Generic placeholder image

Reviews on Recent Clinical Trials

Editor-in-Chief

ISSN (Print): 1574-8871
ISSN (Online): 1876-1038

Review Article

Practical Review of Mechanical Ventilation in Adults and Children in the Operating Room and Emergency Department

Author(s): Christian Zanza*, Yaroslava Longhitano, Mirco Leo, Tatsiana Romenskaya, Francesco Franceschi, Andrea Piccioni, Ingrid M. Pabon, Maria T. Santarelli and Fabrizio Racca

Volume 17, Issue 1, 2022

Published on: 24 November, 2021

Page: [20 - 33] Pages: 14

DOI: 10.2174/1574887116666210812165615

Price: $65

Open Access Journals Promotions 2
Abstract

Background: During general anesthesia, mechanical ventilation can cause pulmonary damage through mechanism of ventilator-induced lung injury, which is a major cause of post-operative pulmonary complications, which varies between 5 and 33% and increases the 30-day mortality of the surgical patient significantly.

Objective: The aim of this review is to analyze different variables which played a key role in the safe application of mechanical ventilation in the operating room and emergency setting.

Methods: Also, we wanted to analyze different types of the population that underwent intraoperative mechanical ventilation like obese patients, pediatric and adult population and different strategies such as one lung ventilation and ventilation in trendelemburg position. The peer-reviewed articles analyzed were selected according to PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses) from Pubmed/Medline, Ovid/Wiley and Cochrane Library, combining key terms such as: “pulmonary post-operative complications”, “protective ventilation”, “alveolar recruitment maneuvers”, “respiratory compliance”, “intraoperative paediatric ventilation”, “best peep”, “types of ventilation”. Among the 230 papers identified, 150 articles were selected, after title - abstract examination and removing the duplicates, resulting in 94 articles related to mechanical ventilation in operating room and emergency setting that were analyzed.

Results: Careful preoperative patient’s evaluation and protective ventilation (i.e., use of low tidal volumes, adequate PEEP and alveolar recruitment maneuvers) has been shown to be effective not only in limiting alveolar de-recruitment, alveolar overdistension and lung damage, but also in reducing the onset of Pulmonary Post-operative Complications (PPCs).

Conclusion: Mechanical ventilation is like “Janus Bi-front” because it is essential for surgical procedures, for the care of critical care patients and in life-threatening conditions, but it can be harmful to the patient if continued for a long time and where an excessive dose of oxygen is administered into the lungs. Low tidal volume is associated with a minor rate of PPCs and other complications and every complication can increase the length of Stay, adding cost to NHS between 1580 € and 1650 € per day in Europe and currently the prevention of PPCS is the only weapon that we possess.

Keywords: Pulmonary post-operative complications, protective ventilation, alveolar recruitment maneuvers, respiratory compliance, intraoperative pediatric ventilation, best peep, types of ventilation.

