Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Review Article

An Overview of 7α- and 7β-Hydroxysteroid Dehydrogenases: Structure, Specificity and Practical Application

Author(s): Deshuai Lou, Xi Liu and Jun Tan*

Volume 28, Issue 11, 2021

Published on: 16 August, 2021

Page: [1206 - 1219] Pages: 14

DOI: 10.2174/0929866528666210816114032

Price: $65

Abstract

7α-Hydroxysteroid dehydrogenase and 7β-hydroxysteroid dehydrogenase are key enzymes involved in bile acid metabolism. They catalyze the epimerization of a hydroxyl group through 7-keto bile acid intermediates. Basic research of the two enzymes has focused on exploring new enzymes and the structure-function relationship. The application research focused on the in vitro biosynthesis of bile acid drugs and the exploration and improvement of their catalytic ability based on molecular engineering. This article summarized the primary and advanced structural characteristics, specificities, biochemical properties, and applications of the two enzymes. The emphasis is also given to obtaining novel 7α-hydroxysteroid dehydrogenase and 7β-hydroxysteroid dehydrogenase that are thermally stable and active in the presence of organic solvents, high substrate concentration, and extreme pH values. To achieve these goals, enzyme redesigning based on protein engineering and genomics may be the most useful approaches.

Keywords: 7α-hydroxysteroid dehydrogenase, 7β-hydroxysteroid dehydrogenase, short-chain dehydrogenase/reductase, substrate specificity, coenzyme specificity, stereoselectivity, protein engineering.

Graphical Abstract
[1]
Younus, H. Oxidoreductases: Overview and practical applications. Biocatalysis, 2019, 39-55.
[2]
Zhang, H.; Yun, J.; Zabed, H.; Yang, M.; Zhang, G.; Qi, Y.; Guo, Q.; Qi, X. Production of xylitol by expressing xylitol dehydrogenase and alcohol dehydrogenase from Gluconobacter thailandicus and co-biotransformation of whole cells. Bioresour. Technol., 2018, 257, 223-228.
[http://dx.doi.org/10.1016/j.biortech.2018.02.095] [PMID: 29505981]
[3]
Zhang, H-L.; Zhang, C.; Han, M-N.; Pei, C-H.; Xu, Z-D.; Li, W.J.G.C. Efficient biosynthesis of enantiopure tolvaptan by utilizing alcohol dehydrogenase-catalyzed enantioselective reduction. Green Chem., 2018, 20(6), 1224-1227.
[http://dx.doi.org/10.1039/C7GC03679E]
[4]
Ferrandi, E.E.; Bertuletti, S.; Monti, D.; Riva, S. Hydroxysteroid dehydrogenases: An ongoing story. Eur. J. Org. Chem., 2020, 29, 4463-4473.
[http://dx.doi.org/10.1002/ejoc.202000192]
[5]
Hylemon, P.B.; Harris, S.C.; Ridlon, J.M. Metabolism of hydrogen gases and bile acids in the gut microbiome. FEBS Lett., 2018, 592(12), 2070-2082.
[http://dx.doi.org/10.1002/1873-3468.13064] [PMID: 29683480]
[6]
Winston, J.A.; Theriot, C.M. Diversification of host bile acids by members of the gut microbiota. Gut Microbes, 2020, 11(2), 158-171.
[http://dx.doi.org/10.1080/19490976.2019.1674124] [PMID: 31595814]
[7]
Doden, H.L.; Wolf, P.G.; Gaskins, H.R.; Anantharaman, K.; Alves, J.M.P.; Ridlon, J.M. Completion of the gut microbial epi-bile acid pathway. Gut Microbes, 2021, 13(1), 1-20.
[http://dx.doi.org/10.1080/19490976.2021.1907271] [PMID: 33938389]
[8]
Marion, S.; Desharnais, L.; Studer, N.; Dong, Y.; Notter, M.D.; Poudel, S.; Menin, L.; Janowczyk, A.; Hettich, R.L.; Hapfelmeier, S.; Bernier-Latmani, R. Biogeography of microbial bile acid transformations along the murine gut. J. Lipid Res., 2020, 61(11), 1450-1463.
[http://dx.doi.org/10.1194/jlr.RA120001021] [PMID: 32661017]
[9]
Masuda, N.; Oda, H.; Tanaka, H. Purification and characterization of NADP-dependent 7 beta-hydroxysteroid dehydrogenase from Peptostreptococcus productus strain b-52. Biochim. Biophys. Acta, 1983, 755(1), 65-69.
[http://dx.doi.org/10.1016/0304-4165(83)90273-8] [PMID: 6572075]
[10]
Prabha, V.; Gupta, M.; Gupta, K.G. Kinetic properties of 7 alpha-hydroxysteroid dehydrogenase from Escherichia coli 080. Can. J. Microbiol., 1989, 35(12), 1076-1080.
[http://dx.doi.org/10.1139/m89-180] [PMID: 2698265]
[11]
Macdonald, I.A.; Hutchison, D.M.; Forrest, T.P. Formation of urso- and ursodeoxy-cholic acids from primary bile acids by Clostridium absonum. J. Lipid Res., 1981, 22(3), 458-466.
[http://dx.doi.org/10.1016/S0022-2275(20)34960-9] [PMID: 6940948]
[12]
Macdonald, I.A.; Williams, C.N.; Mahony, D.E. A 3 alpha- and 7 alpha-hydroxysteroid dehydrogenase assay for conjugated dihydroxy-bile acid mixtures. Anal. Biochem., 1974, 57(1), 127-136.
[http://dx.doi.org/10.1016/0003-2697(74)90059-1] [PMID: 4593931]
[13]
Hylemon, P.B.; Sherrod, J.A. Multiple forms of 7-alpha-hydroxysteroid dehydrogenase in selected strains of Bacteroides fragilis. J. Bacteriol., 1975, 122(2), 418-424.
[http://dx.doi.org/10.1128/jb.122.2.418-424.1975] [PMID: 236279]
[14]
Macdonald, I.A.; Meier, E.C.; Mahony, D.E.; Costain, G.A. 3alpha-, 7alpha- and 12alpha-hydroxysteroid dehydrogenase activities from Clostridium perfringens. Biochim. Biophys. Acta, 1976, 450(2), 142-153.
[http://dx.doi.org/10.1016/0005-2760(76)90086-2] [PMID: 10985]
[15]
Sherrod, J.A.; Hylemon, P.B. Partial purification and characterization of NAD-dependent 7alpha-hydroxysteroid dehydrogenase from Bacteroides thetaiotaomicron. Biochim. Biophys. Acta, 1977, 486(2), 351-358.
[http://dx.doi.org/10.1016/0005-2760(77)90031-5] [PMID: 189820]
[16]
Pedrini, P.; Andreotti, E.; Guerrini, A.; Dean, M.; Fantin, G.; Giovannini, P.P. Xanthomonas maltophilia CBS 897.97 as a source of new 7beta- and 7alpha-hydroxysteroid dehydrogenases and cholylglycine hydrolase: improved biotransformations of bile acids. Steroids, 2006, 71(3), 189-198.
[http://dx.doi.org/10.1016/j.steroids.2005.10.002] [PMID: 16307764]
[17]
Skålhegg, B.A.; Fausa, O. Enzymatic Determination of bile acids. the NADP-specific 7alpha-hydroxysteroid dehydrogenase from P. testosteroni (ATCC 11996). Scand. J. Gastroenterol., 1977, 12(4), 433-439.
[http://dx.doi.org/10.3109/00365527709181684] [PMID: 18789]
[18]
Macdonald, I.A.; Mahony, D.E.; Williams, C.N.; Watson, K.F. 12alpha- and 7alpha-hydroxysteroid dehydrogenase activities from Fusobacterium spp. Gen., 1976, 31(1-2), 49-57.
[PMID: 829879]
[19]
MacDonald, I.A.; Rochon, Y.P.; Hutchison, D.M.; Holdeman, L.V. Formation of ursodeoxycholic acid from chenodeoxycholic acid by a 7 beta-hydroxysteroid dehydrogenase-elaborating Eubacterium aerofaciens strain cocultured with 7 alpha-hydroxysteroid dehydrogenase-elaborating organisms. Appl. Environ. Microbiol., 1982, 44(5), 1187-1195.
[http://dx.doi.org/10.1128/aem.44.5.1187-1195.1982] [PMID: 6758698]
[20]
Macdonald, I.A.; White, B.A.; Hylemon, P.B. Separation of 7 alpha- and 7 beta-hydroxysteroid dehydrogenase activities from clostridium absonum ATCC# 27555 and cellular response of this organism to bile acid inducers. J. Lipid Res., 1983, 24(9), 1119-1126.
[http://dx.doi.org/10.1016/S0022-2275(20)37894-9] [PMID: 6579144]
[21]
Akao, T.; Akao, T.; Kobashi, K. Purification and characterization of 7 beta-hydroxysteroid dehydrogenase from Ruminococcus sp. of human intestine. J. Biochem., 1987, 102(3), 613-619.
[http://dx.doi.org/10.1093/oxfordjournals.jbchem.a122095] [PMID: 3480890]
[22]
Edenharder, R.; Pfützner, A.; Hammann, R. Characterization of NAD-dependent 3 alpha- and 3 beta-hydroxysteroid dehydrogenase and of NADP-dependent 7 beta-hydroxysteroid dehydrogenase from Peptostreptococcus productus. Biochim. Biophys. Acta, 1989, 1004(2), 230-238.
[http://dx.doi.org/10.1016/0005-2760(89)90272-5] [PMID: 2752021]
[23]
Hirano, S.; Masuda, N. Epimerization of the 7-hydroxy group of bile acids by the combination of two kinds of microorganisms with 7 alpha- and 7 beta-hydroxysteroid dehydrogenase activity, respectively. J. Lipid Res., 1981, 22(7), 1060-1068.
[http://dx.doi.org/10.1016/S0022-2275(20)40663-7] [PMID: 6946176]
[24]
Yoshimoto, T.; Higashi, H.; Kanatani, A.; Lin, X.S.; Nagai, H.; Oyama, H.; Kurazono, K.; Tsuru, D. Cloning and sequencing of the 7 alpha-hydroxysteroid dehydrogenase gene from Escherichia coli HB101 and characterization of the expressed enzyme. J. Bacteriol., 1991, 173(7), 2173-2179.
[http://dx.doi.org/10.1128/jb.173.7.2173-2179.1991] [PMID: 2007545]
[25]
Coleman, J.P.; Hudson, L.L.; Adams, M.J. Characterization and regulation of the NADP-linked 7 alpha-hydroxysteroid dehydrogenase gene from Clostridium sordellii. J. Bacteriol., 1994, 176(16), 4865-4874.
[http://dx.doi.org/10.1128/jb.176.16.4865-4874.1994] [PMID: 8050999]
[26]
Baron, S.F.; Franklund, C.V.; Hylemon, P.B. Cloning, sequencing, and expression of the gene coding for bile acid 7 alpha-hydroxysteroid dehydrogenase from Eubacterium sp. strain VPI 12708. J. Bacteriol., 1991, 173(15), 4558-4569.
[http://dx.doi.org/10.1128/jb.173.15.4558-4569.1991] [PMID: 1856160]
[27]
Bennett, M.J.; McKnight, S.L.; Coleman, J.P. Cloning and characterization of the NAD-dependent 7alpha-Hydroxysteroid dehydrogenase from Bacteroides fragilis. Curr. Microbiol., 2003, 47(6), 475-484.
[http://dx.doi.org/10.1007/s00284-003-4079-4] [PMID: 14756531]
[28]
Ferrandi, E.E.; Bertolesi, G.M.; Polentini, F.; Negri, A.; Riva, S.; Monti, D. In search of sustainable chemical processes: cloning, recombinant expression, and functional characterization of the 7α- and 7β-hydroxysteroid dehydrogenases from Clostridium absonum. Appl. Microbiol. Biotechnol., 2012, 95(5), 1221-1233.
[http://dx.doi.org/10.1007/s00253-011-3798-x] [PMID: 22198717]
[29]
Ji, W.; Chen, Y.; Zhang, H.; Zhang, X.; Li, Z.; Yu, Y. Cloning, expression and characterization of a putative 7alpha-hydroxysteroid dehydrogenase in Comamonas testosteroni. Microbiol. Res., 2014, 169(2-3), 148-154.
[http://dx.doi.org/10.1016/j.micres.2013.07.009] [PMID: 23972763]
[30]
Bakonyi, D.; Hummel, W. Cloning, expression, and biochemical characterization of a novel NADP+-dependent 7α-hydroxysteroid dehydrogenase from Clostridium difficile and its application for the oxidation of bile acids. Enzyme Microb. Technol., 2017, 99, 16-24.
[http://dx.doi.org/10.1016/j.enzmictec.2016.12.006] [PMID: 28193327]
[31]
Liu, L.; Aigner, A.; Schmid, R.D. Identification, cloning, heterologous expression, and characterization of a NADPH-dependent 7β-hydroxysteroid dehydrogenase from Collinsella aerofaciens. Appl. Microbiol. Biotechnol., 2011, 90(1), 127-135.
[http://dx.doi.org/10.1007/s00253-010-3052-y] [PMID: 21181147]
[32]
Lee, J.Y.; Arai, H.; Nakamura, Y.; Fukiya, S.; Wada, M.; Yokota, A. Contribution of the 7β-hydroxysteroid dehydrogenase from Ruminococcus gnavus N53 to ursodeoxycholic acid formation in the human colon. J. Lipid Res., 2013, 54(11), 3062-3069.
[http://dx.doi.org/10.1194/jlr.M039834] [PMID: 23729502]
[33]
Zheng, M.M.; Wang, R.F.; Li, C.X.; Xu, J.H. Two-step enzymatic synthesis of ursodeoxycholic acid with a new 7β-hydroxysteroid dehydrogenase from Ruminococcus torques. Process Biochem., 2015, 50(4), 598-604.
[http://dx.doi.org/10.1016/j.procbio.2014.12.026]
[34]
Song, C.; Wang, B.; Tan, J.; Zhu, L.; Lou, D. Discovery of tauroursodeoxycholic acid biotransformation enzymes from the gut microbiome of black bears using metagenomics. Sci. Rep., 2017, 7(1), 45495.
[http://dx.doi.org/10.1038/srep45495] [PMID: 28436439]
[35]
Persson, B.; Kallberg, Y. Classification and nomenclature of the superfamily of short-chain dehydrogenases/reductases (SDRs). Chem. Biol. Interact., 2013, 202(1-3), 111-115.
[http://dx.doi.org/10.1016/j.cbi.2012.11.009] [PMID: 23200746]
[36]
Yang, F.; Yang, J.; Zhang, X.; Chen, L.; Jiang, Y.; Yan, Y.; Tang, X.; Wang, J.; Xiong, Z.; Dong, J.; Xue, Y.; Zhu, Y.; Xu, X.; Sun, L.; Chen, S.; Nie, H.; Peng, J.; Xu, J.; Wang, Y.; Yuan, Z.; Wen, Y.; Yao, Z.; Shen, Y.; Qiang, B.; Hou, Y.; Yu, J.; Jin, Q. Genome dynamics and diversity of Shigella species, the etiologic agents of bacillary dysentery. Nucleic Acids Res., 2005, 33(19), 6445-6458.
[http://dx.doi.org/10.1093/nar/gki954] [PMID: 16275786]
[37]
Persson, B.; Kallberg, Y.; Bray, J.E.; Bruford, E.; Dellaporta, S.L.; Favia, A.D.; Duarte, R.G.; Jörnvall, H.; Kavanagh, K.L.; Kedishvili, N.; Kisiela, M.; Maser, E.; Mindnich, R.; Orchard, S.; Penning, T.M.; Thornton, J.M.; Adamski, J.; Oppermann, U. The SDR (short-chain dehydrogenase/reductase and related enzymes) nomenclature initiative. Chem. Biol. Interact., 2009, 178(1-3), 94-98.
[http://dx.doi.org/10.1016/j.cbi.2008.10.040] [PMID: 19027726]
[38]
Hwang, C.C.; Chang, Y.H.; Hsu, C.N.; Hsu, H.H.; Li, C.W.; Pon, H.I. Mechanistic roles of Ser-114, Tyr-155, and Lys-159 in 3alpha-hydroxysteroid dehydrogenase/carbonyl reductase from Comamonas testosteroni. J. Biol. Chem., 2005, 280(5), 3522-3528.
[http://dx.doi.org/10.1074/jbc.M411751200] [PMID: 15572373]
[39]
Bennett, M.J.; Albert, R.H.; Jez, J.M.; Ma, H.; Penning, T.M.; Lewis, M. Steroid recognition and regulation of hormone action: crystal structure of testosterone and NADP+ bound to 3 alpha-hydroxysteroid/dihydrodiol dehydrogenase. Structure, 1997, 5(6), 799-812.
[http://dx.doi.org/10.1016/S0969-2126(97)00234-7] [PMID: 9261071]
[40]
Grimm, C.; Maser, E.; Möbus, E.; Klebe, G.; Reuter, K.; Ficner, R. The crystal structure of 3alpha -hydroxysteroid dehydrogenase/carbonyl reductase from Comamonas testosteroni shows a novel oligomerization pattern within the short chain dehydrogenase/reductase family. J. Biol. Chem., 2000, 275(52), 41333-41339.
[http://dx.doi.org/10.1074/jbc.M007559200] [PMID: 11007791]
[41]
Dhagat, U.; Carbone, V.; Chung, R.P.; Schulze-Briese, C.; Endo, S.; Hara, A.; El-Kabbani, O. Structure of 3(17)alpha-hydroxysteroid dehydrogenase (AKR1C21) holoenzyme from an orthorhombic crystal form: an insight into the bifunctionality of the enzyme. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun., 2007, 63(Pt 10), 825-830.
[http://dx.doi.org/10.1107/S1744309107040985] [PMID: 17909281]
[42]
Benach, J.; Filling, C.; Oppermann, U.C.; Roversi, P.; Bricogne, G.; Berndt, K.D.; Jörnvall, H.; Ladenstein, R. Structure of bacterial 3beta/17beta-hydroxysteroid dehydrogenase at 1.2 A resolution: a model for multiple steroid recognition. Biochemistry, 2002, 41(50), 14659-14668.
[http://dx.doi.org/10.1021/bi0203684] [PMID: 12475215]
[43]
Ghosh, D.; Wawrzak, Z.; Weeks, C.M.; Duax, W.L.; Erman, M. The refined three-dimensional structure of 3 alpha,20 beta-hydroxysteroid dehydrogenase and possible roles of the residues conserved in short-chain dehydrogenases. Structure, 1994, 2(7), 629-640.
[http://dx.doi.org/10.1016/S0969-2126(00)00064-2] [PMID: 7922040]
[44]
Tanaka, N.; Nonaka, T.; Tanabe, T.; Yoshimoto, T.; Tsuru, D.; Mitsui, Y. Crystal structures of the binary and ternary complexes of 7 alpha-hydroxysteroid dehydrogenase from Escherichia coli. Biochemistry, 1996, 35(24), 7715-7730.
[http://dx.doi.org/10.1021/bi951904d] [PMID: 8672472]
[45]
Wang, R.; Wu, J.; Jin, D.K.; Chen, Y.; Lv, Z.; Chen, Q.; Miao, Q.; Huo, X.; Wang, F. Structure of NADP+-bound 7β-hydroxysteroid dehydrogenase reveals two cofactor-binding modes. Acta Crystallogr. F Struct. Biol. Commun., 2017, 73(Pt 5), 246-252.
[http://dx.doi.org/10.1107/S2053230X17004460] [PMID: 28471355]
[46]
Hosfield, D.J.; Wu, Y.; Skene, R.J.; Hilgers, M.; Jennings, A.; Snell, G.P.; Aertgeerts, K. Conformational flexibility in crystal structures of human 11beta-hydroxysteroid dehydrogenase type I provide insights into glucocorticoid interconversion and enzyme regulation. J. Biol. Chem., 2005, 280(6), 4639-4648.
[http://dx.doi.org/10.1074/jbc.M411104200] [PMID: 15513927]
[47]
Ogg, D.; Elleby, B.; Norström, C.; Stefansson, K.; Abrahmsén, L.; Oppermann, U.; Svensson, S. The crystal structure of guinea pig 11beta-hydroxysteroid dehydrogenase type 1 provides a model for enzyme-lipid bilayer interactions. J. Biol. Chem., 2005, 280(5), 3789-3794.
[http://dx.doi.org/10.1074/jbc.M412463200] [PMID: 15542590]
[48]
Zhang, J.; Osslund, T.D.; Plant, M.H.; Clogston, C.L.; Nybo, R.E.; Xiong, F.; Delaney, J.M.; Jordan, S.R. Crystal structure of murine 11 beta-hydroxysteroid dehydrogenase 1: An important therapeutic target for diabetes. Biochem., 2005, 44(18), 6948-6957.
[http://dx.doi.org/10.1021/bi047599q] [PMID: 15865440]
[49]
Azzi, A.; Rehse, P.H.; Zhu, D.W.; Campbell, R.L.; Labrie, F.; Lin, S.X. Crystal structure of human estrogenic 17 beta-hydroxysteroid dehydrogenase complexed with 17 beta-estradiol. Nat. Struct. Biol., 1996, 3(8), 665-668.
[http://dx.doi.org/10.1038/nsb0896-665] [PMID: 8756321]
[50]
Zhu, D.W.; Campbell, R.; Labrie, F.; Lin, S.X. Crystallization and preliminary crystal structure of the complex of 17beta-hydroxysteroid dehydrogenase with a dual-site inhibitor. J. Steroid Biochem. Mol. Biol., 1999, 70(4-6), 229-235.
[http://dx.doi.org/10.1016/S0960-0760(99)00111-9] [PMID: 10622412]
[51]
Faucher, F.; Pereira de Jésus-Tran, K.; Cantin, L.; Luu-The, V.; Labrie, F.; Breton, R. Crystal structures of mouse 17alpha-hydroxysteroid dehydrogenase (apoenzyme and enzyme-NADP(H) binary complex): identification of molecular determinants responsible for the unique 17alpha-reductive activity of this enzyme. J. Mol. Biol., 2006, 364(4), 747-763.
[http://dx.doi.org/10.1016/j.jmb.2006.09.030] [PMID: 17034817]
[52]
Couture, J.F.; Legrand, P.; Cantin, L.; Luu-The, V.; Labrie, F.; Breton, R. Human 20alpha-hydroxysteroid dehydrogenase: crystallographic and site-directed mutagenesis studies lead to the identification of an alternative binding site for C21-steroids. J. Mol. Biol., 2003, 331(3), 593-604.
[http://dx.doi.org/10.1016/S0022-2836(03)00762-9] [PMID: 12899831]
[53]
Ghosh, D.; Sawicki, M.; Pletnev, V.; Erman, M.; Ohno, S.; Nakajin, S.; Duax, W.L. Porcine carbonyl reductase. structural basis for a functional monomer in short chain dehydrogenases/reductases. J. Biol. Chem., 2001, 276(21), 18457-18463.
[http://dx.doi.org/10.1074/jbc.M100538200] [PMID: 11279087]
[54]
Penning, T.M.; Bennett, M.J.; Smith-Hoog, S.; Schlegel, B.P.; Jez, J.M.; Lewis, M. Structure and function of 3 alpha-hydroxysteroid dehydrogenase. Steroids, 1997, 62(1), 101-111.
[http://dx.doi.org/10.1016/S0039-128X(96)00167-5] [PMID: 9029723]
[55]
Nahoum, V.; Gangloff, A.; Legrand, P.; Zhu, D-W.; Cantin, L.; Zhorov, B.S.; Luu-The, V.; Labrie, F.; Breton, R.; Lin, S.X. Structure of the human 3α-hydroxysteroid dehydrogenase type 3 in complex with testosterone and NADP at 1.25-A resolution. J. Biol. Chem., 2001, 276(45), 42091-42098.
[http://dx.doi.org/10.1074/jbc.M105610200] [PMID: 11514561]
[56]
Penning, T.M. The aldo-keto reductases (AKRs): Overview. Chem. Biol. Interact., 2015, 234, 236-246.
[http://dx.doi.org/10.1016/j.cbi.2014.09.024] [PMID: 25304492]
[57]
Oppermann, U.; Filling, C.; Hult, M.; Shafqat, N.; Wu, X.; Lindh, M.; Shafqat, J.; Nordling, E.; Kallberg, Y.; Persson, B.; Jörnvall, H. Short-chain dehydrogenases/reductases (SDR): the 2002 update. Chem. Biol. Interact., 2003, 143-144, 247-253.
[http://dx.doi.org/10.1016/S0009-2797(02)00164-3] [PMID: 12604210]
[58]
Son, M.; Bang, W.Y.; Park, C.; Lee, Y.; Kwon, S.G.; Kim, S.W.; Kim, C.W.; Lee, K.W. Functional mechanism of C-terminal tail in the enzymatic role of porcine testicular carbonyl reductase: a combined experiment and molecular dynamics simulation study of the C-terminal tail in the enzymatic role of PTCR. PLoS One, 2014, 9(3), e90712.
[http://dx.doi.org/10.1371/journal.pone.0090712] [PMID: 24646606]
[59]
Nobeli, I.; Favia, A.D.; Thornton, J.M. Protein promiscuity and its implications for biotechnology. Nat. Biotechnol., 2009, 27(2), 157-167.
[http://dx.doi.org/10.1038/nbt1519] [PMID: 19204698]
[60]
Chen, W.; Yao, J.; Meng, J.; Han, W.; Tao, Y.; Chen, Y.; Guo, Y.; Shi, G.; He, Y.; Jin, J.M.; Tang, S.Y. Promiscuous enzymatic activity-aided multiple-pathway network design for metabolic flux rearrangement in hydroxytyrosol biosynthesis. Nat. Commun., 2019, 10(1), 960.
[http://dx.doi.org/10.1038/s41467-019-08781-2] [PMID: 30814511]
[61]
Nath, A.; Atkins, W.M. A quantitative index of substrate promiscuity. Biochem., 2008, 47(1), 157-166.
[http://dx.doi.org/10.1021/bi701448p] [PMID: 18081310]
[62]
Zhu, D.; Stearns, J.E.; Ramirez, M.; Hua, L. Enzymatic enantioselective reduction of α-ketoesters by a thermostable 7α-hydroxysteroid dehydrogenase from Bacteroides fragilis. Tetrahedron, 2006, 62(18), 4535-4539.
[http://dx.doi.org/10.1016/j.tet.2006.02.041]
[63]
Liu, Y.; Lv, T.; Ren, J.; Wang, M.; Wu, Q.; Zhu, D. The catalytic promiscuity of a microbial 7α-hydroxysteroid dehydrogenase. Reduction of non-steroidal carbonyl compounds. Steroids, 2011, 76(10-11), 1136-1140.
[http://dx.doi.org/10.1016/j.steroids.2011.05.001] [PMID: 21600233]
[64]
Ji, Q.Z.; Tan, J.; Zhu, L.C.; Lou, D.S.; Wang, B.C. Preparing tauroursodeoxycholic acid (TUDCA) using a double-enzyme-coupled system. Biochem. Eng. J., 2016, 105, 1-9.
[http://dx.doi.org/10.1016/j.bej.2015.08.005]
[65]
Bertuletti, S.; Ferrandi, E.E.; Marzorati, S.; Vanoni, M.; Riva, S.; Monti, D. Insights into the substrate promiscuity of novel hydroxysteroid dehydrogenases. Adv. Synth. Catal., 2020, 362(12), 2474-2485.
[http://dx.doi.org/10.1002/adsc.202000120]
[66]
Wu, S.; Snajdrova, R.; Moore, J.C.; Baldenius, K.; Bornscheuer, U.T. Biocatalysis: enzymatic synthesis for industrial applications. Angew. Chem. Int. Ed. Engl., 2021, 60(1), 88-119.
[http://dx.doi.org/10.1002/anie.202006648] [PMID: 32558088]
[67]
Adams, J.P.; Brown, M.J.B.; Diaz-Rodriguez, A.; Lloyd, R.C.; Roiban, G-D. Biocatalysis: a pharma perspective. Adv. Synth. Catal., 2019, 361(11), 2421-2432.
[68]
Gao, M.; Nie, K.; Qin, M.; Xu, H.; Wang, F.; Liu, L. Molecular mechanism study on stereo-selectivity of α or β hydroxysteroid dehydrogenases. Crystals (Basel), 2021, 11(3), 224.
[http://dx.doi.org/10.3390/cryst11030224]
[69]
Nealon, C.M.; Musa, M.M.; Patel, J.M.; Phillips, R.S. Controlling substrate specificity and stereospecificity of alcohol dehydrogenases. ACS Catal., 2015, 5(4), 2100-2114.
[http://dx.doi.org/10.1021/cs501457v]
[70]
Nakajima, K.; Yamashita, A.; Akama, H.; Nakatsu, T.; Kato, H.; Hashimoto, T.; Oda, J.; Yamada, Y. Crystal structures of two tropinone reductases: different reaction stereospecificities in the same protein fold. Proc. Natl. Acad. Sci. USA, 1998, 95(9), 4876-4881.
[http://dx.doi.org/10.1073/pnas.95.9.4876] [PMID: 9560196]
[71]
Qin, F.; Qin, B.; Zhang, W.; Liu, Y.; Su, X.; Zhu, T.; Ouyang, J.; Guo, J.; Li, Y.; Zhang, F. Discovery of a switch between Prelog and anti-Prelog reduction toward halogen-substituted acetophenones in short-chain dehydrogenase/reductases. ACS Catal., 2018, 8(7), 6012-6020.
[http://dx.doi.org/10.1021/acscatal.8b00807]
[72]
Sellés Vidal, L.; Kelly, C.L.; Mordaka, P.M.; Heap, J.T. Review of NAD(P)H-dependent oxidoreductases: Properties, engineering and application. Biochim. Biophys. Acta. Proteins Proteomics, 2018, 1866(2), 327-347.
[http://dx.doi.org/10.1016/j.bbapap.2017.11.005] [PMID: 29129662]
[73]
Peracchi, A. The limits of enzyme specificity and the evolution of metabolism. Trends Biochem. Sci., 2018, 43(12), 984-996.
[http://dx.doi.org/10.1016/j.tibs.2018.09.015] [PMID: 30472990]
[74]
Goodman, R.P.; Calvo, S.E.; Mootha, V.K. Spatiotemporal compartmentalization of hepatic NADH and NADPH metabolism. J. Biol. Chem., 2018, 293(20), 7508-7516.
[http://dx.doi.org/10.1074/jbc.TM117.000258] [PMID: 29514978]
[75]
Chánique, A.M.; Parra, L.P. Protein engineering for nicotinamide coenzyme specificity in oxidoreductases: attempts and challenges. Front. Microbiol., 2018, 9, 194.
[http://dx.doi.org/10.3389/fmicb.2018.00194] [PMID: 29491854]
[76]
Li, F.L.; Zhou, Q.; Wei, W.; Gao, J.; Zhang, Y.W. Switching the substrate specificity from NADH to NADPH by a single mutation of NADH oxidase from Lactobacillus rhamnosus. Int. J. Biol. Macromol., 2019, 135, 328-336.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.05.146] [PMID: 31128193]
[77]
Watanabe, S.; Kodaki, T.; Makino, K. Complete reversal of coenzyme specificity of xylitol dehydrogenase and increase of thermostability by the introduction of structural zinc. J. Biol. Chem., 2005, 280(11), 10340-10349.
[http://dx.doi.org/10.1074/jbc.M409443200] [PMID: 15623532]
[78]
Cui, D.; Zhang, L.; Yao, Z.; Liu, X.; Lin, J.; Yuan, Y.A.; Wei, D. Computational design of short-chain dehydrogenase Gox2181 for altered coenzyme specificity. J. Biotechnol., 2013, 167(4), 386-392.
[http://dx.doi.org/10.1016/j.jbiotec.2013.07.029] [PMID: 23916946]
[79]
Lou, D.; Wang, B.; Tan, J.; Zhu, L.; Cen, X.; Ji, Q.; Wang, Y. The three-dimensional structure of Clostridium absonum 7α-hydroxysteroid dehydrogenase: New insights into the conserved arginines for NADP(H) recognition. Sci. Rep., 2016, 6, 22885.
[http://dx.doi.org/10.1038/srep22885] [PMID: 26961171]
[80]
Lou, D.; Wang, B.; Tan, J.; Zhu, L. Carboxyl-terminal and Arg38 are essential for activity of the 7α-hydroxysteroid dehydrogenase from Clostridium absonum. Protein Pept. Lett., 2014, 21(9), 894-900.
[http://dx.doi.org/10.2174/0929866521666140507160050] [PMID: 24810359]
[81]
Lou, D.; Wang, Y.; Tan, J.; Zhu, L.; Ji, S.; Wang, B. Functional contribution of coenzyme specificity-determining sites of 7α-hydroxysteroid dehydrogenase from Clostridium absonum. Comput. Biol. Chem., 2017, 70, 89-95.
[http://dx.doi.org/10.1016/j.compbiolchem.2017.08.004] [PMID: 28826103]
[82]
You, Z-N.; Chen, Q.; Shi, S-C.; Zheng, M-M.; Pan, J.; Qian, X-L.; Li, C-X.; Xu, J-H. Switching cofactor dependence of 7β-hydroxysteroid dehydrogenase for cost-effective production of ursodeoxycholic acid. ACS Catal., 2018, 9(1), 466-473.
[http://dx.doi.org/10.1021/acscatal.8b03561]
[83]
Feller, G.; Gerday, C. Psychrophilic enzymes: hot topics in cold adaptation. Nat. Rev. Microbiol., 2003, 1(3), 200-208.
[http://dx.doi.org/10.1038/nrmicro773] [PMID: 15035024]
[84]
Pischedda, A.; Ramasamy, K.P.; Mangiagalli, M.; Chiappori, F.; Milanesi, L.; Miceli, C.; Pucciarelli, S.; Lotti, M. Antarctic marine ciliates under stress: superoxide dismutases from the psychrophilic Euplotes focardii are cold-active yet heat tolerant enzymes. Sci. Rep., 2018, 8(1), 14721.
[http://dx.doi.org/10.1038/s41598-018-33127-1] [PMID: 30283056]
[85]
Santiago, M.; Ramírez-Sarmiento, C.A.; Zamora, R.A.; Parra, L.P. Discovery, molecular mechanisms, and industrial applications of cold-active enzymes. Front. Microbiol., 2016, 7, 1408.
[http://dx.doi.org/10.3389/fmicb.2016.01408] [PMID: 27667987]
[86]
Niehaus, F.; Bertoldo, C.; Kähler, M.; Antranikian, G. Extremophiles as a source of novel enzymes for industrial application. Appl. Microbiol. Biotechnol., 1999, 51(6), 711-729.
[http://dx.doi.org/10.1007/s002530051456] [PMID: 10422220]
[87]
Boussau, B.; Blanquart, S.; Necsulea, A.; Lartillot, N.; Gouy, M. Parallel adaptations to high temperatures in the Archaean eon. Nature, 2008, 456(7224), 942-945.
[http://dx.doi.org/10.1038/nature07393] [PMID: 19037246]
[88]
Tang, S.; Pan, Y.; Lou, D.; Ji, S.; Zhu, L.; Tan, J.; Qi, N.; Yang, Q.; Zhang, Z.; Yang, B.; Zhao, W.; Wang, B. Structural and functional characterization of a novel acidophilic 7α-hydroxysteroid dehydrogenase. Protein Sci., 2019, 28(5), 910-919.
[http://dx.doi.org/10.1002/pro.3599] [PMID: 30839141]
[89]
Prasad, M.; Thomas, J.L.; Whittal, R.M.; Bose, H.S. Mitochondrial 3β-hydroxysteroid dehydrogenase enzyme activity requires reversible pH-dependent conformational change at the intermembrane space. J. Biol. Chem., 2012, 287(12), 9534-9546.
[http://dx.doi.org/10.1074/jbc.M111.333278] [PMID: 22262841]
[90]
Mazzei, L.; Cianci, M.; Benini, S.; Ciurli, S. The impact of pH on catalytically critical protein conformational changes: the case of the urease, a nickel enzyme. Chemistry, 2019, 25(52), 12145-12158.
[http://dx.doi.org/10.1002/chem.201902320] [PMID: 31271481]
[91]
Dumorné, K.; Córdova, D.C.; Astorga-Eló, M.; Renganathan, P. Extremozymes: a potential source for industrial applications. J. Microbiol. Biotechnol., 2017, 27(4), 649-659.
[http://dx.doi.org/10.4014/jmb.1611.11006] [PMID: 28104900]
[92]
Ma, C.; Wu, R.; Huang, R.; Jiang, W.; You, C.; Zhu, L.; Zhu, Z. Directed evolution of a 6-phosphogluconate dehydrogenase for operating an enzymatic fuel cell at lowered anodic pHs. J. Electroanal. Chem. (Lausanne Switz.), 2019, 851, 113444.
[http://dx.doi.org/10.1016/j.jelechem.2019.113444]
[93]
Yin, Q.; Zhou, G.; Peng, C.; Zhang, Y.; Kües, U.; Liu, J.; Xiao, Y.; Fang, Z. The first fungal laccase with an alkaline pH optimum obtained by directed evolution and its application in indigo dye decolorization. AMB Express, 2019, 9(1), 151.
[http://dx.doi.org/10.1186/s13568-019-0878-2] [PMID: 31535295]
[94]
Zhao, H. Effect of ions and other compatible solutes on enzyme activity, and its implication for biocatalysis using ionic liquids. J. Mol. Catal., B Enzym., 2005, 37(1-6), 16-25.
[http://dx.doi.org/10.1016/j.molcatb.2005.08.007]
[95]
Corpechot, C. Primary biliary cirrhosis beyond ursodeoxycholic acid. Semin. Liver Dis., 2016, 36(01), 015-026.
[96]
Winston, J.A.; Rivera, A.J.; Cai, J.; Thanissery, R.; Montgomery, S.A.; Patterson, A.D.; Theriot, C.M. Ursodeoxycholic acid (UDCA) mitigates the host inflammatory response during Clostridioides difficile infection by altering gut bile acids. Infect. Immun., 2020, 88(6), e00045-e20.
[http://dx.doi.org/10.1128/IAI.00045-20] [PMID: 32205405]
[97]
Roda, E.; Bazzoli, F.; Labate, A.M.M.; Mazzella, G.; Roda, A.; Sama, C.; Festi, D.; Aldini, R.; Taroni, F.; Barbara, L. Ursodeoxycholic acid vs. chenodeoxycholic acid as cholesterol gallstone-dissolving agents: a comparative randomized study. Hepatology, 1982, 2(6), 804-810.
[http://dx.doi.org/10.1002/hep.1840020611] [PMID: 7141392]
[98]
Pietu, F.; Guillaud, O.; Walter, T.; Vallin, M.; Hervieu, V.; Scoazec, J.Y.; Dumortier, J. Ursodeoxycholic acid with vitamin E in patients with nonalcoholic steatohepatitis: long-term results. Clin. Res. Hepatol. Gastroenterol., 2012, 36(2), 146-155.
[http://dx.doi.org/10.1016/j.clinre.2011.10.011] [PMID: 22154224]
[99]
Winston, J.A.; Rivera, A.; Cai, J.; Patterson, A.D.; Theriot, C.M. Secondary bile acid ursodeoxycholic acid (UDCA) alters weight, the gut microbiota, and the bile acid pool in conventional mice. bioRxiv, 2019, 698795.
[100]
Feng, Y.; Siu, K.; Wang, N.; Ng, K.M.; Tsao, S.W.; Nagamatsu, T.; Tong, Y. Bear bile: dilemma of traditional medicinal use and animal protection. J. Ethnobiol. Ethnomed., 2009, 5(1), 2.
[http://dx.doi.org/10.1186/1746-4269-5-2] [PMID: 19138420]
[101]
Hagey, L.R.; Crombie, D.L.; Espinosa, E.; Carey, M.C.; Igimi, H.; Hofmann, A.F. Ursodeoxycholic acid in the Ursidae: biliary bile acids of bears, pandas, and related carnivores. J. Lipid Res., 1993, 34(11), 1911-1917.
[http://dx.doi.org/10.1016/S0022-2275(20)35109-9] [PMID: 8263415]
[102]
Choi, J.M.; Han, S.S.; Kim, H.S. Industrial applications of enzyme biocatalysis: Current status and future aspects. Biotechnol. Adv., 2015, 33(7), 1443-1454.
[http://dx.doi.org/10.1016/j.biotechadv.2015.02.014] [PMID: 25747291]
[103]
Singh, R.K.; Tiwari, M.K.; Singh, R.; Lee, J.K. From protein engineering to immobilization: promising strategies for the upgrade of industrial enzymes. Int. J. Mol. Sci., 2013, 14(1), 1232-1277.
[http://dx.doi.org/10.3390/ijms14011232] [PMID: 23306150]
[104]
Stepankova, V.; Bidmanova, S.; Koudelakova, T.; Prokop, Z.; Chaloupkova, R.; Damborsky, J. Strategies for stabilization of enzymes in organic solvents. ACS Catal., 2013, 3(12), 2823-2836.
[http://dx.doi.org/10.1021/cs400684x]
[105]
Ji, Q.; Wang, B.; Li, C.; Hao, J.; Feng, W. Co-immobilised 7α- and 7β-HSDH as recyclable biocatalyst: high-performance production of TUDCA from waste chicken bile. RSC Advances, 2018, 8(60), 34192-34201.
[http://dx.doi.org/10.1039/C8RA06798H]
[106]
You, C.; Huang, R.; Wei, X.; Zhu, Z.; Zhang, Y.P. Protein engineering of oxidoreductases utilizing nicotinamide-based coenzymes, with applications in synthetic biology. Synth Syst Biotechnol, 2017, 2(3), 208-218.
[http://dx.doi.org/10.1016/j.synbio.2017.09.002] [PMID: 29318201]
[107]
Tishkov, V.I.; Pometun, A.A.; Stepashkina, A.V.; Fedorchuk, V.V.; Zarubina, S.A.; Kargov, I.S.; Atroshenko, D.L.; Parshin, P.D.; Shelomov, M.D.; Kovalevski, R.P.; Boiko, K.M.; Eldarov, M.A.; D’Oronzo, E.; Facheris, S.; Secundo, F.; Savin, S.S. Rational design of practically important enzymes. Moscow Univ. Chem. Bull., 2018, 73(1), 1-6.
[http://dx.doi.org/10.3103/S0027131418020153]
[108]
Ye, B.; Li, Y.; Tao, Q.; Yao, X.; Cheng, M.; Yan, X. Random mutagenesis by insertion of error-prone pcr products to the chromosome of Bacillus subtilis. Front. Microbiol., 2020, 11, 570280-570280.
[http://dx.doi.org/10.3389/fmicb.2020.570280] [PMID: 33281764]
[109]
Lutz, S. Beyond directed evolution--semi-rational protein engineering and design. Curr. Opin. Biotechnol., 2010, 21(6), 734-743.
[http://dx.doi.org/10.1016/j.copbio.2010.08.011] [PMID: 20869867]
[110]
Sinha, R.; Shukla, P. Current trends in protein engineering: updates and progress. Curr. Protein Pept. Sci., 2019, 20(5), 398-407.
[http://dx.doi.org/10.2174/1389203720666181119120120] [PMID: 30451109]
[111]
Lutz, S.; Iamurri, S.M. Protein engineering: past, present, and future. Methods Mol. Biol., 2018, 1685, 1-12.
[http://dx.doi.org/10.1007/978-1-4939-7366-8_1] [PMID: 29086300]
[112]
Huang, B.; Zhao, Q.; Zhou, J.H.; Xu, G. Enhanced activity and substrate tolerance of 7α-hydroxysteroid dehydrogenase by directed evolution for 7-ketolithocholic acid production. Appl. Microbiol. Biotechnol., 2019, 103(6), 2665-2674.
[http://dx.doi.org/10.1007/s00253-019-09668-4] [PMID: 30734123]
[113]
Zheng, M.M.; Chen, K.C.; Wang, R.F.; Li, H.; Li, C.X.; Xu, J.H. Engineering 7β-hydroxysteroid dehydrogenase for enhanced ursodeoxycholic acid production by multiobjective directed evolution. J. Agric. Food Chem., 2017, 65(6), 1178-1185.
[http://dx.doi.org/10.1021/acs.jafc.6b05428] [PMID: 28116898]
[114]
Caparco, A.A.; Pelletier, E.; Petit, J.L.; Jouenne, A.; Bommarius, B.R.; de Berardinis, V.; Zaparucha, A.; Champion, J.A.; Bommarius, A.S.; Vergne-Vaxelaire, C.J.A.S. Catalysis, metagenomic mining for amine dehydrogenase discovery. Adv. Synth. Catal., 2020, 362(12), 2427-2436.
[http://dx.doi.org/10.1002/adsc.202000094]
[115]
Datta, S.; Rajnish, K.N.; Samuel, M.S.; Pugazlendhi, A.; Selvarajan, E. Metagenomic applications in microbial diversity, bioremediation, pollution monitoring, enzyme and drug discovery. A review. Environ. Chem. Lett., 2020, 18(4), 1229-1241.
[http://dx.doi.org/10.1007/s10311-020-01010-z]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy