.A. Ribavirin, Remdesivir, Sofosbuvir, Galidesivir, and Tenofovir against SARS-CoV-2 RNA dependent RNA polymerase (RdRp): A molecular docking study. Life Sci., 2020, 253117592
[http://dx.doi.org/10.1016/j.lfs.2020.117592] [PMID: 32222463]
[32]
Yin, W.; Mao, C.; Luan, X.; Shen, D.D.; Shen, Q.; Su, H. Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir. Science (80- ), 2020, 368(6498), 1499-504..
[33]
Aftab, S.O.; Ghouri, M.Z.; Masood, M.U.; Haider, Z.; Khan, Z.; Ahmad, A.; Munawar, N. Analysis of SARS-CoV-2 RNA-dependent RNA polymerase as a potential therapeutic drug target using a computational approach. J. Transl. Med., 2020, 18(1), 275.
[http://dx.doi.org/10.1186/s12967-020-02439-0] [PMID: 32635935]
[34]
Bibi, S.; Wang, Y-B.; Tang, D-X.; Kamal, M.A.; Yu, H. Prospects for discovering the secondary metabolites of Cordyceps sensu lato by the integrated strategy. Med. Chem., 2021, 17(2), 97-120.
[http://dx.doi.org/10.2174/1573406416666191227120425] [PMID: 31880251]
[35]
Yue, K.; Ye, M.; Zhou, Z.; Sun, W.; Lin, X. The genus Cordyceps: a chemical and pharmacological review. J. Pharm. Pharmacol., 2013, 65(4), 474-493.
[http://dx.doi.org/10.1111/j.2042-7158.2012.01601.x] [PMID: 23488776]
[36]
Liu, Y.; Wang, J.; Wang, W.; Zhang, H.; Zhang, X.; Han, C. The chemical constituents and pharmacological actions of Cordyceps sinensis. Evid. Based Complement. Alternat. Med., 2015, 2015575063
[http://dx.doi.org/10.1155/2015/575063] [PMID: 25960753]
[37]
Huang, F.; Li, W.; Xu, H.; Qin, H.; He, Z-G. Cordycepin kills Mycobacterium tuberculosis through hijacking the bacterial adenosine kinase. PLoS One, 2019, 14(6)e0218449
[http://dx.doi.org/10.1371/journal.pone.0218449]
[38]
Ashraf, S.A.; Elkhalifa, A.E.O.; Siddiqui, A.J.; Patel, M.; Awadelkareem, A.M.; Snoussi, M. Cordycepin for Health and Wellbeing: A Potent Bioactive Metabolite of an Entomopathogenic Medicinal Fungus Cordyceps with Its Nutraceutical and Therapeutic Potential.In: Molecules; MDPI AG, 2020; 25, p. 2735.
[39]
Holbein, S.; Wengi, A.; Decourty, L.; Freimoser, F.M.; Jacquier, A.; Dichtl, B. Cordycepin interferes with 3′ end formation in yeast independently of its potential to terminate RNA chain elongation. RNA, 2009, 15(5), 837-849.
[http://dx.doi.org/10.1261/rna.1458909] [PMID: 19324962]
[40]
Rose, K.M.; Bell, L.E.; Jacob, S.T. Specific inhibition of chromatin-associated poly(A) synthesis in vitro by cordycepin 5′-triphosphate. Nature, 1977, 267(5607), 178-180.
[http://dx.doi.org/10.1038/267178a0] [PMID: 16073440]
[41]
Nakagawa, K.; Lokugamage, K.G.; Makino, S. Viral and Cellular mRNA Translation in Coronavirus-Infected Cells.Advances in Virus Research; Academic Press Inc., 2016, pp. 165-192.
[42]
V’kovski, P.; Kratzel, A.; Steiner, S.; Stalder, H.; Thiel, V. Coronavirus biology and replication: implications for SARS-CoV-2.In: Nature Reviews Microbiology; Nature Research, 2020; 19, pp. 155-170;
[43]
Doetsch, P.W.; Suhadolnik, R.J.; Sawada, Y.; Mosca, J.D.; Flick, M.B.; Reichenbach, N.L.; Dang, A.Q.; Wu, J.M.; Charubala, R.; Pfleiderer, W.; Henderson, E.E. Core (2′-5′)oligoadenylate and the cordycepin analog: inhibitors of Epstein--Barr virus-induced transformation of human lymphocytes in the absence of interferon. Proc. Natl. Acad. Sci. USA, 1981, 78(11), 6699-6703.
[http://dx.doi.org/10.1073/pnas.78.11.6699] [PMID: 6171822]
[44]
Ryu, E.; Son, M.; Lee, M.; Lee, K.; Cho, J.Y.; Cho, S.; Lee, S.K.; Lee, Y.M.; Cho, H.; Sung, G.H.; Kang, H. Cordycepin is a novel chemical suppressor of Epstein-Barr virus replication. Oncoscience, 2014, 1(12), 866-881.
[http://dx.doi.org/10.18632/oncoscience.110] [PMID: 25621301]
[45]
Lonai, P.; Declève, A.; Kaplan, H.S. Spontaneous induction of endogenous murine leukemia virus-related antigen expression during short-term in vitro incubation of mouse lymphocytes. Proc. Natl. Acad. Sci. USA, 1974, 71(5), 2008-2012.
[http://dx.doi.org/10.1073/pnas.71.5.2008] [PMID: 4365582]
[46]
Müller, W.E.; Weiler, B.E.; Charubala, R.; Pfleiderer, W.; Leserman, L.; Sobol, R.W.; Suhadolnik, R.J.; Schröder, H.C. Cordycepin analogues of 2′,5′-oligoadenylate inhibit human immunodeficiency virus infection via inhibition of reverse transcriptase. Biochemistry, 1991, 30(8), 2027-2033.
[http://dx.doi.org/10.1021/bi00222a004] [PMID: 1705437]
[47]
Mahy, B.W.J.; Cox, N.J.; Armstrong, S.J.; Barry, R.D. Multiplication of influenza virus in the presence of cordycepin, an inhibitor of cellular RNA synthesis. Nat. New Biol., 1973, 243(127), 172-174.
[http://dx.doi.org/10.1038/newbio243172a0] [PMID: 4541329]
[48]
White, J.L.; Dawson, W.O. Effect of cordycepin triphosphate on in vitro RNA synthesis by plant viral replicases. J. Virol., 1979, 29(2), 811-814.
[http://dx.doi.org/10.1128/jvi.29.2.811-814.1979] [PMID: 16789174]
[49]
Dawson, W.O. Tobacco mosaic virus protein synthesis is correlated with double-stranded RNA synthesis and not single-stranded RNA synthesis. Virology, 1983, 125(2), 314-322.
[http://dx.doi.org/10.1016/0042-6822(83)90204-0] [PMID: 6601327]
[50]
Verma, A.K. Cordycepin: A bioactive metabolite of Cordyceps militaris and polyadenylation inhibitor with therapeutic potential against COVID-19. J. Biomol. Struct. Dyn., 2020, 1-8.
[http://dx.doi.org/10.1080/07391102.2020.1850352] [PMID: 33225826]
[51]
Verma, A.K.; Aggarwal, R. Repurposing potential of FDA-approved and investigational drugs for COVID-19 targeting SARS-CoV-2 spike and main protease and validation by machine learning algorithm. Chem. Biol. Drug Des., 2021, 97(4), 836-853.
[http://dx.doi.org/10.1111/cbdd.13812] [PMID: 33289334]
[52]
Study of Cordycepin Plus Pentostatin in Patients With Refractory TdT-Positive Leukemia - ClinicalTrials Available from: . https://clinicaltrials.gov/ct2/show/NCT00709215
[53]
Makar, S.; Saha, T.; Swetha, R.; Gutti, G.; Kumar, A.; Singh, S.K. Rational approaches of drug design for the development of selective estrogen receptor modulators (SERMs), implicated in breast cancer. In: Bioorganic Chemistry; Academic Press Inc., 2020; 94, p. 103380..
[54]
Hung, C.L.; Chen, C.C. Computational approaches for drug discovery. Drug Development Research,, 2014, 75, 412-418.
[55]
Prediction of potential inhibitors for RNA-dependent RNA polymerase of SARS-CoV-2 using comprehensive drug repurposing and molecular docking approach. Int. J. Biol. Macromol., 2020, 163, 1787-1797.
[56]
Ahmad, J.; Ikram, S.; Ahmad, F.; Rehman, I.U.; Mushtaq, M. SARS-CoV-2 RNA Dependent RNA polymerase (RdRp) - A drug repurposing study. Heliyon, 2020, 6(7)e04502
[http://dx.doi.org/10.1016/j.heliyon.2020.e04502] [PMID: 32754651]
[57]
Low, Z.Y.; Farouk, I.A.; Lal, S.K. Drug repositioning: New approaches and future prospects for life-debilitating diseases and the COVID-19 pandemic outbreak. Viruses, 2020, 12(9), 1058.
[http://dx.doi.org/10.3390/v12091058] [PMID: 32972027]
[58]
Elfiky, A.A. SARS-CoV-2 RNA dependent RNA polymerase (RdRp) targeting: An in silico perspective. J. Biomol. Struct. Dyn., 2020, 39(9), 3204-3212.
[http://dx.doi.org/10.1080/07391102.2020.1761882] [PMID: 32338164]
[59]
Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H TheProtein Data Bank, 2000.235-42. Available from: . https://pubmed.ncbi.nlm.nih.gov/10592235/
[60]
DeLano, W.L. The PyMOL Molecular Graphics System; Delano Scientific: San Carlos, 2020.
[61]
Kim, S.; Thiessen, P.A.; Bolton, E.E.; Chen, J.; Fu, G.; Gindulyte, A.; Han, L.; He, J.; He, S.; Shoemaker, B.A.; Wang, J.; Yu, B.; Zhang, J.; Bryant, S.H. PubChem substance and compound databases. Nucleic Acids Res., 2016, 44(D1), D1202-D1213.
[http://dx.doi.org/10.1093/nar/gkv951] [PMID: 26400175]
[62]
O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: An open chemical toolbox. J. Cheminform., 2011, 3(10), 33.
[http://dx.doi.org/10.1186/1758-2946-3-33] [PMID: 21982300]
[63]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[64]
Banerjee, P.; Eckert, A.O.; Schrey, A.K.; Preissner, R. ProTox-II: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Res., 2018, 46(W1), W257-W263.
[http://dx.doi.org/10.1093/nar/gky318] [PMID: 29718510]
[65]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2009, 31(2), 455-461.
[http://dx.doi.org/10.1002/jcc.21334] [PMID: 19499576]
[66]
Desmond Molecular Dynamics System, D.E. MaestroDesmond Interoperability Tools; Schrödinger: New York, 2020.
[67]
Harder, E.; Damm, W.; Maple, J.; Wu, C.; Reboul, M.; Xiang, J.Y.; Wang, L.; Lupyan, D.; Dahlgren, M.K.; Knight, J.L.; Kaus, J.W.; Cerutti, D.S.; Krilov, G.; Jorgensen, W.L.; Abel, R.; Friesner, R.A. OPLS3: A force field providing broad coverage of drug-like small molecules and proteins. J. Chem. Theory Comput., 2016, 12(1), 281-296.
[http://dx.doi.org/10.1021/acs.jctc.5b00864] [PMID: 26584231]
[68]
D. J. Evans BLH. The Nose-Hoover thermostat. J. Chem. Phys., 1985, 83(8), 4069-4074.
[http://dx.doi.org/10.1063/1.449071]
[69]
Xue, L.C.; Rodrigues, J.P.; Kastritis, P.L.; Bonvin, A.M.; Vangone, A. PRODIGY: A web server for predicting the binding affinity of protein-protein complexes. Bioinformatics, 2016, 32(23), 3676-3678.
[http://dx.doi.org/10.1093/bioinformatics/btw514] [PMID: 27503228]
[70]
Vangone, A.; Bonvin, A. PRODIGY: A Contact-based Predictor of Binding Affinity in Protein-protein Complexes. Bio Protoc., 2017, 7(3)
[http://dx.doi.org/10.21769/BioProtoc.2124]
[71]
Subissi, L.; Posthuma, C.C.; Collet, A.; Zevenhoven-Dobbe, J.C.; Gorbalenya, A.E.; Decroly, E.; Snijder, E.J.; Canard, B.; Imbert, I. One severe acute respiratory syndrome coronavirus protein complex integrates processive RNA polymerase and exonuclease activities. Proc. Natl. Acad. Sci. USA, 2014, 111(37), E3900-E3909.
[http://dx.doi.org/10.1073/pnas.1323705111] [PMID: 25197083]
[72]
Koulgi, S.; Jani, V.; Uppuladinne, V.N.M.; Sonavane, U.; Joshi, R. Natural plant products as potential inhibitors of RNA dependent RNA polymerase of Severe Acute Respiratory Syndrome Coronavirus-2. PLoS One, 2021, 16(5)e0251801
[http://dx.doi.org/10.1371/journal.pone.0251801] [PMID: 33984041]

© 2024 Bentham Science Publishers | Privacy Policy