Graphical Abstract
[1]
Ball L, Costantino F, Orefice G, Chandrapatham K, Pelosi P. Intraoperative mechanical ventilation: State of the art. Minerva Anestesiol 2017; 83(10): 1075-88.
[http://dx.doi.org/10.23736/S0375-9393.17.11970-X] [PMID: 28528537]
[2]
Canet J, Gallart L, Gomar C, et al. Prediction of postoperative pulmonary complications in a population-based surgical cohort. Anesthesiology 2010; 113(6): 1338-50.
[http://dx.doi.org/10.1097/ALN.0b013e3181fc6e0a] [PMID: 21045639]
[3]
Ana Fernandez-Bustamante MD. PhD, Gyorgy Frendl, MD, PhD, Juraj Sprung, MD, PhD, Daryl J. Kor, MD, Bala Subramaniam, MD, Ricardo Martinez Ruiz, MD, Jae-Woo Lee, MD, PhD, William G. Henderson, PhD, Angela Moss, MS, Nitin Mehdiratta, MD, Megan M. Colwell, and M. F.. Postoperative Pulmonary Complications Ea JAMA Surg 2017; 152: 157-66.
[4]
Young CC, Harris EM, Vacchiano C, et al. Lung-protective ventilation for the surgical patient: international expert panel-based consensus recommendations. Br J Anaesth 2019; 123(6): 898-913.
[http://dx.doi.org/10.1016/j.bja.2019.08.017] [PMID: 31587835]
[5]
Futier E, Constantin JM, Jaber S. Protective lung ventilation in operating room: A systematic review. Minerva Anestesiol 2014; 80(6): 726-35.
[PMID: 24226493]
[6]
Güldner A, Kiss T, Serpa Neto A, et al. Intraoperative protective mechanical ventilation for prevention of postoperative pulmonary complications: A comprehensive review of the role of tidal volume, positive end-expiratory pressure, and lung recruitment maneuvers. Anesthesiology 2015; 123(3): 692-713.
[http://dx.doi.org/10.1097/ALN.0000000000000754] [PMID: 26120769]
[7]
Haliloglu M, Bilgili B, Ozdemir M, Umuroglu T, Bakan N. Low tidal volume positive end-expiratory pressure versus high tidal volume zero-positive end-expiratory pressure and postoperative pulmonary functions in robot-Assisted laparoscopic radical prostatectomy. Med Princ Pract 2017; 26(6): 573-8.
[http://dx.doi.org/10.1159/000484693] [PMID: 29131002]
[8]
Wolthuis EK, Choi G, Dessing MC, et al. Mechanical ventilation with lower tidal volumes and positive end-expiratory pressure prevents pulmonary inflammation in patients without preexisting lung injury. Anesthesiology 2008; 108(1): 46-54.
[http://dx.doi.org/10.1097/01.anes.0000296068.80921.10] [PMID: 18156881]
[9]
Hess DR, Kondili D, Burns E, Bittner EA, Schmidt UH. A 5-year observational study of lung-protective ventilation in the operating room: A single-center experience. J Crit Care 2013; 28(4): 533.e9-533.e15.
[http://dx.doi.org/10.1016/j.jcrc.2012.11.014] [PMID: 23369521]
[10]
Hedenstierna G, Edmark L. Effects of anesthesia on the respiratory system. Best Pract Res Clin Anaesthesiol 2015; 29(3): 273-84.
[http://dx.doi.org/10.1016/j.bpa.2015.08.008] [PMID: 26643094]
[11]
Serpa Neto A, Hemmes SN, Barbas CS, et al. Protective versus Conventional Ventilation for Surgery: A Systematic Review and Individual Patient Data Meta-analysis. Anesthesiology 2015; 123(1): 66-78.
[http://dx.doi.org/10.1097/ALN.0000000000000706] [PMID: 25978326]
[12]
Futier E1, Constantin JM, Petit A, Jung B, Kwiatkowski F, Duclos M, Jaber S, B. J.. Positive end-expiratory pressure improves end- expiratory lung volume but not oxygenation after induction of anaesthesia. Eur J Anaesthesiol 2010.
[13]
Östberg E, Thorisson A, Enlund M, Zetterström H, Hedenstierna G, Edmark L. Positive End-expiratory Pressure Alone Minimizes Atelectasis Formation in Nonabdominal Surgery: A Randomized Controlled Trial. Anesthesiology 2018; 128(6): 1117-24.
[http://dx.doi.org/10.1097/ALN.0000000000002134] [PMID: 29462011]
[14]
Gattinoni L, Marini JJ, Collino F, et al. The future of mechanical ventilation: lessons from the present and the past. Crit Care 2017; 21(1): 183.
[http://dx.doi.org/10.1186/s13054-017-1750-x] [PMID: 28701178]
[15]
Ladha K, Vidal Melo MF, McLean DJ, et al. Intraoperative protective mechanical ventilation and risk of postoperative respiratory complications: hospital based registry study. BMJ 2015; 351: h3646.
[http://dx.doi.org/10.1136/bmj.h3646] [PMID: 26174419]
[16]
Serpa Neto A, Hemmes SN, Barbas CS, et al. Incidence of mortality and morbidity related to postoperative lung injury in patients who have undergone abdominal or thoracic surgery: A systematic review and meta-analysis. Lancet Respir Med 2014; 2(12): 1007-15.
[http://dx.doi.org/10.1016/S2213-2600(14)70228-0] [PMID: 25466352]
[17]
Chung F, Yang Y, Liao P. Predictive performance of the STOP-Bang score for identifying obstructive sleep apnea in obese patients. Obes Surg 2013; 23(12): 2050-7.
[http://dx.doi.org/10.1007/s11695-013-1006-z] [PMID: 23771818]
[18]
Devine B. Gentamicin therapy. Drug Intell Clin Pharm 1974; 8: 650-5.
[19]
Hemmes SNT, Gama de Abreu M, Pelosi P, Schultz MJ. High versus low positive end-expiratory pressure during general anaesthesia for open abdominal surgery (PROVHILO trial): A multicentre randomised controlled trial. Lancet 2014; 384(9942): 495-503.
[http://dx.doi.org/10.1016/S0140-6736(14)60416-5] [PMID: 24894577]
[20]
D’Antini D, Rauseo M, Grasso S, et al. Physiological effects of the open lung approach during laparoscopic cholecystectomy: focus on driving pressure. Minerva Anestesiol 2018; 84(2): 159-67.
[PMID: 28679201]
[21]
de Jong MAC, Ladha KS, Vidal Melo MF, et al. Differential effects of intraoperative positive end-expiratory pressure (peep) on respiratory outcome in major abdominal surgery versus craniotomy. Ann Surg 2016; 264(2): 362-9.
[http://dx.doi.org/10.1097/SLA.0000000000001499] [PMID: 26496082]
[22]
Mousa WF. Equal ratio ventilation (1:1) improves arterial oxygenation during laparoscopic bariatric surgery: A crossover study. Saudi J Anaesth 2013; 7(1): 9-13.
[http://dx.doi.org/10.4103/1658-354X.109559] [PMID: 23717224]
[23]
Kim MS. L’impact de deux ratios inspiratoire à expiratoire différents (1:1 et 1:2) sur la mécanique respiratoire et l’oxygénation pendant la ventilation en volume contrôlé en cas de prostatectomie radicale laparoscopique sous assistance robotisée: une étude rando. Can J Anaesth 2015; 62: 979-87.
[http://dx.doi.org/10.1007/s12630-015-0383-2] [PMID: 25869025]
[24]
Austin MA, Wills KE, Blizzard L, Walters EH, Wood-Baker R. Effect of high flow oxygen on mortality in chronic obstructive pulmonary disease patients in prehospital setting: randomised controlled trial. BMJ 2010; 341: c5462.
[http://dx.doi.org/10.1136/bmj.c5462] [PMID: 20959284]
[25]
Pedersen T, Møller AM, Pedersen BD. Pulse oximetry for perioperative monitoring: systematic review of randomized, controlled trials. Anesth Analg 2003; 96(2): 426-31.
[PMID: 12538190]
[26]
Tusman G, Bohm SH, Suarez-Sipmann F. Advanced uses of pulse oximetry for monitoring mechanically ventilated patients. Anesth Analg 2017; 124(1): 62-71.
[http://dx.doi.org/10.1213/ANE.0000000000001283] [PMID: 27183375]
[27]
Dion JM, McKee C, Tobias JD, et al. Ventilation during laparoscopic-assisted bariatric surgery: volume-controlled, pressure-controlled or volume-guaranteed pressure-regulated modes. Int J Clin Exp Med 2014; 7(8): 2242-7.
[PMID: 25232415]
[28]
Cadi P, Guenoun T, Journois D, Chevallier JM, Diehl JL, Safran D. Pressure-controlled ventilation improves oxygenation during laparoscopic obesity surgery compared with volume-controlled ventilation. Br J Anaesth 2008; 100(5): 709-16.
[http://dx.doi.org/10.1093/bja/aen067] [PMID: 18407943]
[29]
De Baerdemaeker LEC, Van der Herten C, Gillardin JM, Pattyn P, Mortier EP, Szegedi LL. Comparison of volume-controlled and pressure-controlled ventilation during laparoscopic gastric banding in morbidly obese patients. Obes Surg 2008; 18(6): 680-5.
[http://dx.doi.org/10.1007/s11695-007-9376-8] [PMID: 18317856]
[30]
Bagchi A, Rudolph MI, Ng PY, et al. The association of postoperative pulmonary complications in 109,360 patients with pressure- controlled or volume-controlled ventilation. Anaesthesia 2017; 72(11): 1334-43.
[http://dx.doi.org/10.1111/anae.14039] [PMID: 28891046]
[31]
Wang C, Zhao N, Wang W, et al. Intraoperative mechanical ventilation strategies for obese patients: A systematic review and network meta-analysis. Obes Rev 2015; 16(6): 508-17.
[http://dx.doi.org/10.1111/obr.12274] [PMID: 25788167]
[32]
Hartland BL, Newell TJ, Damico N. Alveolar recruitment maneuvers under general anesthesia: A systematic review of the literature. Respir Care 2015; 60(4): 609-20.
[http://dx.doi.org/10.4187/respcare.03488] [PMID: 25425708]
[33]
Rochwerg B, Brochard L, Elliott MW, et al. Official ERS/ATS clinical practice guidelines: noninvasive ventilation for acute respiratory failure. Eur Respir J 2017; 50(2): 50.
[http://dx.doi.org/10.1183/13993003.02426-2016] [PMID: 28860265]
[34]
Gratarola A. Miorisoluzione, Monitoraggio Neuromuscolare E Antagonismo. Buone pratiche cliniche SIAARTI 2018.
[35]
Imber DAE, Pirrone M, Zhang C, Fisher DF, Kacmarek RM, Berra L. Respiratory management of perioperative obese patients. Respir Care 2016; 61(12): 1681-92.
[http://dx.doi.org/10.4187/respcare.04732] [PMID: 27624632]
[36]
Pépin J L. Critical care 3 Prevention and care of respiratory failure in obese patients. 2016.
[http://dx.doi.org/10.1016/S2213-2600(16)00054-0]
[37]
Anzueto A, Frutos-Vivar F, Esteban A, et al. Influence of body mass index on outcome of the mechanically ventilated patients. Thorax 2011; 66(1): 66-73.
[http://dx.doi.org/10.1136/thx.2010.145086] [PMID: 20980246]
[38]
Petrini F. Perioperative and periprocedural airway management and respiratory safety for the obese patient : 2016 SIAARTI Consensus 2016.
[39]
Futier E, Constantin JM, Pelosi P, et al. Noninvasive ventilation and alveolar recruitment maneuver improve respiratory function during and after intubation of morbidly obese patients: A randomized controlled study. Anesthesiology 2011; 114(6): 1354-63.
[http://dx.doi.org/10.1097/ALN.0b013e31821811ba] [PMID: 21478734]
[40]
Ball L, Pelosi P. How I ventilate an obese patient. Crit Care 2019; 23(1): 176.
[http://dx.doi.org/10.1186/s13054-019-2466-x] [PMID: 31097006]
[41]
Erlandsson K, Odenstedt H, Lundin S, Stenqvist O. Positive end- expiratory pressure optimization using electric impedance tomography in morbidly obese patients during laparoscopic gastric bypass surgery. Acta Anaesthesiol Scand 2006; 50(7): 833-9.
[http://dx.doi.org/10.1111/j.1399-6576.2006.01079.x] [PMID: 16879466]
[42]
Talab HF, Zabani IA, Abdelrahman HS, et al. Intraoperative ventilatory strategies for prevention of pulmonary atelectasis in obese patients undergoing laparoscopic bariatric surgery. Anesth Analg 2009; 109(5): 1511-6.
[http://dx.doi.org/10.1213/ANE.0b013e3181ba7945] [PMID: 19843790]
[43]
Aldenkortt M, Lysakowski C, Elia N, Brochard L, Tramèr MR. Ventilation strategies in obese patients undergoing surgery: A quantitative systematic review and meta-analysis. Br J Anaesth 2012; 109(4): 493-502.
[http://dx.doi.org/10.1093/bja/aes338] [PMID: 22976857]
[44]
Bluth T, Serpa Neto A, Schultz MJ, et al. Effect of intraoperative high positive end-expiratory pressure (peep) with recruitment maneuvers vs low peep on postoperative pulmonary complications in obese patients: a randomized clinical trial. JAMA 2019; 321(23): 2292-305.
[http://dx.doi.org/10.1001/jama.2019.7505] [PMID: 31157366]
[45]
Schumann R. Pulmonary Physiology of the Morbidly Obese and the Effects of Anesthesia 2013; 51: 41-51.
[46]
Pelosi P, Brusasco C, Reinius H. Is protective lung ventilation safe in morbidly obese patients?Controversies in the Anesthetic Management of the Obese Surgical Patient. Springer Verlag 2013.
[http://dx.doi.org/10.1007/978-88-470-2634-6_17]
[47]
Whalen FX, Gajic O, Thompson GB, et al. The effects of the alveolar recruitment maneuver and positive end-expiratory pressure on arterial oxygenation during laparoscopic bariatric surgery. Anesth Analg 2006; 102(1): 298-305.
[http://dx.doi.org/10.1213/01.ane.0000183655.57275.7a] [PMID: 16368847]
[48]
Jo YY, Kwak HJ. What is the proper ventilation strategy during laparoscopic surgery? Korean J Anesthesiol 2017; 70(6): 596-600.
[http://dx.doi.org/10.4097/kjae.2017.70.6.596] [PMID: 29225741]
[49]
Karsten J, Luepschen H, Grossherr M, et al. Effect of PEEP on regional ventilation during laparoscopic surgery monitored by electrical impedance tomography. Acta Anaesthesiol Scand 2011; 55(7): 878-86.
[http://dx.doi.org/10.1111/j.1399-6576.2011.02467.x] [PMID: 21658014]
[50]
Lee HJ, Kim KS, Jeong JS, Shim JC, Cho ES. Optimal positive end-expiratory pressure during robot-assisted laparoscopic radical prostatectomy. Korean J Anesthesiol 2013; 65(3): 244-50.
[http://dx.doi.org/10.4097/kjae.2013.65.3.244] [PMID: 24101959]
[51]
Sen O, Doventas E. Efeitos de diferentes níveis de pressão expiratória final sobre a hemodinâmica, mecânica respiratória e resposta sistêmica ao estresse durante colecistectomia laparoscópica. Braz J Anesthesiol 2017; 67: 28-34.
[http://dx.doi.org/10.1016/j.bjane.2015.08.015] [PMID: 28017167]
[52]
Wang Y, Wang H, Wang H, Zhao X, Li S, Chen L. Exploring the intraoperative lung protective ventilation of different positive end- expiratory pressure levels during abdominal laparoscopic surgery with Trendelenburg position. Ann Transl Med 2019; 7(8): 171-1.
[http://dx.doi.org/10.21037/atm.2019.03.45] [PMID: 31168452]
[53]
Henrik Reinius MD. Prevention of atelectasis in morbidly obese patients during general anesthesia and paralysis. Anesthesiology 2009; 979-87.
[PMID: 19809292]
[54]
Corcione A, Angelini P, Bencini L, et al. Joint consensus on abdominal robotic surgery and anesthesia from a task force of the SIAARTI and SIC. Minerva Anestesiol 2018; 84(10): 1189-208.
[http://dx.doi.org/10.23736/S0375-9393.18.12241-3] [PMID: 29648413]
[55]
Mazo V, Sabaté S, Canet J, et al. Prospective external validation of a predictive score for postoperative pulmonary complications. Anesthesiology 2014; 121(2): 219-31.
[http://dx.doi.org/10.1097/ALN.0000000000000334] [PMID: 24901240]
[56]
Tusman G, Bo S H, Sua F. Lung recruitment improves the efficiency of ventilation and gas exchange during one-lung ventilation anesthesia 1604-9.2004;
[http://dx.doi.org/10.1213/01.ANE.0000068484.67655.1A]
[57]
Benumof J. Conventional and differential lung management of one-lung ventilation. In: Anesthesia for Thoracic Surgery. WB Saunders 1995.
[58]
Fernández-Pérez ER, Keegan MT, Brown DR, Hubmayr RD, Gajic O. Intraoperative tidal volume as a risk factor for respiratory failure after pneumonectomy. Anesthesiology 2006; 105(1): 14-8.
[http://dx.doi.org/10.1097/00000542-200607000-00007] [PMID: 16809989]
[59]
Colquhoun DA, Naik BI, Durieux ME, et al. Management of 1-lung ventilation-variation and trends in clinical practice: A report from the multicenter perioperative outcomes group. Anesth Analg 2018; 126(2): 495-502.
[http://dx.doi.org/10.1213/ANE.0000000000002642] [PMID: 29210790]
[60]
Fujiwara M, Abe K, Mashimo T. The effect of positive end-expiratory pressure and continuous positive airway pressure on the oxygenation and shunt fraction during one-lung ventilation with propofol anesthesia. J Clin Anesth 2001; 13(7): 473-7.
[http://dx.doi.org/10.1016/S0952-8180(01)00310-5] [PMID: 11704442]
[61]
Kiss T. Correction to: Protective ventilation with high versus low positive end-expiratory pressure during one-lung ventilation for thoracic surgery (PROTHOR): Study protocol for a randomized controlled trial (Trials (2019) 2019; 20: 213.
[http://dx.doi.org/10.1186/s13063-019-3208-8]
[62]
Kneyber MCJ. Intraoperative mechanical ventilation for the pediatric patient. Best Pract Res Clin Anaesthesiol 2015; 29(3): 371-9.
[http://dx.doi.org/10.1016/j.bpa.2015.10.001] [PMID: 26643101]
[63]
Feldman JM. Optimal ventilation of the anesthetized pediatric patient. Anesth Analg 2015; 120(1): 165-75.
[http://dx.doi.org/10.1213/ANE.0000000000000472] [PMID: 25625261]
[64]
de Jager P, Burgerhof JG, van Heerde M, Albers MJ, Markhorst DG, Kneyber MC. Tidal volume and mortality in mechanically ventilated children: A systematic review and meta-analysis of observational studies. Crit Care Med 2014; 42(12): 2461-72.
[http://dx.doi.org/10.1097/CCM.0000000000000546] [PMID: 25083979]
[65]
Jouvet P. Pediatric acute respiratory distress syndrome: consensus recommendations from the Pediatric Acute Lung Injury Consensus Conference. Pediatr Crit Care Med 2015; 16(5): 428-39.
[http://dx.doi.org/10.1097/PCC.0000000000000350] [PMID: 25647235]
[66]
Smith LS, Gharib SA, Frevert CW, Martin TR. Effects of age on the synergistic interactions between lipopolysaccharide and mechanical ventilation in mice. Am J Respir Cell Mol Biol 2010; 43(4): 475-86.
[http://dx.doi.org/10.1165/rcmb.2009-0039OC] [PMID: 19901347]
[67]
Kneyber MC. Ventilator-induced lung injury: does it occur in children? Minerva Anestesiol 2018; 84(5): 626-31.
[http://dx.doi.org/10.23736/S0375-9393.17.12205-4] [PMID: 29152933]
[68]
Khemani RG, Newth CJL. The design of future pediatric mechanical ventilation trials for acute lung injury. Am J Respir Crit Care Med 2010; 182(12): 1465-74.
[http://dx.doi.org/10.1164/rccm.201004-0606CI] [PMID: 20732987]
[69]
Phillips S, Edlbeck A, Kirby M, Goday P. Ideal body weight in children. Nutr Clin Pract 2007; 22(2): 240-5.
[http://dx.doi.org/10.1177/0115426507022002240] [PMID: 17374798]
[70]
Trachsel D, Svendsen J, Erb TO, von Ungern-Sternberg BS. Effects of anaesthesia on paediatric lung function. Br J Anaesth 2016; 117(2): 151-63.
[http://dx.doi.org/10.1093/bja/aew173] [PMID: 27440626]
[71]
Serafini G, Cornara G, Cavalloro F, et al. Pulmonary atelectasis during paediatric anaesthesia: CT scan evaluation and effect of positive endexpiratory pressure (PEEP). Paediatr Anaesth 1999; 9(3): 225-8.
[http://dx.doi.org/10.1046/j.1460-9592.1999.00340.x] [PMID: 10320601]
[72]
Kneyber MCJ. Recommendations for mechanical ventilation of critically ill children from the Paediatric Mechanical Ventilation Consensus Conference (PEMVECC). In: Intensive Care Medicine. Springer Verlag 2017; 42: pp. 1764-1780 .
[73]
Hammer G. Anesthesia for Thoracic Surgery. In: Coté C, Lerman J, Anderson B, Eds. A Practice of Anesthesia for Infants and Children. Elsevier Saunders 2013; pp. 277-90.
[74]
Grandville B, Petak F, Albu G, Bayat S, Pichon I, Habre W. High inspired oxygen fraction impairs lung volume and ventilation heterogeneity in healthy children: A double-blind randomised controlled trial. Br J Anaesth 2019; 122(5): 682-91.
[http://dx.doi.org/10.1016/j.bja.2019.01.036] [PMID: 30916028]
[75]
Benoît Z, Wicky S, Fischer JF, et al. The effect of increased FIO(2) before tracheal extubation on postoperative atelectasis. Anesth Analg 2002; 95(6): 1777-81.
[http://dx.doi.org/10.1097/00000539-200212000-00058] [PMID: 12456458]
[76]
Habre W, Peták F. Perioperative use of oxygen: variabilities across age. Br J Anaesth 2014; 113(Suppl. 2): ii26-36.
[http://dx.doi.org/10.1093/bja/aeu380] [PMID: 25498579]
[77]
Bachiller PR, McDonough JM, Feldman JM. Do new anesthesia ventilators deliver small tidal volumes accurately during volume- controlled ventilation? Anesth Analg 2008; 106(5): 1392-400.
[http://dx.doi.org/10.1213/ane.0b013e31816a68c6] [PMID: 18420850]
[78]
Marcus RJ, van der Walt JH, Pettifer RJA. Pulmonary volume recruitment restores pulmonary compliance and resistance in anaesthetized young children. Paediatr Anaesth 2002; 12(7): 579-84.
[http://dx.doi.org/10.1046/j.1460-9592.2002.00929.x] [PMID: 12358651]
[79]
Cheifetz IM. Pediatric ARDS. Respir Care 2017; 62(6): 718-31.
[http://dx.doi.org/10.4187/respcare.05591] [PMID: 28546374]
[80]
Jauncey-Cooke J, East CE, Bogossian F. Paediatric lung recruitment: A review of the clinical evidence. Paediatr Respir Rev 2015; 16(2): 127-32.
[PMID: 24680638]
[81]
McSwain SD, Hamel DS, Smith PB, et al. End-tidal and arterial carbon dioxide measurements correlate across all levels of physiologic dead space. Respir Care 2010; 55(3): 288-93.
[PMID: 20196877]
[82]
Pearsall MF, Feldman JM. When does apparatus dead space matter for the pediatric patient? Anesth Analg 2014; 118(4): 776-80.
[http://dx.doi.org/10.1213/ANE.0000000000000148] [PMID: 24651232]
[83]
Glenski TA, Diehl C, Clopton RG, Friesen RH. Breathing circuit compliance and accuracy of displayed tidal volume during pressure-controlled ventilation of infants: A quality improvement project. Paediatr Anaesth 2017; 27(9): 935-41.
[http://dx.doi.org/10.1111/pan.13164] [PMID: 28504341]
[84]
Nagler J, Cheifetz IM. Initiating mechanical ventilation in children. UpToDate 2019; 12: 1-24.
[85]
Zanza C, Longhitano Y, Artico M, et al. Bedside cardiac pocus in emergency setting: a practice review. Rev Recent Clin Trials 2020; 15(4): 269-77.
[http://dx.doi.org/10.2174/1574887115666200802023306] [PMID: 32738872]
[86]
Acosta CM, Maidana GA, Jacovitti D, et al. Accuracy of transthoracic lung ultrasound for diagnosing anesthesia-induced atelectasis in children. Anesthesiology 2014; 120(6): 1370-9.
[http://dx.doi.org/10.1097/ALN.0000000000000231] [PMID: 24662376]
[87]
Acosta CM, Sara T, Carpinella M, et al. Lung recruitment prevents collapse during laparoscopy in children: A randomised controlled trial. Eur J Anaesthesiol 2018; 35(8): 573-80.
[http://dx.doi.org/10.1097/EJA.0000000000000761] [PMID: 29278555]
[88]
Song IK, Kim EH, Lee JH, Ro S, Kim HS, Kim JT. Effects of an alveolar recruitment manoeuvre guided by lung ultrasound on anaesthesia-induced atelectasis in infants: A randomised, controlled trial. Anaesthesia 2017; 72(2): 214-22.
[http://dx.doi.org/10.1111/anae.13713] [PMID: 27804117]
[89]
Shafy SZ, Hakim M, Kamata M, et al. Intracuff pressure during one-lung ventilation in infants and children. J Pediatr Surg 2019; 54(9): 1929-32.
[http://dx.doi.org/10.1016/j.jpedsurg.2018.10.110] [PMID: 30660384]
[90]
Regli A, Habre W, Saudan S, Mamie C, Erb TO, von Ungern-Sternberg BS. Impact of Trendelenburg positioning on functional residual capacity and ventilation homogeneity in anaesthetised children. Anaesthesia 2007; 62(5): 451-5.
[http://dx.doi.org/10.1111/j.1365-2044.2007.05030.x] [PMID: 17448055]
[91]
Byon HJ, Lee JW, Kim JK, et al. Anesthetic management of video-assisted thoracoscopic surgery (VATS) in pediatric patients: the issue of safety in infant and younger children. Korean J Anesthesiol 2010; 59(2): 99-103.
[http://dx.doi.org/10.4097/kjae.2010.59.2.99] [PMID: 20740214]
[92]
Lee JH, Bae JI, Jang YE, Kim EH, Kim HS, Kim JT. Lung protective ventilation during pulmonary resection in children: A prospective, single-centre, randomised controlled trial. Br J Anaesth 2019; 122(5): 692-701.
[http://dx.doi.org/10.1016/j.bja.2019.02.013] [PMID: 30916035]
[93]
Kaier Klaus, Heister Thomas, Motschall Edith, Hehn Philip, Bluhmki Tobias, Wolkewitz Martin. Impact of mechanical ventilation on the daily costs of ICU care: A systematic review and meta regression. Epidemiol Infect 2019; 147: e 314.
[http://dx.doi.org/10.1017/S0950268819001900]
[94]
Longhitano Y, Zanza C, Thangathurai D, et al. Gut Alterations in Septic Patients: A Biochemical Literature Review. Rev Recent Clin Trials 2020; 15(4): 289-97.
[http://dx.doi.org/10.2174/1574887115666200811105251] [PMID: 32781963]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy