Generic placeholder image

Cardiovascular & Hematological Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5257
ISSN (Online): 1875-6182

Research Article

Chenopodium quinoa Exhibits Antihyperglycemic Activity in Streptozotocin- induced Diabetic Rats

Author(s): Amine Azzane, Ayoub Amssayef and Mohamed Eddouks*

Volume 20, Issue 2, 2022

Published on: 12 August, 2021

Page: [125 - 132] Pages: 8

DOI: 10.2174/1871525719666210812094837

Price: $65

Open Access Journals Promotions 2
Abstract

Aims: The aim of the study was to evaluate the antihyperglycemic effect of Chenopodium quinoa.

Background: Chenopodium quinoa is a pseudocereal plant with several medicinal properties.

Objective: The goal of this investigation was to determine the antihyperglycemic activity of Chenopodium quinoa in both normal and streptozotocin (STZ)-induced diabetic rats.

Methods: In this study, the effect of the aqueous extract of Chenopodium quinoa seeds (AECQS) (60 mg/kg) on blood glucose levels was evaluated in both normal and diabetic rats after a single (6 hours) and repeated oral administration (7 days of treatment). The effect of this herb on glucose tolerance and lipid profile was also studied. Additionally, histopathological examination of the liver was carried out using the Hematoxylin-Eosin method. Furthermore, the in vitro antioxidant activity as well as, preliminary phytochemical screening and quantification of some secondary metabolites (phenolic compounds, flavonoids and tannins) were performed according to standard methods.

Results: AECQS produced a significant lowering effect on plasma glucose levels in STZ-induced diabetic rats. In addition, this extract exhibited a remarkable amelioration on hepatic histopathology in diabetic rats. In addition, the extract exerted a remarkable antioxidant activity which could be due to the presence of some compounds found in this herb.

Conclusion: In conclusion, this study demonstrates that the aqueous extract of Chenopodium quinoa seeds has a favorable effect in controlling diabetes mellitus.

Keywords: Medicinal plant, streptozotocin, Chenopodium quinoa, phytotherapy, diabetes mellitus, glucose.

Graphical Abstract
[1]
Lyra, R.; Oliveira, M.; Lins, D.; Cavalcanti, N. Prevention of type 2 diabetes mellitus. Arq. Bras. Endocrinol. Metabol, 2006, 50(2), 239-249.
[http://dx.doi.org/10.1590/S0004-27302006000200010] [PMID: 16767290]
[2]
Baradaran, A.; Madihi, Y.; Merrikhi, A.; Rafieian-Kopaei, M.; Nasri, H. Serum lipoprotein (a) in diabetic patients with various renal function not yet on dialysis. Pak. J. Med. Sci., 2013, 29, 354-357.
[http://dx.doi.org/10.12669/pjms.291(Suppl).3533]
[3]
IDF Diabetes Atlas Group. Update of mortality attributable to diabetes for the IDF Diabetes Atlas: Estimates for the year 2013. Diabetes Res. Clin. Pract., 2015, 109(3), 461-465.
[http://dx.doi.org/10.1016/j.diabres.2015.05.037] [PMID: 26119773]
[4]
Amssayef, A.; Eddouks, M. Antihyperglycemic, antihyperlipidemic and antioxidant effects of cotula cinerea (del) in normal and streptozotocin-induced diabetic rats. Endocr. Metab. Immune Disord. Drug Targets, 2020, 20(9), 1504-1513.
[http://dx.doi.org/10.2174/1871530320666200513081312] [PMID: 32400337]
[5]
Cohen, P.; Goedert, M. GSK3 inhibitors: development and therapeutic potential. Nat. Rev. Drug Discov., 2004, 3(6), 479-487.
[http://dx.doi.org/10.1038/nrd1415] [PMID: 15173837]
[6]
Kar, A.; Choudhary, B.K.; Bandyopadhyay, N.G. Comparative evaluation of hypoglycaemic activity of some Indian medicinal plants in alloxan diabetic rats. J. Ethnopharmacol., 2003, 84(1), 105-108.
[http://dx.doi.org/10.1016/S0378-8741(02)00144-7] [PMID: 12499084]
[7]
Marticorena, C.; Quezada, M. Gayana Bota´nica; Universitaria Ed Concepcio´n., 1985, 42, pp. 1-2.
[8]
Winton, A.; Winton, K. The structure and composition of foods.Cereals,Starch. Oil Seeds, Nuts, Oils, Forage Plants”. John Wiley and Sons; Ed London, 1932, Vol. 1, pp. 322-325.
[9]
Repo-Carrasco, R. Andean Crops and Infant Nourishment., Report B 25 Finland: University of Helsinki; Institute of Development Studies, 1992.
[10]
Kent, N. Technology of Cereals, 3rd ed; Pergamon Press: Oxford, New York, 1983.
[11]
Lilian, E.; James, A. Quinoa (Chenopodium quinoa Willd.): Composition, Chemistry, Nutritional, and Functional Properties.Advances in Food and Nutrition Research; Elsevier Inc., 2009, 58, pp. 1-31.
[http://dx.doi.org/10.1016/S1043-4526(09)58001-1]
[12]
Zhu, N.; Sheng, S.; Li, D.; Lavoie, E.; Karwe, M.; Rosen, R.; Chi- Tang, Hi. C Antioxidative flavonoid glycosides from quinoa seeds (Chenopodium Quinoa Willd.). J. Food Lipids, 2001, 8, 37-44.
[http://dx.doi.org/10.1111/j.1745-4522.2001.tb00182.x]
[13]
Amssayef, A.; Lahrach, N.; Eddouks, M. Potent antihyperglycemic effects of an endemic plant from morocco (Matthiola maroccana Coss.) in normal and streptozotocin-induced diabetic rats. Endocr. Metab. Immune Disord. Drug Targets, 2021, 21(3), 434-40.
[http://dx.doi.org/10.2174/1871530320666200513081312]
[14]
Ajebli, M.; Eddouks, M. Pharmacological and phytochemical study of mentha suaveolens ehrh in normal and streptozotocin induced diabetic rats. Nat. Prod. J., 2018, 213-227(15)
[http://dx.doi.org/10.2174/2210315508666180327120434]
[15]
Bouhlali, E.; Alem, C.; Zegzouti, Y.F. Antioxidant and anti-hemolytic activities of phenolic constituents of six moroccan date fruit (Phoenix dactylifera L.) syrups. Indian J. Biotechnol., 2015, 12(1), 45-52.
[16]
Kim, D.; Jeong, S.; Lee, C. Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chem., 2003, 81(3), 321-326.
[http://dx.doi.org/10.1016/S0308-8146(02)00423-5]
[17]
Broadhurst, R.B.; Jones, W.T. Analysis of condensed tannins using acidified vanillin. ‎. J. Sci. Food Agric., 1978, 48(3), 788-794.
[http://dx.doi.org/10.1002/jsfa.2740290908]
[18]
Amssayef, A.; Ajebli, M.; Eddouks, M. Antihyperglycemic potential of Matricaria pubescens (Desf.) Schultz. in streptozotocin-induced diabetic rats. Cardiovasc. Hematol. Agents Med. Chem., 2020, 20(4), 297-304.
[PMID: 32603288]
[19]
Amssayef, A.; Eddouks, M. Antihyperglycemic effect of the moroccan collard green (Brassica oleracea var. viridis) in streptozotocin-induced diabetic rats. Endocr. Metab. Immune Disord. Drug Targets, 2020, 21(6), 1043-52.
[http://dx.doi.org/10.2174/1871530320666200929141140] [PMID: 32990547]
[20]
Vohnout, B.; Vachulová, A.; Blazícek, P.; Dukát, A.; Fodor, G.; Lietava, J. Evaluation of alternative calculation methods for determining LDL cholesterol. Vnitr. Lek., 2008, 54(10), 961-964.
[PMID: 19009762]
[21]
Ajebli, M.; El Ouady, F.; Eddouks, M. Study of antihyperglycemic, antihyperlipidemic and antioxidant activities of tannins extracted from Warionia saharae Benth. & Coss. Endocr. Metab. Immune Disord. Drug Targets, 2019, 19(2), 189-198.
[http://dx.doi.org/10.2174/1871530318666181029160539] [PMID: 30370866]
[22]
Ando, H.; Chen, Y.; Tang, H.; Shimizu, M.; Watanabe, K.; Mitsunaga, T. Food components in fractions of quinoa seed. Food Sci. Technol. Res., 2002, 8(1), 80-84.
[http://dx.doi.org/10.3136/fstr.8.80]
[23]
Gawlik-Dziki, U.; Świeca, M.; Sułkowski, M.; Dziki, D.; Baraniak, B.; Czyż, J. Antioxidant and anticancer activities of Chenopodium quinoa leaves extracts - in vitro study. Food Chem. Toxicol., 2013, 57, 154-160.
[http://dx.doi.org/10.1016/j.fct.2013.03.023] [PMID: 23537598]
[24]
Luzi, L.; Pozza, G. Glibenclamide: an old drug with a novel mechanism of action? Acta Diabetol., 1997, 34(4), 239-244.
[http://dx.doi.org/10.1007/s005920050081] [PMID: 9451465]
[25]
Ceriello, A. Postprandial hyperglycemia and diabetes complications: is it time to treat? Diabetes, 2005, 54(1), 1-7.
[http://dx.doi.org/10.2337/diabetes.54.1.1] [PMID: 15616004]
[26]
Imran, A.; Butt, M.S.; Arshad, M.S.; Arshad, M.U.; Saeed, F.; Sohaib, M.; Munir, R. Exploring the potential of black tea based flavonoids against hyperlipidemia related disorders. Lipids Health Dis., 2018, 17(1), 57.
[http://dx.doi.org/10.1186/s12944-018-0688-6] [PMID: 29592809]
[27]
Arison, R.N.; Ciaccio, E.I.; Glitzer, M.S.; Cassaro, J.A.; Pruss, M.P. Light and electron microscopy of lesions in rats rendered diabetic with streptozotocin. Diabetes, 1967, 16(1), 51-56.
[http://dx.doi.org/10.2337/diab.16.1.51] [PMID: 6015682]
[28]
Li, S.; Tan, J.; Zeng, J.; Xianjin Wu, X.W.; Zhang, J. Antihyperglycemic and antioxidant effect of the total flavones of Potentilla kleiniana Wight et Arn. in streptozotocin induced diabetic rats. Pak. J. Pharm. Sci., 2017, 30(1), 171-178.
[PMID: 28603128]
[29]
Bahmani, M.; Golshahi, H.; Saki, K.; Rafieian-Kopaei, M.; Delfan, B.; Mohammadi, T. Medicinal plants and secondary metabolites for diabetes mellitus control. Asian Pac. J. Trop. Dis., 2014, 4(Suppl. 2), S687-S692.
[http://dx.doi.org/10.1016/S2222-1808(14)60708-8]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy