Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

Review Article

Comprehensive Analysis of SARS-COV-2 Drug Targets and Pharmacological Aspects in Treating the COVID-19

Author(s): Sundaresan Bhavaniramya*, Vanajothi Ramar, Selvaraju Vishnupriya, Ramasamy Palaniappan*, Ashokkumar Sibiya and Baskaralingam Vaseeharan*

Volume 15, Issue 2, 2022

Published on: 20 December, 2021

Article ID: e110821195545 Pages: 25

DOI: 10.2174/1874467214666210811120635

Price: $65

Abstract

Corona viruses are enveloped, single-stranded RNA (Ribonucleic acid) viruses, and they cause pandemic diseases having a devastating effect on both human healthcare and the global economy. To date, six corona viruses have been identified as pathogenic organisms, which are significantly responsible for the infection and cause severe respiratory diseases. Among them, the novel SARS-CoV-2 (Severe Acute Respiratory Syndrome coronavirus 2) caused a major outbreak of coronavirus diseases in 2019 (COVID-19). Coronaviridae family members can affect both humans and animals. In humans, coronaviruses cause a severe acute respiratory syndrome with mild to severe outcomes. Several structural and genomics aspects have been investigated, and the genome encodes about 30 proteins most of them with unknown function though they share remarkable sequence identity with other proteins. There are no potent drugs against SARS-CoV-2 and several trials are underway to investigate the possible therapeutic agents against viral infection. However, some of the antiviral drugs that have been investigated against SARS-CoV-2 are under clinical trials. In the current review, we comparatively emphasize the emergence and pathogenicity of the SARS-CoV-2 and their infection, and discuss the various putative drug targets of both viral and host receptors for developing effective vaccines and therapeutic combinations to overcome the viral outbreak.

Keywords: Coronavirus, SARS-CoV-2, ACE2, cancer drug targets, zoonotic diseases, antiviral agents.

Graphical Abstract
[1]
Ramadan, N.; Shaib, H. Middle East respiratory syndrome coronavirus (MERS-CoV): A review. Germs, 2019, 9(1), 35-42.
[http://dx.doi.org/10.18683/germs.2019.1155] [PMID: 31119115]
[2]
Zhong, N.S.; Zheng, B.J.; Li, Y.M.; Poon, ; Xie, Z.H.; Chan, K.H.; Li, P.H.; Tan, S.Y.; Chang, Q.; Xie, J.P.; Liu, X.Q.; Xu, J.; Li, D.X.; Yuen, K.Y.; Peiris, ; Guan, Y. Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, People’s Republic of China, in February, 2003. Lancet, 2003, 362(9393), 1353-1358.
[http://dx.doi.org/10.1016/S0140-6736(03)14630-2] [PMID: 14585636]
[3]
Zumla, A.; Chan, J.F.; Azhar, E.I.; Hui, D.S.; Yuen, K.Y. Coronaviruses - drug discovery and therapeutic options. Nat. Rev. Drug Discov., 2016, 15(5), 327-347.
[http://dx.doi.org/10.1038/nrd.2015.37] [PMID: 26868298]
[4]
Chan, J.F.; Lau, S.K.; Woo, P.C. The emerging novel Middle East respiratory syndrome coronavirus: the “knowns” and “unknowns”. J. Formos. Med. Assoc., 2013, 112(7), 372-381.
[http://dx.doi.org/10.1016/j.jfma.2013.05.010] [PMID: 23883791]
[5]
Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; Cheng, Z.; Yu, T.; Xia, J.; Wei, Y.; Wu, W.; Xie, X.; Yin, W.; Li, H.; Liu, M.; Xiao, Y.; Gao, H.; Guo, L.; Xie, J.; Wang, G.; Jiang, R.; Gao, Z.; Jin, Q.; Wang, J.; Cao, B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020, 395(10223), 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[6]
Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; Niu, P.; Zhan, F.; Ma, X.; Wang, D.; Xu, W.; Wu, G.; Gao, G.F.; Tan, W.; Yang, B.; Song, J. A novelcoronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med., 2020, 382(8), 727-733.
[http://dx.doi.org/10.1056/NEJMoa2001017] [PMID: 31978945]
[7]
Wu, A.; Peng, Y.; Huang, B.; Ding, X.; Wang, X.; Niu, P. Commentary genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell. Host. Microbe, 2019, 27, 325e8.
[8]
Johnson, N.P.; Mueller, J. Updating the accounts: Globalmortality of the 1918-1920 "Spanish" influenza pandemic. Bull Hist Med., 2002, 76, 105e15.
[9]
Kain, T.; Fowler, R. Preparing intensive care for the next pandemic influenza. Crit. Care, 2019, 23(1), 337.
[http://dx.doi.org/10.1186/s13054-019-2616-1] [PMID: 31665057]
[10]
Velavan, T.P.; Meyer, C.G. The COVID-19 epidemic. Trop. Med. Int. Health, 2020, 25(3), 278-280.
[http://dx.doi.org/10.1111/tmi.13383] [PMID: 32052514]
[11]
Graham, R.L.; Baric, R.S. Recombination, reservoirs, and the modular spike: mechanisms of coronavirus cross-species transmission. J. Virol., 2010, 84(7), 3134-3146.
[http://dx.doi.org/10.1128/JVI.01394-09] [PMID: 19906932]
[12]
Li, F. Receptor recognition and cross-species infections of SARS coronavirus. Antiviral Res., 2013, 100(1), 246-254.
[http://dx.doi.org/10.1016/j.antiviral.2013.08.014] [PMID: 23994189]
[13]
Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; Niu, P.; Zhan, F.; Ma, X.; Wang, D.; Xu, W.; Wu, G.; Gao, G.F.; Tan, W. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med., 2020, 382(8), 727-733.
[http://dx.doi.org/10.1056/NEJMoa2001017] [PMID: 31978945]
[14]
Li, Q.; Guan, X.; Wu, P. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N. Engl. J. Med, 2020, NEJMoa2001316.
[15]
Ji, W.; Wang, W.; Zhao, X.; Zai, J.; Li, X. Homologous recombination within the spike glycoprotein of the newly identified coronavirus may boost cross-species transmission from snake to human. J. Med. Virol., 2020, 92, 433-440.
[http://dx.doi.org/10.1002/jmv.25682] [PMID: 31967321]
[16]
Zhou, P.; Yang, X.L.; Wang, X.G. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020, 579, 270-273.
[http://dx.doi.org/10.1038/s41586-020-2951-z]
[17]
Benvenuto, D.; Giovanetti, M.; Ciccozzi, A.; Spoto, S.; Angeletti, S.; Ciccozzi, M. The 2019-new coronavirus epidemic: Evidence for virus evolution. J. Med. Virol., 2020, 92(4), 455-459.
[http://dx.doi.org/10.1002/jmv.25688] [PMID: 31994738]
[18]
Chan, J.F.W.; Yuan, S.; Kok, K.H.; To, K.K.; Chu, H.; Yang, J.; Xing, F.; Liu, J.; Yip, C.C.; Poon, R.W.; Tsoi, H.W.; Lo, S.K.; Chan, K.H.; Poon, V.K.; Chan, W.M.; Ip, J.D.; Cai, J.P.; Cheng, V.C.; Chen, H.; Hui, C.K.; Yuen, K.Y. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: A study of a family cluster. Lancet, 2020, 395(10223), 514-523.
[http://dx.doi.org/10.1016/S0140-6736(20)30154-9] [PMID: 31986261]
[19]
Wu, Q.; Zhang, Y.; Lü, H.; Wang, J.; He, X.; Liu, Y.; Ye, C.; Lin, W.; Hu, J.; Ji, J.; Xu, J.; Ye, J.; Hu, Y.; Chen, W.; Li, S.; Wang, J.; Wang, J.; Bi, S.; Yang, H. The E protein is a multifunctional membrane protein of SARS-CoV. Genomics Proteomics Bioinformatics, 2003, 1(2), 131-144.
[http://dx.doi.org/10.1016/S1672-0229(03)01017-9] [PMID: 15626343]
[20]
Shereen, M.A.; Khan, S.; Kazmi, A.; Bashir, N.; Siddique, R. COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. J. Adv. Res., 2020, 24, 91-98.
[http://dx.doi.org/10.1016/j.jare.2020.03.005] [PMID: 32257431]
[21]
Koma, W.; Neuman, T. How many adults are at risk of serious illness if infected with coronavirus? 2020. Available from: http://files.kff.org/attachment/Data-Note-How-Many-AdultsAre-at-Risk-of-Serious-Illness-If-Infected-with-Coronavirus.pdf
[22]
Chen, N.; Zhou, M.; Dong, X.; Qu, J.; Gong, F.; Han, Y.; Qiu, Y.; Wang, J.; Liu, Y.; Wei, Y.; Xia, J.; Yu, T.; Zhang, X.; Zhang, L. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet, 2020, 395(10223), 507-513.
[http://dx.doi.org/10.1016/S0140-6736(20)30211-7] [PMID: 32007143]
[23]
Liu, J.; Zheng, X.; Tong, Q.; Li, W.; Wang, B.; Sutter, K.; Trilling, M.; Lu, M.; Dittmer, U.; Yang, D. Overlapping and discrete aspects of the pathology and pathogenesis of the emerging human pathogenic coronaviruses SARS-CoV, MERS-CoV, and 2019-nCoV. J. Med. Virol., 2020, 92(5), 491-494.
[http://dx.doi.org/10.1002/jmv.25709] [PMID: 32056249]
[24]
Chan, J.F.W.; Kok, K.H.; Zhu, Z.; Chu, H.; To, K.K.W.; Yuan, S. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg. Microbe. Infect, 2020, 9, 221e36.
[25]
Loon, S.C.; Teoh, S.C.; Oon, L.L.; Se-Thoe, S.Y.; Ling, A.E.; Leo, Y.S.; Leong, H.N. The severe acute respiratory syndrome coronavirus in tears. Br. J. Ophthalmol., 2004, 88(7), 861-863.
[http://dx.doi.org/10.1136/bjo.2003.035931] [PMID: 15205225]
[26]
Xinhua, China’s CDC detects a large number of new coronaviruses in the South China seafood market in Wuhan. Available from: https://www.xinhuanet.com/2020-01/27/c_1125504355.htm [Accessed 20 Feb 2020]
[27]
Camilla, R.; Mirjam, S.; Peter, S.; Gisela, S.; Guenter F.;, Claudia W.; Thorbjörn, Verena, T.; Christian, T., Wolfgang, G.; Michael, S.; Christian, D.; Patrick, V.; Katrin,Z.; Sabine, Z.; Roman, W.; Michael, H.. Transmission of 2019-ncov infection from an asymptomatic contact in Germany. N. Engl. J. Med., 2020, 382, 970-971.
[28]
Divya, M.; Vijayakumar, S.; Chen, J.; Vaseeharan, B.; Durán-Lara, E.F. A review of South Indian medicinal plant has the ability to combat against deadly viruses along with COVID-19? Microb. Pathog., 2020, 28, 104277.
[http://dx.doi.org/10.1016/j.micpath.2020.104277] [PMID: 32473390]
[29]
Barlan, A.; Zhao, J.; Sarkar, M.K.; Li, K.; McCray, P.B., Jr; Perlman, S.; Gallagher, T. Receptor variation and susceptibility to Middle East respiratory syndrome coronavirus infection. J. Virol., 2014, 88(9), 4953-4961.
[http://dx.doi.org/10.1128/JVI.00161-14] [PMID: 24554656]
[30]
Li, G.; Chen, X.; Xu, A. Profile of specific antibodies to the SARS-associatedcoronavirus. N. Engl. J. Med, 2003, 349, 508e509.
[31]
Channappanavar, R.; Fehr, A.R.; Vijay, R. Dysregulated type I interferonand inflammatory monocyte-macrophage responses cause lethal pneumoniain SARS-CoV-infected mice. Cell Host Microbe., 2016, 19(2), 181-93.
[32]
Menachery, D.; Schafer, A.; Burnum-Johnson, K.E. MERS-CoV and H5N1influenza virus antagonize antigen presentation by altering the epigeneticlandscape. Proc. Natl. Acad. Sci. U.S.A., 2018, 115, p. E1012eE1021.
[33]
Peiris, J.S.; Guan, Y.; Yuen, K.Y. Severe acute respiratory syndrome. Nat. Med., 2004, 10, S88eS97.
[http://dx.doi.org/10.1038/nm1143]
[34]
Belouzard, S.; Chu, V.C.; Whittaker, G.R. Activation of the SARS coronavirusspike protein via sequential proteolytic cleavage at two distinct sites. Proc.Natl. Acad. Sci. U.S.A., 2009, 106, p. 5871e5876.
[35]
Zhang, L.; Lin, D.; Sun, X.; Curth, U.; Drosten, C.; Sauerhering, L.; Becker, S.; Rox, K.; Hilgenfeld, R. Crystal structure of SARS- CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science, 2020, 368(6489), 409-412.
[http://dx.doi.org/10.1126/science.abb3405] [PMID: 32198291]
[36]
Zhao, D.C.; Li, Y.M.; Ma, J.L.; Yi, N.; Yao, Z.Y.; Li, Y.P.; Quan, Y.; Li, X.N.; Xu, C.L.; Qiu, Y.; Wu, L.Q. Single-cell RNA sequencing reveals distinct gene expression patterns in glucose metabolism of human preimplantation embryos. Reprod. Fertil. Dev., 2019, 31(2), 237-247.
[http://dx.doi.org/10.1071/RD18178] [PMID: 30017025]
[37]
Wang, M.; Cao, R.; Zhang, L.; Yang, X.; Liu, J.; Xu, M.; Shi, Z.; Hu, Z.; Zhong, W.; Xiao, G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res., 2020, 30(3), 269-271.
[http://dx.doi.org/10.1038/s41422-020-0282-0] [PMID: 32020029]
[38]
Gordon, C.J.; Tchesnokov, E.P.; Feng, J.Y.; Porter, D.P.; Götte, M. The antiviral compound remdesivir potently inhibits RNA-dependent RNA polymerase from Middle East respiratory syndrome coronavirus. J. Biol. Chem., 2020, 295(15), 4773-4779.
[http://dx.doi.org/10.1074/jbc.AC120.013056] [PMID: 32094225]
[39]
Gordon, D.E.; Jang, G.M.; Bouhaddou, M. Xu, J.; Obernier, K.; White, K.M.; O'Meara, M.J.; Rezelj, V.V.; Guo, J.Z.; Swaney, D.L.; Tummino, T.A.; Hüttenhain, R.; Kaake, R.M.; Richards, A.L.; Tutuncuoglu, B.; Foussard, H.; Batra, J.; Haas, K.; Modak, M.; Kim, M.; Haas, P.; Polacco, B.J.; Braberg, H.; Fabius, J.M.; Eckhardt, M.; Soucheray, M.; Bennett, M.J.; Cakir, M.; McGregor, M.J.; Li, Q.; Meyer, B.; Roesch, F.; Vallet, T.; Mac Kain, A.; Miorin, L.; Moreno, E.; Naing, Z.Z.C.; Zhou, Y.; Peng, S.; Shi, Y.; Zhang, Z.; Shen, W.; Kirby, I.T.; Melnyk, J.E.; Chorba, J.S.; Lou, K.; Dai, S.A.; Barrio-Hernandez, I.; Memon, D.; Hernandez-Armenta, C.; Lyu, J.; Mathy, C.J.P.; Perica, T.; Pilla, K.B.; Ganesan, S.J.; Saltzberg, D.J.; Rakesh, R.; Liu, X.; Rosenthal, S.B.; Calviello, L.; Venkataramanan, S.; Liboy-Lugo, J.; Lin, Y.; Huang, X.P.; Liu, Y.; Wankowicz, S.A.; Bohn, M.; Safari, M.; Ugur, F.S.; Koh, C.; Savar, N.S.; Tran, Q.D.; Shengjuler, D.; Fletcher, S.J.; O'Neal, M.C.; Cai, Y.; Chang, J.C.J.; Broadhurst, D.J.; Klippsten, S.; Sharp, P.P.; Wenzell, N.A.; Kuzuoglu-Ozturk, D.; Wang, H.Y.; Trenker, R.; Young, J.M.; Cavero, D.A.; Hiatt, J.; Roth, T.L.; Rathore, U.; Subramanian, A.; Noack, J.; Hubert, M.; Stroud, R.M.; Frankel, A.D.; Rosenberg, O.S.; Verba, K.A.; Agard, D.A.; Ott, M.; Emerman, M.; Jura, N.; von Zastrow, M.; Verdin, E.; Ashworth, A.; Schwartz, O.; d'Enfert, C.; Mukherjee, S.; Jacobson, M.; Malik, H.S.; Fujimori, D.G.; Ideker, T.; Craik, C.S.; Floor, S.N.; Fraser, J.S.; Gross, J.D.; Sali, A.; Roth, B.L.; Ruggero, D.; Taunton, J.; Kortemme, T.; Beltrao, P.; Vignuzzi, M.; García-Sastre, A.; Shokat, K.M.; Shoichet, B.K.; Krogan, N.J. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing.Nature; , 2020, 583, pp. (7816)459-468.
[http://dx.doi.org/10.1038/s41586-020-2286-9] [PMID: 32353859]
[40]
Schoeman, D.; Fielding, B.C. Coronavirus envelope protein: current knowledge. Virol. J., 2019, 16(1), 69.
[http://dx.doi.org/10.1186/s12985-019-1182-0] [PMID: 31133031]
[41]
Hui, D.S. Epidemic and emerging coronaviruses (severe acute respiratory syndrome and Middle East respiratory syndrome). Clin. Chest Med., 2017, 38(1), 71-86.
[http://dx.doi.org/10.1016/j.ccm.2016.11.007] [PMID: 28159163]
[42]
Li, H.Y.; Ramalingam, S.; Chye, M.L. Accumulation of recombinant SARS-CoV spike protein in plant cytosol and chloroplasts indicate potential for development of plant-derived oral vaccines. Exp. Biol. Med. (Maywood), 2006, 231(8), 1346-1352.
[http://dx.doi.org/10.1177/153537020623100808] [PMID: 16946403]
[43]
Ren, W.; Li, W.; Yu, M.; Hao, P.; Zhang, Y.; Zhou, P.; Zhang, S.; Zhao, G.; Zhong, Y.; Wang, S.; Wang, L.F.; Shi, Z. Full-length genome sequences of two SARS-like coronaviruses in horseshoe bats and genetic variation analysis. J. Gen. Virol., 2006, 87(Pt 11), 3355-3359.
[http://dx.doi.org/10.1099/vir.0.82220-0] [PMID: 17030870]
[44]
Fu, H.; Chao, T.; Chan, Y.; Kao, H.; Liu, W.; Wang, T.; Pang, T; Lin, ; Tsai, Y; Lin, J; Chang, S; Liu, H Distinct inductions of and responses to type i and type iii interferons promote infections in two sars-cov-2 isolates. bioRxiv, 2020, 4, 30.071357.
[45]
Frieman, M.; Yount, B.; Heise, M.; Kopecky-Bromberg, S.A.; Palese, P.; Baric, R.S. Severe acute respiratory syndrome coronavirus ORF6 antagonizes STAT1 function by sequestering nuclear import factors on the rough endoplasmic reticulum/Golgi membrane. J. Virol., 2007, 81(18), 9812-9824.
[http://dx.doi.org/10.1128/JVI.01012-07] [PMID: 17596301]
[46]
Narayanan, K.; Huang, C.; Lokugamage, K.; Kamitani, W.; Ikegami, T.; Tseng, C.T.; Makino, S. Severe acute respiratory syndrome coronavirus nsp1 suppresses host gene expression, including that of type I interferon, in infected cells. J. Virol., 2008, 82(9), 4471-4479.
[http://dx.doi.org/10.1128/JVI.02472-07] [PMID: 18305050]
[47]
Wathelet, M.G.; Orr, M.; Frieman, M.B.; Baric, R.S. Severe acute respiratory syndrome coronavirus evades antiviral signaling: role of nsp1 and rational design of an attenuated strain. J. Virol., 2007, 81(21), 11620-11633.
[http://dx.doi.org/10.1128/JVI.00702-07] [PMID: 17715225]
[48]
Wu, F.; Zhao, S.; Yu, B.; Chen, Y.M.; Wang, W.; Song, Z.G. A newcoronavirus associated with human respiratory disease in China. Nature, 2020, 579, 265e9.
[49]
Malik, Y.S.; Sircar, S.; Bhat, S.; Sharun, K.; Dhama, K.; Dadar, M. Emerging novel coronavirus (2019-nCoV) d current scenario, evolutionary perspective based on genome analysis and recent developments. Vet Q, 2019, 40, 68e76.
[50]
Peiris, J.S.M.; Chu, C.M.; Cheng, V.C.C.; Chan, K.S.; Hung, I.F.N.; Poon, L.L.M. Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: A prospective study. Lancet, 2003, 361, 1767e72.
[http://dx.doi.org/10.1016/S0140-6736(03)13412-5]
[51]
Belouzard, S.; Millet, J.K.; Licitra, B.N.; Whittaker, G.R. Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses, 2012, 4(6), 1011-1033.
[http://dx.doi.org/10.3390/v4061011] [PMID: 22816037]
[52]
Li, C.; Debing, Y.; Jankevicius, G.; Neyts, J.; Ahel, I.; Coutard, B.; Canard, B. Viral macro domains reverse protein adp-ribosylation. J. Virol., 2016, 90(19), 8478-8486.
[http://dx.doi.org/10.1128/JVI.00705-16] [PMID: 27440879]
[53]
Šmak, P.; Chandrabose, S.; Tvaroška, I.; Koča, J. Pan-selectin inhibitors as potential therapeutics for COVID-19 treatment: In silico screening study. Glycobiology, 2021, 31(8), 975-987.
[http://dx.doi.org/10.1093/glycob/cwab021] [PMID: 33822042]
[54]
Kam, Y.W.; Okumura, Y.; Kido, H.; Ng, L.F.P.; Bruzzone, R.; Altmeyer, R. Cleavage of the SARS coronavirus spike glycoprotein by airway proteases enhances virus entry into human bronchial epithelial cells in vitro published. PLoS One, 2009, 4, 1-10.
[http://dx.doi.org/10.1371/journal.pone.0007870]
[55]
Li, F.; Li, W.; Farzan, M.; Harrison, S.C. Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science, 2005, 309(5742), 1864-1868.
[http://dx.doi.org/10.1126/science.1116480] [PMID: 16166518]
[56]
Prabakaran, P.; Gan, J.; Feng, Y.; Zhu, Z.; Choudhry, V.; Xiao, X.; Ji, X.; Dimitrov, D.S. Structure of severe acute respiratory syndrome coronavirus receptor-binding domain complexed with neutralizing antibody. J. Biol. Chem., 2006, 281(23), 15829-15836.
[http://dx.doi.org/10.1074/jbc.M600697200] [PMID: 16597622]
[57]
Masters, P.S. The molecular biology of coronaviruses. Adv. Virus Res., 2006, 66, 193-292.
[http://dx.doi.org/10.1016/S0065-3527(06)66005-3] [PMID: 16877062]
[58]
Wrapp, D.; Wang, N.; Corbett, K.S.; Goldsmith, J.A.; Hsieh, C.L.; Abiona, O.; Graham, B.S.; McLellan, J.S. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science, 2020, 367(6483), 1260-1263.
[http://dx.doi.org/10.1126/science.abb2507] [PMID: 32075877]
[59]
Giri, R.; Bhardwaj, T.; Shegane, M. Understanding COVID-19 via comparative analysis of dark proteomes of SARS-CoV-2, human SARS and bat SARS-like coronaviruses. Cell Mol Life Sci, 78(4), 1655-1688.
[60]
Hansen, J.; Baum, A.; Pascal, K.E.; Russo, V.; Giordano, S.; Wloga, E.; Fulton, B.O.; Yan, Y.; Koon, K.; Patel, K.; Chung, K.M.; Hermann, A.; Ullman, E.; Cruz, J.; Rafique, A.; Huang, T.; Fairhurst, J.; Libertiny, C.; Malbec, M.; Lee, W.Y.; Welsh, R.; Farr, G.; Pennington, S.; Deshpande, D.; Cheng, J.; Watty, A.; Bouffard, P.; Babb, R.; Levenkova, N.; Chen, C.; Zhang, B.; Romero Hernandez, A.; Saotome, K.; Zhou, Y.; Franklin, M.; Sivapalasingam, S.; Lye, D.C.; Weston, S.; Logue, J.; Haupt, R.; Frieman, M.; Chen, G.; Olson, W.; Murphy, A.J.; Stahl, N.; Yancopoulos, G.D.; Kyratsous, C.A. Studies in humanized mice and convalescent humans yield a SARS-CoV-2 antibody cocktail. Science, 2020, 369(6506), 1010-1014.
[http://dx.doi.org/10.1126/science.abd0827] [PMID: 32540901]
[61]
Baum, A.; Fulton, B.O.; Wloga, E.; Copin, R.; Pascal, K.E.; Russo, V. Antibody cocktail to SARS-CoV-2 spike proteinprevents rapid mutational escape seen with individualantibodies. Science, 2020, 80, eabd0831.
[62]
Baum, A.; Ajithdoss, D.; Copin, R.; Zhou, A.; Lanza, K.; Negron, N. REGN-COV2 antibodies prevent and treat SARS-CoV-2infection in rhesus macaques and hamsters. Science, 2020, 80, eabe2402.
[63]
Cai, Y.; Zhang, J.; Xiao, T.; Peng, H.; Sterling, S.M.; Walsh, R.M., Jr; Rawson, S.; Rits-Volloch, S.; Chen, B. Distinct conformational states of SARS-CoV-2 spike protein. Science, 2020, 369(6511), 1586-1592.
[http://dx.doi.org/10.1126/science.abd4251] [PMID: 32694201]
[64]
Matsuyama, S.; Nao, N.; Shirato, K.; Kawase, M.; Saito, S.; Takayama, I.; Nagata, N.; Sekizuka, T.; Katoh, H.; Kato, F.; Sakata, M.; Tahara, M.; Kutsuna, S.; Ohmagari, N.; Kuroda, M.; Suzuki, T.; Kageyama, T.; Takeda, M. Enhanced isolation of SARS- CoV-2 by TMPRSS2-expressing cells. Proc. Natl. Acad. Sci. USA, 2020, 117(13), 7001-7003.
[http://dx.doi.org/10.1073/pnas.2002589117] [PMID: 32165541]
[65]
Du, L.; He, Y.; Zhou, Y.; Liu, S.; Zheng, B.J.; Jiang, S. The spike protein of SARS-CoV--a target for vaccine and therapeutic development. Nat. Rev. Microbiol., 2009, 7(3), 226-236.
[http://dx.doi.org/10.1038/nrmicro2090] [PMID: 19198616]
[66]
Xia, S.; Liu, M.; Wang, C.; Xu, W.; Lan, Q.; Feng, S.; Qi, F.; Bao, L.; Du, L.; Liu, S.; Qin, C.; Sun, F.; Shi, Z.; Zhu, Y.; Jiang, S.; Lu, L. Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion. Cell Res., 2020, 30(4), 343-355.
[http://dx.doi.org/10.1038/s41422-020-0305-x] [PMID: 32231345]
[67]
Rout, J.; Swain, B.C.; Tripathy, U. In silico investigation of spice molecules as potent inhibitor of SARS-CoV-2. J. Biomol. Struct. Dyn., 2020, 1-15.
[http://dx.doi.org/10.1080/07391102.2020.1819879] [PMID: 32938313]
[68]
Unni, S.; Aouti, S.; Balasundaram, P. Identification of a potent inhibitor targeting the spike protein of pandemic human coronavirus, SARS-CoV-2 by computational methods. ChemRxiv, 2020, 45(1), 130.
[http://dx.doi.org/10.26434/chemrxiv.12197934.v1]
[69]
Zhu, Y.; Yu, D.; Yan, H.; Chong, H.; He, Y.; Pfeiffer, J.K. Design of potent membrane fusion inhibitors against SARS-CoV-2, an emerging coronavirus with high fusogenic activity. J. Virol., 2020, 94(14), e00635-e20.
[http://dx.doi.org/10.1128/JVI.00635-20] [PMID: 32376627]
[70]
Musarrat, F.; Chouljenko, V.; Dahal, A.; Nabi, R.; Chouljenko, T.; Jois, S.D.; Kousoulas, K.G. The anti-HIV drug nelfinavir mesylate (Viracept) is a potent inhibitor of cell fusion caused by the SARSCoV-2 spike (S) glycoprotein warranting further evaluation as an antiviral against COVID-19 infections. J. Med. Virol., 2020, 92(10), 2087-2095.
[http://dx.doi.org/10.1002/jmv.25985] [PMID: 32374457]
[71]
Kulkarni, S.A.; Nagarajan, S.K.; Ramesh, V.; Palaniyandi, V.; Selvam, S.P.; Madhavan, T. Computational evaluation of major components from plant essential oils as potent inhibitors of SARS- CoV-2 spike protein. J. Mol. Struct., 2020, 1221, 128823.
[http://dx.doi.org/10.1016/j.molstruc.2020.128823] [PMID: 32834111]
[72]
Zhang, J.; Zeng, H.; Gu, J.; Li, H.; Zheng, L.; Zou, Q. Progress and prospects on vaccine development against sars-cov-2. Vaccines (Basel), 2020, 8(2), 153.
[http://dx.doi.org/10.3390/vaccines8020153] [PMID: 32235387]
[73]
Buchholz, U.J.; Bukreyev, A.; Yang, L.; Lamirande, E.W.; Murphy, B.R.; Subbarao, K.; Collins, P.L. Contributions of the structural proteins of severe acute respiratory syndrome coronavirus to protective immunity. Proc. Natl. Acad. Sci. USA, 2004, 101(26), 9804-9809.
[http://dx.doi.org/10.1073/pnas.0403492101] [PMID: 15210961]
[74]
Hofmann, H.; Hattermann, K.; Marzi, A.; Gramberg, T.; Geier, M.; Krumbiegel, M.; Kuate, S.; Uberla, K.; Niedrig, M.; Pöhlmann, S. S protein of severe acute respiratory syndrome-associated coronavirus mediates entry into hepatoma cell lines and is targeted by neutralizing antibodies in infected patients. J. Virol., 2004, 78(12), 6134-6142.
[http://dx.doi.org/10.1128/JVI.78.12.6134-6142.2004] [PMID: 15163706]
[75]
Kuhn, J.H.; Li, W.; Choe, H.; Farzan, M. Angiotensin-converting enzyme 2: A functional receptor for SARS coronavirus. Cell. Mol. Life Sci., 2004, 61(21), 2738-2743.
[http://dx.doi.org/10.1007/s00018-004-4242-5] [PMID: 15549175]
[76]
Othman, H.; Bouslama, Z.; Brandenburg, J.T.; da Rocha, J.; Hamdi, Y.; Ghedira, K.; Srairi-Abid, N.; Hazelhurst, S. Interaction of the spike protein RBD from SARS-CoV-2 with ACE2: Similarity with SARS-CoV, hot-spot analysis and effect of the receptor polymorphism. Biochem. Biophys. Res. Commun., 2020, 527(3), 702-708.
[http://dx.doi.org/10.1016/j.bbrc.2020.05.028] [PMID: 32410735]
[77]
Prabakaran, P.; Xiao, X.; Dimitrov, D.S. A model of the ACE2 structure and function as a SARS-CoV receptor. Biochem. Biophys. Res. Commun., 2004, 314(1), 235-241.
[http://dx.doi.org/10.1016/j.bbrc.2003.12.081] [PMID: 14715271]
[78]
Zhang, R.; Li, Y.; Cowley, T.J.; Steinbrenner, A.D.; Phillips, J.M.; Yount, B.L.; Baric, R.S.; Weiss, S.R. The nsp1, nsp13, and M proteins contribute to the hepatotropism of murine coronavirus JHM.WU. J. Virol., 2015, 89(7), 3598-3609.
[http://dx.doi.org/10.1128/JVI.03535-14] [PMID: 25589656]
[79]
He, Y.; Li, J.; Jiang, S. A single amino acid substitution (R441A) in the receptor-binding domain of SARS coronavirus spike protein disrupts the antigenic structure and binding activity. Biochem. Biophys. Res. Commun., 2006, 344(1), 106-113.
[http://dx.doi.org/10.1016/j.bbrc.2006.03.139] [PMID: 16615996]
[80]
Jeffers, S.A.; Tusell, S.M.; Gillim-Ross, L.; Hemmila, E.M.; Achenbach, J.E.; Babcock, G.J.; Thomas, W.D., Jr; Thackray, L.B.; Young, M.D.; Mason, R.J.; Ambrosino, D.M.; Wentworth, D.E.; Demartini, J.C.; Holmes, K.V. CD209L (L-SIGN) is a receptor for severe acute respiratory syndrome coronavirus. Proc. Natl. Acad. Sci. USA, 2004, 101(44), 15748-15753.
[http://dx.doi.org/10.1073/pnas.0403812101] [PMID: 15496474]
[81]
Zhou, Y.; Wu, W.; Xie, L.; Wang, D.; Ke, Q.; Hou, Z.; Wu, X.; Fang, Y.; Chen, H.; Xiao, S.; Fang, L. Cellular RNA helicase DDX1 is involved in transmissible gastroenteritis virus nsp14-induced interferon-beta production. Front. Immunol., 2017, 8, 940.
[http://dx.doi.org/10.3389/fimmu.2017.00940] [PMID: 28848548]
[82]
Wang, Q.; Zhang, Y.; Wu, L.; Niu, S.; Song, C.; Zhang, Z.; Lu, G.; Qiao, C.; Hu, Y.; Yuen, K.Y.; Wang, Q.; Zhou, H.; Yan, J.; Qi, J. Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell, 2020, 181(4), 894-904.e9.
[http://dx.doi.org/10.1016/j.cell.2020.03.045] [PMID: 32275855]
[83]
Xiao, F.; Tang, M.; Zheng, X.; Li, C.; He, J.; Hong, Z. Evidence for gastrointestinal infection of SARS-CoV-2. Gasteronterology, 2020, 158(6), 1831-1833. e3.
[84]
Lai, M.M.C.; Holmes, K.V. Coronaviridae: The viruses and their replication.Fields virology, 4th ed; Knipe, D.M.; Howley, P.M., Eds.; Lippincott Williams & Wilkins: Philadelphia, PA, 2001, pp. 1163-1179.
[85]
Venkatagopalan, P.; Daskalova, S.M.; Lopez, L.A.; Dolezal, K.A.; Hogue, B.G. Coronavirus envelope (E) protein remains at the site of assembly. Virology, 2015, 478, 75-85.
[http://dx.doi.org/10.1016/j.virol.2015.02.005] [PMID: 25726972]
[86]
Nieto-Torres, J.L.; Dediego, M.L.; Álvarez, E.; Jiménez- Guardeño, J.M.; Regla-Nava, J.A.; Llorente, M.; Kremer, L.; Shuo, S.; Enjuanes, L. Subcellular location and topology of severe acute respiratory syndrome coronavirus envelope protein. Virology, 2011, 415(2), 69-82.
[http://dx.doi.org/10.1016/j.virol.2011.03.029] [PMID: 21524776]
[87]
Vabret, A.; Dina, J.; Gouarin, S.; Petitjean, J.; Tripey, V.; Brouard, J.; Freymuth, F. Human (non-severe acute respiratory syndrome) coronavirus infections in hospitalised children in France. J. Paediatr. Child Health, 2008, 44(4), 176-181.
[http://dx.doi.org/10.1111/j.1440-1754.2007.01246.x] [PMID: 17999671]
[88]
Vabret, A.; Mourez, T.; Gouarin, S.; Petitjean, J.; Freymuth, F. An outbreak of coronavirus OC43 respiratory infection in Normandy, France. Clin. Infect. Dis., 2003, 36(8), 985-989.
[http://dx.doi.org/10.1086/374222] [PMID: 12684910]
[89]
Corse, E.; Machamer, C.E. Infectious bronchitis virus E protein is targeted to the Golgi complex and directs release of virus-like particles. J. Virol., 2000, 74(9), 4319-4326.
[http://dx.doi.org/10.1128/JVI.74.9.4319-4326.2000] [PMID: 10756047]
[90]
Wu, P.; Hao, X.; Lau, E.; Wong, J.Y.; Leung, K.; Wu, J.T.; Cowling, B.J.; Leung, G.M. Real-time tentative assessment of the epidemiological characteristics of novel coronavirus infections in Wuhan, China, as at 22 January 2020. Euro. Communic. Dis. Bulletin, 2020, 25(3), 2000044.
[91]
Teoh, K.T.; Siu, Y.L.; Chan, W.L.; Schlüter, M.A.; Liu, C.J.; Peiris, J.S.; Bruzzone, R.; Margolis, B.; Nal, B. The SARS coronavirus E protein interacts with PALS1 and alters tight junction formation and epithelial morphogenesis. Mol. Biol. Cell, 2010, 21(22), 3838-3852.
[http://dx.doi.org/10.1091/mbc.e10-04-0338] [PMID: 20861307]
[92]
Javier, R.T.; Rice, A.P. Emerging theme: cellular PDZ proteins as common targets of pathogenic viruses. J. Virol., 2011, 85(22), 11544-11556.
[http://dx.doi.org/10.1128/JVI.05410-11] [PMID: 21775458]
[93]
Gerek, Z.N.; Keskin, O.; Ozkan, S.B. Identification of specificity and promiscuity of PDZ domain interactions through their dynamic behavior. Proteins, 2009, 77(4), 796-811.
[http://dx.doi.org/10.1002/prot.22492] [PMID: 19585657]
[94]
Arbely, E.; Khattari, Z.; Brotons, G.; Akkawi, M.; Salditt, T.; Arkin, I.T. A highly unusual palindromic transmembrane helical hairpin formed by SARS coronavirus E protein. J. Mol. Biol., 2004, 341(3), 769-779.
[http://dx.doi.org/10.1016/j.jmb.2004.06.044] [PMID: 15288785]
[95]
Leonard Riley, J.; Preston Claudia, C.; Gucwa Melanie, E.; Afeworki, Yohannes; Selya Arielle, S.; Faustino Randolph, S. Protein subdomain enrichment of nup155 variants identify a novel predicted pathogenic hotspot. Front. Cardiovasc. Med., 2020, 7, 8.
[http://dx.doi.org/10.3389/fcvm.2020.00008]
[96]
Kamitani, W.; Huang, C.; Narayanan, K.; Lokugamage, K.G.; Makino, S. A two-pronged strategy to suppress host protein synthesis by SARS coronavirus Nsp1 protein. Nat. Struct. Mol. Biol., 2009, 16(11), 1134-1140.
[http://dx.doi.org/10.1038/nsmb.1680] [PMID: 19838190]
[97]
Upton, C.; Slack, S.; Hunter, A.L.; Ehlers, A.; Roper, R.L. Poxvirus orthologous clusters: Toward defining the minimum essential poxvirus genome. J. Virol., 2003, 77(13), 7590-7600.
[http://dx.doi.org/10.1128/JVI.77.13.7590-7600.2003] [PMID: 12805459]
[98]
Surya, W.; Samsó, M.; Torres, J. Structural and functional aspects of viroporins in human respiratory viruses: respiratory syncytial virus and coronaviruses.Respiratory disease and infection - a new insight; Mahboub, B.H., Ed.; Intech. Open, 2013.
[http://dx.doi.org/10.5772/53957]
[99]
Borkotoky, S.; Banerjee, M. A computational prediction of SARS-CoV-2 structural protein inhibitors from Azadirachta indica (Neem). J. Biomol. Struct. Dyn., 2021, 39(11), 4711-4721.
[http://dx.doi.org/10.1080/07391102.2020.1774419] [PMID: 32462988]
[100]
Sakai, Y.; Kawachi, K.; Terada, Y.; Omori, H.; Matsuura, Y.; Kamitani, W. Two-amino acids change in the nsp4 of SARS coronavirus abolishes viral replication. Virology, 2017, 510, 165-174.
[http://dx.doi.org/10.1016/j.virol.2017.07.019] [PMID: 28738245]
[101]
Lei, J.; Kusov, Y.; Hilgenfeld, R. Nsp3 of coronaviruses: Structures and functions of a large multi-domain protein. Antiviral Res., 2018, 149, 58-74.
[http://dx.doi.org/10.1016/j.antiviral.2017.11.001] [PMID: 29128390]
[102]
Báez-Santos, Y.M.; St John, S.E.; Mesecar, A.D. The SARS-coronavirus papain-like protease: structure, function and inhibition by designed antiviral compounds. Antiviral Res., 2015, 115, 21-38.
[http://dx.doi.org/10.1016/j.antiviral.2014.12.015] [PMID: 25554382]
[103]
Schubert, K.; Karousis, E.D.; Jomaa, A.; Scaiola, A.; Echeverria, B.; Gurzeler, L.A.; Leibundgut, M.; Thiel, V.; Mühlemann, O.; Ban, N. SARS-CoV-2 Nsp1 binds the ribosomal mRNA channel to inhibit translation. Nat. Struct. Mol. Biol., 2020, 27(10), 959-966.
[http://dx.doi.org/10.1038/s41594-020-0511-8] [PMID: 32908316]
[104]
de Lima Menezes, G.; da Silva, R.A. Identification of potential drugs against SARS-CoV-2 non-structural protein 1 (nsp1). J. Biomol. Struct. Dyn., 2021, 39(15), 5657-5667.
[http://dx.doi.org/10.1080/07391102.2020.1792992] [PMID: 32657643]
[105]
Pitsillou, E.; Liang, J.; Hung, A.; Karagiannis, T.C. Inhibition of interferon-stimulated gene 15 and lysine 48-linked ubiquitin binding to the SARS-CoV-2 papain-like protease by small molecules: In silico studies. Chem. Phys. Lett., 2021, 771, 138468.
[http://dx.doi.org/10.1016/j.cplett.2021.138468] [PMID: 33716308]
[106]
Ratia, K.; Saikatendu, K.S.; Santarsiero, B.D.; Barretto, N.; Baker, S.C.; Stevens, R.C.; Mesecar, A.D. Severe acute respiratory syndrome coronavirus papain-like protease: structure of a viral deubiquitinating enzyme. Proc. Natl. Acad. Sci. USA, 2006, 103(15), 5717-5722.
[http://dx.doi.org/10.1073/pnas.0510851103] [PMID: 16581910]
[107]
Egloff, M.P.; Ferron, F.; Campanacci, V.; Longhi, S.; Rancurel, C.; Dutartre, H.; Snijder, E.J.; Gorbalenya, A.E.; Cambillau, C.; Canard, B. The severe acute respiratory syndrome-coronavirus replicative protein nsp9 is a single-stranded RNA-binding subunit unique in the RNA virus world. Proc. Natl. Acad. Sci. USA, 2004, 101(11), 3792-3796.
[http://dx.doi.org/10.1073/pnas.0307877101] [PMID: 15007178]
[108]
Freitas, B.T.; Durie, I.A.; Murray, J.; Longo, J.E.; Miller, H.C.; Crich, D.; Hogan, R.J.; Tripp, R.A.; Pegan, S.D. Characterization and noncovalent inhibition of the deubiquitinase and deISGylase activity of SARS-CoV-2 papain-like protease. ACS Infect. Dis., 2020, 6(8), 2099-2109.
[http://dx.doi.org/10.1021/acsinfecdis.0c00168] [PMID: 32428392]
[109]
Gao, X.; Qin, B.; Chen, P. Crystal structure of SARS-CoV-2 papain-like protease. Acta Pharm. Sin. B, 2021, 11(1), 237-245.
[http://dx.doi.org/10.1016/j.apsb.2020.08.014] [PMID: 32895623]
[110]
Zhang, L.; Lin, D.; Kusov, Y.; Nian, Y.; Ma, Q.; Wang, J.; von Brunn, A.; Leyssen, P.; Lanko, K.; Neyts, J.; de Wilde, A.; Snijder, E.J.; Liu, H.; Hilgenfeld, R. alpha-Ketoamides as broad-spectrum inhibitors of coronavirus and enterovirus replication: structure-based design, synthesis, and activity assessment. J. Med. Chem., 2020, 63(9), 4562-4578.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01828] [PMID: 32045235]
[111]
Morse, J.S.; Lalonde, T.; Xu, S.; Liu, W.R. Learning from the past: Possible urgent prevention and treatment options for severe acute respiratory infections caused by 2019-nCoV. ChemBioChem, 2020, 21(5), 730-738.
[http://dx.doi.org/10.1002/cbic.202000047] [PMID: 32022370]
[112]
Cao, B.; Wang, Y.; Wen, D.; Liu, W.; Wang, J.; Fan, G.; Ruan, L.; Song, B.; Cai, Y.; Wei, M.; Li, X.; Xia, J.; Chen, N.; Xiang, J.; Yu, T.; Bai, T.; Xie, X.; Zhang, L.; Li, C.; Yuan, Y.; Chen, H.; Li, H.; Huang, H.; Tu, S.; Gong, F.; Liu, Y.; Wei, Y.; Dong, C.; Zhou, F.; Gu, X.; Xu, J.; Liu, Z.; Zhang, Y.; Li, H.; Shang, L.; Wang, K.; Li, K.; Zhou, X.; Dong, X.; Qu, Z.; Lu, S.; Hu, X.; Ruan, S.; Luo, S.; Wu, J.; Peng, L.; Cheng, F.; Pan, L.; Zou, J.; Jia, C.; Wang, J.; Liu, X.; Wang, S.; Wu, X.; Ge, Q.; He, J.; Zhan, H.; Qiu, F.; Guo, L.; Huang, C.; Jaki, T.; Hayden, F.G.; Horby, P.W.; Zhang, D.; Wang, C. A trial of lopinavir-ritonavir in adults hospitalized with severe covid-19. N. Engl. J. Med., 2020, 382(19), 1787-1799.
[http://dx.doi.org/10.1056/NEJMoa2001282] [PMID: 32187464]
[113]
Owa, A.B.; Owa, O.T. Lopinavir/ritonavir use in Covid-19 infection: is it completely non-beneficial? J. Microbiol. Immunol. Infect., 2020, 53(5), 674-675.
[http://dx.doi.org/10.1016/j.jmii.2020.05.014] [PMID: 32474026]
[114]
Neuman, B.W. Bioinformatics and functional analyses of coronavirus nonstructural proteins involved in the formation of replicative organelles. Antiviral Res., 2016, 135, 97-107.
[http://dx.doi.org/10.1016/j.antiviral.2016.10.005] [PMID: 27743916]
[115]
Kusov, Y.; Tan, J.; Alvarez, E.; Enjuanes, L.; Hilgenfeld, R. A G-quadruplex-binding macrodomain within the “SARS-unique domain” is essential for the activity of the SARS-coronavirus replication-transcription complex. Virology, 2015, 484, 313-322.
[http://dx.doi.org/10.1016/j.virol.2015.06.016] [PMID: 26149721]
[116]
Li, F. Structure, function, and evolution of coronavirus spike proteins. Annu. Rev. Virol., 2016, 3(1), 237-261.
[http://dx.doi.org/10.1146/annurev-virology-110615-042301] [PMID: 27578435]
[117]
Fehr, A.R.; Jankevicius, G.; Ahel, I.; Perlman, S. Viral macrodomains: Unique mediators of viral replication and pathogenesis. Trends Microbiol., 2018, 26(7), 598-610.
[http://dx.doi.org/10.1016/j.tim.2017.11.011] [PMID: 29268982]
[118]
Alhammad, Y.M.O.; Fehr, A.R. The viral macrodomain counters host antiviral adp-ribosylation. Viruses, 2020, 12(4), 384.
[http://dx.doi.org/10.3390/v12040384] [PMID: 32244383]
[119]
McPherson, R.L.; Abraham, R.; Sreekumar, E.; Ong, S.E.; Cheng, S.J.; Baxter, V.K.; Kistemaker, H.A.; Filippov, D.V.; Griffin, D.E.; Leung, A.K. ADP-ribosylhydrolase activity of Chikungunya virus macrodomain is critical for virus replication and virulence. Proc. Natl. Acad. Sci. USA, 2017, 114(7), 1666-1671.
[http://dx.doi.org/10.1073/pnas.1621485114] [PMID: 28143925]
[120]
Claverie, J.M. A putative role of de-Mono-ADP-Ribosylation of STAT1 by the SARS-CoV-2 Nsp3 protein in the cytokine storm syndrome of COVID-19. Viruses, 2020, 12(6), E646.
[http://dx.doi.org/10.3390/v12060646] [PMID: 32549200]
[121]
Selvaraj, C.; Dinesh, D.C.; Panwar, U.; Boura, E.; Singh, S.K. High-throughput screening and quantum mechanics for identifying potent inhibitors against mac1 domain of sars-cov-2 nsp3. IEEE/ACM Trans. Comput. Biol. Bioinformatics, 2021, 14(4), 1264-1270.
[http://dx.doi.org/10.1109/TCBB.2020.3037136] [PMID: 33306471]
[122]
Frick, D.N.; Virdi, R.S.; Vuksanovic, N.; Dahal, N.; Silvaggi, N.R. Molecular basis for adp-ribose binding to the mac1 domain of sars-cov-2 nsp3. Biochemistry, 2020, 59(28), 2608-2615.
[http://dx.doi.org/10.1021/acs.biochem.0c00309] [PMID: 32578982]
[123]
Anand, K.; Palm, G.J.; Mesters, J.R.; Siddell, S.G.; Ziebuhr, J.; Hilgenfeld, R. Structure of coronavirus main proteinase reveals combination of a chymotrypsin fold with an extra alpha-helical domain. EMBO J., 2002, 21(13), 3213-3224.
[http://dx.doi.org/10.1093/emboj/cdf327] [PMID: 12093723]
[124]
Zhang, C.; Zheng, W.; Huang, X.; Bell, E.W.; Zhou, X.; Zhang, Y. Protein structure and sequence re-analysis of 2019-nCoV genome does not indicate snakes as its intermediate host or the unique similarity between its spike protein insertions and HIV-1. J. Proteome Res., 2020, 19(4), 1351-1360.
[http://dx.doi.org/10.1021/acs.jproteome.0c00129] [PMID: 32200634]
[125]
Mesecar, A.D. A taxonomically-driven approach to development of pot broad-Spectrum inhibitors of coronavirus main proteas including sars-Cov-2 (covid-19). Fract. Calc. Appl. Anal., 2020, 23, 635-655.
[126]
Jin, Z.; Du, X.; Xu, Y.; Deng, Y.; Liu, M.; Zhao, Y.; Zhang, B.; Li, X.; Zhang, L.; Peng, C.; Duan, Y.; Yu, J.; Wang, L.; Yang, K.; Liu, F.; Jiang, R.; Yang, X.; You, T.; Liu, X.; Yang, X.; Bai, F.; Liu, H.; Liu, X.; Guddat, L.W.; Xu, W.; Xiao, G.; Qin, C.; Shi, Z.; Jiang, H.; Rao, Z.; Yang, H. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature, 2020, 582(7811), 289-293.
[http://dx.doi.org/10.1038/s41586-020-2223-y] [PMID: 32272481]
[127]
Ziebuhr, J. The coronavirus replicase. Curr. Top. Microbiol. Immunol., 2005, 287, 57-94.
[http://dx.doi.org/10.1007/3-540-26765-4_3] [PMID: 15609509]
[128]
Ziebuhr, J.; Snijder, E.J.; Gorbalenya, A.E. Virus-encoded proteinases and proteolytic processing in the Nidovirales. J. Gen. Virol., 2000, 81(Pt 4), 853-879.
[http://dx.doi.org/10.1099/0022-1317-81-4-853] [PMID: 10725411]
[129]
Xue, X.; Yang, H.; Shen, W.; Zhao, Q.; Li, J.; Yang, K.; Chen, C.; Jin, Y.; Bartlam, M.; Rao, Z. Production of authentic SARS-CoV M(pro) with enhanced activity: Application as a novel tag-cleavage endopeptidase for protein overproduction. J. Mol. Biol., 2007, 366(3), 965-975.
[http://dx.doi.org/10.1016/j.jmb.2006.11.073] [PMID: 17189639]
[130]
Yang, H.; Yang, M.; Ding, Y.; Liu, Y.; Lou, Z.; Zhou, Z.; Sun, L.; Mo, L.; Ye, S.; Pang, H.; Gao, G.F.; Anand, K.; Bartlam, M.; Hilgenfeld, R.; Rao, Z. The crystal structures of severe acute respiratory syndrome virus main protease and its complex with an inhibitor. Proc. Natl. Acad. Sci. USA, 2003, 100(23), 13190-13195.
[http://dx.doi.org/10.1073/pnas.1835675100] [PMID: 14585926]
[131]
Nayarisseri, A.; Khandelwal, R.; Madhavi, M.; Selvaraj, C.; Panwar, U.; Sharma, K.; Hussain, T.; Singh, S.K. Shape-based machine learning models for the potential novel COVID-19 protease inhibitors assisted by molecular dynamics simulation. Curr. Top. Med. Chem., 2020, 20(24), 2146-2167.
[http://dx.doi.org/10.2174/1568026620666200704135327] [PMID: 32621718]
[132]
Ren, Z.; Yan, L.; Zhang, N.; Guo, Y.; Yang, C.; Lou, Z.; Rao, Z. The newly emerged SARS-like coronavirus HCoV-EMC also has an “Achilles’ heel”: current effective inhibitor targeting a 3C-like protease. Protein Cell, 2013, 4(4), 248-250.
[http://dx.doi.org/10.1007/s13238-013-2841-3] [PMID: 23549610]
[133]
Wang, F.; Chen, C.; Tan, W.; Yang, K.; Yang, H. Structure of main protease from human coronavirus NL63: insights for wide spectrum anti-coronavirus drug design. Sci. Rep., 2016, 6, 22677.
[http://dx.doi.org/10.1038/srep22677] [PMID: 26948040]
[134]
Sasidharan, S.; Selvaraj, C.; Singh, S.K.; Dubey, V.K.; Kumar, S.; Fialho, A.M.; Saudagar, P. Bacterial protein azurin and derived peptides as potential anti-SARS-CoV-2 agents: insights from molecular docking and molecular dynamics simulations. J. Biomol. Struct. Dyn., 2020, 1-16.
[http://dx.doi.org/10.1080/07391102.2020.1787864] [PMID: 32619162]
[135]
Choy, K.T.; Wong, A.Y.; Kaewpreedee, P.; Sia, S.F.; Chen, D.; Hui, K.P.Y.; Chu, D.K.W.; Chan, M.C.W.; Cheung, P.P.; Huang, X.; Peiris, M.; Yen, H.L. Remdesivir, lopinavir, emetine, and homoharringtonine inhibit SARS-CoV-2 replication in vitro. Antiviral Res., 2020, 178, 104786.
[http://dx.doi.org/10.1016/j.antiviral.2020.104786] [PMID: 32251767]
[136]
Kundu, P.; Selvaraj, C.; Singh, S.K.; Dubey, V.K. Identification of new anti-nCoV drug chemical compounds from Indian spices exploiting SARS-CoV-2 main protease as target. J. Biomol. Struct. Dyn., 2020, 39(9), 3428-3434.
[http://dx.doi.org/10.1080/07391102.2020.1763202] [PMID: 32362243]
[137]
Selvaraj, C.; Panwar, U.; Dinesh, D.C.; Boura, E.; Singh, P.; Dubey, V.K.; Singh, S.K.; Microsecond, M.D. Microsecond md simulation and multiple-conformation virtual screening to identify potential anti-covid-19 inhibitors against sars-cov-2 main protease. Front Chem., 2021, 8, 595273.
[http://dx.doi.org/10.3389/fchem.2020.595273] [PMID: 33585398]
[138]
Krupanidhi, S.; Abraham Peele, K.; Venkateswarulu, T.C.; Ayyagari, V.S.; Nazneen Bobby, M.; John Babu, D.; Venkata Narayana, A.; Aishwarya, G. Screening of phytochemical compounds of Tinospora cordifolia for their inhibitory activity on SARS-CoV-2: An in silico study. J. Biomol. Struct. Dyn., 2020, 39(15), 5799-5803.
[http://dx.doi.org/10.1080/07391102.2020.1787226] [PMID: 32627715]
[139]
Hung, H.C.; Ke, Y.Y.; Huang, S.Y.; Huang, P.N.; Kung, Y.A.; Chang, T.Y.; Yen, K.J.; Peng, T.T.; Chang, S.E.; Huang, C.T.; Tsai, Y.R.; Wu, S.H.; Lee, S.J.; Lin, J.H.; Liu, B.S.; Sung, W.C.; Shih, S.R.; Chen, C.T.; Hsu, J.T. Discovery of m protease inhibitors encoded by sars-cov-2. Antimicrob. Agents Chemother., 2020, 64(9), e00872-e20.
[http://dx.doi.org/10.1128/AAC.00872-20] [PMID: 32669265]
[140]
Dai, W.; Zhang, B.; Jiang, X.M.; Su, H.; Li, J.; Zhao, Y.; Xie, X.; Jin, Z.; Peng, J.; Liu, F.; Li, C.; Li, Y.; Bai, F.; Wang, H.; Cheng, X.; Cen, X.; Hu, S.; Yang, X.; Wang, J.; Liu, X.; Xiao, G.; Jiang, H.; Rao, Z.; Zhang, L.K.; Xu, Y.; Yang, H.; Liu, H. Structure-based design of antiviral drug candidates targeting the SARS- CoV-2 main protease. Science, 2020, 368(6497), 1331-1335.
[http://dx.doi.org/10.1126/science.abb4489] [PMID: 32321856]
[141]
Fu, L.; Ye, F.; Feng, Y.; Yu, F.; Wang, Q.; Wu, Y.; Zhao, C.; Sun, H.; Huang, B.; Niu, P.; Song, H.; Shi, Y.; Li, X.; Tan, W.; Qi, J.; Gao, G.F. Both Boceprevir and GC376 efficaciously inhibit SARS-CoV-2 by targeting its main protease. Nat. Commun., 2020, 11(1), 4417.
[http://dx.doi.org/10.1038/s41467-020-18233-x] [PMID: 32887884]
[142]
Khan, M.T.; Ali A, Wang, Q.; Irfan, M.; Khan, A.; Zeb, M.T.; Zhang, Y.J.; Chinnasamy, S.; Wei, D.Q. Marine natural compounds as potents inhibitors against the main protease of SARS-CoV-2—a molecular dynamic study. J. Biomol. Struct. Dyn., 2020, 39(10), 3627-3637.
[http://dx.doi.org/10.1080/07391102.2020.1769733] [PMID: 32410504]
[143]
Zhai, Y.; Sun, F.; Li, X.; Pang, H.; Xu, X.; Bartlam, M.; Rao, Z. Insights into SARS-CoV transcription and replication from the structure of the nsp7-nsp8 hexadecamer. Nat. Struct. Mol. Biol., 2005, 12(11), 980-986.
[http://dx.doi.org/10.1038/nsmb999] [PMID: 16228002]
[144]
Peti, W.; Johnson, M.A.; Herrmann, T.; Neuman, B.W.; Buchmeier, M.J.; Nelson, M.; Joseph, J.; Page, R.; Stevens, R.C.; Kuhn, P.; Wüthrich, K. Structural genomics of the severe acute respiratory syndrome coronavirus: Nuclear magnetic resonance structure of the protein nsP7. J. Virol., 2005, 79(20), 12905-12913.
[http://dx.doi.org/10.1128/JVI.79.20.12905-12913.2005] [PMID: 16188992]
[145]
Imbert, I.; Guillemot, J.C.; Bourhis, J.M.; Bussetta, C.; Coutard, B.; Egloff, M.P.; Ferron, F.; Gorbalenya, A.E.; Canard, B. A second, non-canonical RNA-dependent RNA polymerase in SARS coronavirus. EMBO J., 2006, 25(20), 4933-4942.
[http://dx.doi.org/10.1038/sj.emboj.7601368] [PMID: 17024178]
[146]
van Aken, D.; Zevenhoven-Dobbe, J.; Gorbalenya, A.E.; Snijder, E.J. Proteolytic maturation of replicase polyprotein pp1a by the nsp4 main proteinase is essential for equine arteritis virus replication and includes internal cleavage of nsp7. J. Gen. Virol., 2006, 87(Pt 12), 3473-3482.
[http://dx.doi.org/10.1099/vir.0.82269-0] [PMID: 17098961]
[147]
Chen, J.; Xu, X.; Tao, H.; Li, Y.; Nan, H.; Wang, Y.; Tian, M.; Chen, H. Structural analysis of porcine reproductive and respiratory syndrome virus non-structural protein 7α (nsp7α) and identification of its interaction with nsp9. Front. Microbiol., 2017, 8, 853.
[http://dx.doi.org/10.3389/fmicb.2017.00853] [PMID: 28553277]
[148]
Castro, C.; Smidansky, E.; Maksimchuk, K.R.; Arnold, J.J.; Korneeva, V.S.; Götte, M.; Konigsberg, W.; Cameron, C.E. Two proton transfers in the transition state for nucleotidyl transfer catalyzed by RNA- and DNA-dependent RNA and DNA polymerases. Proc. Natl. Acad. Sci. USA, 2007, 104(11), 4267-4272.
[http://dx.doi.org/10.1073/pnas.0608952104] [PMID: 17360513]
[149]
Xu, X.; Liu, Y.; Weiss, S.; Arnold, E.; Sarafianos, S.G.; Ding, J. Molecular model of SARS coronavirus polymerase: implications for biochemical functions and drug design. Nucleic Acids Res., 2003, 31(24), 7117-7130.
[http://dx.doi.org/10.1093/nar/gkg916] [PMID: 14654687]
[150]
Iyer, L.M.; Koonin, E.V.; Leipe, D.D.; Aravind, L. Origin and evolution of the archaeo-eukaryotic primase superfamily and related palm-domain proteins: structural insights and new members. Nucleic Acids Res., 2005, 33(12), 3875-3896.
[http://dx.doi.org/10.1093/nar/gki702] [PMID: 16027112]
[151]
Littler, R.; Benjamin, S.G.; Rhys, N.C.; Jamie, R. Crystal structure of the sars-cov-2 non-structural protein 9, Nsp9. iScience, 2020, 23, 101258.
[152]
Egloff, M.P.; Malet, H.; Putics, A.; Heinonen, M.; Dutartre, H.; Frangeul, A.; Gruez, A.; Campanacci, V.; Cambillau, C.; Ziebuhr, J. Crystallization and diffraction analysis of the SARS coronavirus nsp10–nsp16 complex. J. Virol., 2006, 80, 8493-8502.
[http://dx.doi.org/10.1128/JVI.00713-06] [PMID: 16912299]
[153]
Sutton, G.; Fry, E.; Carter, L.; Sainsbury, S.; Walter, T.; Nettleship, J.; Berrow, N.; Owens, R.; Gilbert, R.; Davidson, A.; Siddell, S.; Poon, L.L.; Diprose, J.; Alderton, D.; Walsh, M.; Grimes, J.M.; Stuart, D.I. The nsp9 replicase protein of SARS-coronavirus, structure and functional insights. Structure, 2004, 12(2), 341-353.
[http://dx.doi.org/10.1016/j.str.2004.01.016] [PMID: 14962394]
[154]
Frieman, M.; Heise, M.; Baric, R. SARS coronavirus and innate immunity. Virus Res., 2007, 133(1), 101-112.
[http://dx.doi.org/10.1016/j.virusres.2007.03.015] [PMID: 17451827]
[155]
Sawicki, S.G.; Sawicki, D.L.; Younker, D.; Meyer, Y.; Thiel, V.; Stokes, H.; Siddell, S.G. Functional and genetic analysis of coronavirus replicase-transcriptase proteins. PLoS Pathog., 2005, 1(4), e39.
[http://dx.doi.org/10.1371/journal.ppat.0010039] [PMID: 16341254]
[156]
Siddell, S.; Sawicki, D.; Meyer, Y.; Thiel, V.; Sawicki, S. Identification of the mutations responsible for the phenotype of three MHV RNA-negative ts mutants. Adv. Exp. Med. Biol., 2001, 494, 453-458.
[http://dx.doi.org/10.1007/978-1-4615-1325-4_66] [PMID: 11774507]
[157]
Matthes, N.; Mesters, J.R.; Coutard, B.; Canard, B.; Snijder, E.J.; Moll, R.; Hilgenfeld, R. The non-structural protein Nsp10 of mouse hepatitis virus binds zinc ions and nucleic acids. FEBS Lett., 2006, 580(17), 4143-4149.
[http://dx.doi.org/10.1016/j.febslet.2006.06.061] [PMID: 16828088]
[158]
Roberts, A.; Deming, D.; Paddock, C.D.; Cheng, A.; Yount, B.; Vogel, L.; Herman, B.D.; Sheahan, T.; Heise, M.; Genrich, G.L.; Zaki, S.R.; Baric, R.; Subbarao, K. A mouse-adapted SARS-coronavirus causes disease and mortality in BALB/c mice. PLoS Pathog., 2007, 3(1), e5.
[http://dx.doi.org/10.1371/journal.ppat.0030005] [PMID: 17222058]
[159]
Ma-Lauer, Y.; Carbajo-Lozoya, J.; Hein, M.Y.; Müller, M.A.; Deng, W.; Lei, J.; Meyer, B.; Kusov, Y.; von Brunn, B.; Bairad, D.R.; Hünten, S.; Drosten, C.; Hermeking, H.; Leonhardt, H.; Mann, M.; Hilgenfeld, R.; von Brunn, A. p53 down-regulates SARS coronavirus replication and is targeted by the SARS-unique domain and PLpro via E3 ubiquitin ligase RCHY1. Proc. Natl. Acad. Sci. USA, 2016, 113(35), E5192-E5201.
[http://dx.doi.org/10.1073/pnas.1603435113] [PMID: 27519799]
[160]
Smith, E.C.; Case, J.B.; Blanc, H.; Isakov, O.; Shomron, N.; Vignuzzi, M.; Denison, M.R. Mutations in coronavirus nonstructural protein 10 decrease virus replication fidelity. J. Virol., 2015, 89(12), 6418-6426.
[http://dx.doi.org/10.1128/JVI.00110-15] [PMID: 25855750]
[161]
Chen, Y.; Su, C.; Ke, M.; Jin, X.; Xu, L.; Zhang, Z.; Wu, A.; Sun, Y.; Yang, Z.; Tien, P.; Ahola, T.; Liang, Y.; Liu, X.; Guo, D. Biochemical and structural insights into the mechanisms of SARS coronavirus RNA ribose 2′-O-methylation by nsp16/nsp10 protein complex. PLoS Pathog., 2011, 7(10), e1002294.
[http://dx.doi.org/10.1371/journal.ppat.1002294] [PMID: 22022266]
[162]
Viswanathan, T.; Arya, S.; Chan, S.H.; Qi, S.; Dai, N.; Misra, A.; Park, J.G.; Oladunni, F.; Kovalskyy, D.; Hromas, R.A.; Martinez- Sobrido, L.; Gupta, Y.K. Structural basis of RNA cap modification by SARS-CoV-2. Nat. Commun., 2020, 11(1), 3718.
[http://dx.doi.org/10.1038/s41467-020-17496-8] [PMID: 32709886]
[163]
Mahalapbutr, P.; Kongtaworn, N.; Rungrotmongkol, T. Structural insight into the recognition of s-adenosyl-l-homocysteine and sinefungin in sars-cov-2 nsp16/nsp10 rna cap 2′-o-methyltransferase. Comput. Struct. Biotec; , 2020, 18, pp. 2757-2765.
[http://dx.doi.org/10.1016/j.csbj.2020.09.032] [PMID: 33020707]
[164]
Bouvet, M.; Debarnot, C.; Imbert, I.; Selisko, B.; Snijder, E.J.; Canard, B.; Decroly, E. In vitro reconstitution of SARS-coronavirus mRNA cap methylation. PLoS Pathog., 2010, 6(4), e1000863.
[http://dx.doi.org/10.1371/journal.ppat.1000863] [PMID: 20421945]
[165]
Lauber, C.; Goeman, J.J.; Parquet, Mdel.C.; Nga, P.T.; Snijder, E.J.; Morita, K.; Gorbalenya, A.E. The footprint of genome architecture in the largest genome expansion in RNA viruses. PLoS Pathog., 2013, 9(7), e1003500.
[http://dx.doi.org/10.1371/journal.ppat.1003500] [PMID: 23874204]
[166]
Kirchdoerfer, R.N.; Ward, A.B. Structure of the SARS-CoV nsp12 polymerase bound to nsp7 and nsp8 co-factors. Nat. Commun., 2019, 10(1), 2342.
[http://dx.doi.org/10.1038/s41467-019-10280-3] [PMID: 31138817]
[167]
Ahn, D.G.; Choi, J.K.; Taylor, D.R.; Oh, J.W. Biochemical characterization of a recombinant SARS coronavirus nsp12 RNA-dependent RNA polymerase capable of copying viral RNA templates. Arch. Virol., 2012, 157(11), 2095-2104.
[http://dx.doi.org/10.1007/s00705-012-1404-x] [PMID: 22791111]
[168]
Subissi, L.; Posthuma, C.C.; Collet, A.; Zevenhoven-Dobbe, J.C.; Gorbalenya, A.E.; Decroly, E.; Snijder, E.J.; Canard, B.; Imbert, I. One severe acute respiratory syndrome coronavirus protein complex integrates processive RNA polymerase and exonuclease activities. Proc. Natl. Acad. Sci. USA, 2014, 111(37), E3900-E3909.
[http://dx.doi.org/10.1073/pnas.1323705111] [PMID: 25197083]
[169]
te Velthuis, A.J.; Arnold, J.J.; Cameron, C.E.; van den Worm, S.H.; Snijder, E.J. The RNA polymerase activity of SARS-coronavirus nsp12 is primer dependent. Nucleic Acids Res., 2010, 38(1), 203-214.
[http://dx.doi.org/10.1093/nar/gkp904] [PMID: 19875418]
[170]
Ranji, A.; Boris-Lawrie, K. RNA helicases: emerging roles in viral replication and the host innate response. RNA Biol., 2010, 7(6), 775-787.
[http://dx.doi.org/10.4161/rna.7.6.14249] [PMID: 21173576]
[171]
Singleton, M.R.; Dillingham, M.S.; Wigley, D.B. Structure and mechanism of helicases and nucleic acid translocases. Annu. Rev. Biochem., 2007, 76, 23-50.
[http://dx.doi.org/10.1146/annurev.biochem.76.052305.115300] [PMID: 17506634]
[172]
Seybert, A.; Posthuma, C.C.; van Dinten, L.C.; Snijder, E.J.; Gorbalenya, A.E.; Ziebuhr, J. A complex zinc finger controls the enzymatic activities of nidovirus helicases. J. Virol., 2005, 79(2), 696-704.
[http://dx.doi.org/10.1128/JVI.79.2.696-704.2005] [PMID: 15613297]
[173]
Elkarhat, Z.; Charoute, H.; Elkhattabi, L.; Barakat, A.; Rouba, H. Potential inhibitors of SARS-cov-2 RNA dependent RNA polymerase protein: Molecular docking, molecular dynamics simulations and MM-PBSA analyses. J. Biomol. Struct. Dyn., 2020, 1-14.
[http://dx.doi.org/10.1080/07391102.2020.1813628] [PMID: 32873176]
[174]
Ruan, Z.; Liu, C.; Guo, Y.; He, Z.; Huang, X.; Jia, X.; Yang, T. SARS-CoV-2 and SARS-CoV: Virtual screening of potential inhibitors targeting RNA-dependent RNA polymerase activity (NSP12). J. Med. Virol., 2021, 93(1), 389-400.
[http://dx.doi.org/10.1002/jmv.26222] [PMID: 32579254]
[175]
Hao, W.; Wojdyla, J.A.; Zhao, R.; Han, R.; Das, R.; Zlatev, I.; Manoharan, M.; Wang, M.; Cui, S. Crystal structure of Middle East respiratory syndrome coronavirus helicase. PLoS Pathog., 2017, 13(6), e1006474.
[http://dx.doi.org/10.1371/journal.ppat.1006474] [PMID: 28651017]
[176]
Adedeji, A.O.; Marchand, B.; Te Velthuis, A.J.; Snijder, E.J.; Weiss, S.; Eoff, R.L.; Singh, K.; Sarafianos, S.G. Mechanism of nucleic acid unwinding by SARS-CoV helicase. PLoS One, 2012, 7(5), e36521.
[http://dx.doi.org/10.1371/journal.pone.0036521] [PMID: 22615777]
[177]
Lee, N.R.; Kwon, H.M.; Park, K.; Oh, S.; Jeong, Y.J.; Kim, D.E. Cooperative translocation enhances the unwinding of duplex DNA by SARS coronavirus helicase nsP13. Nucleic Acids Res., 2010, 38(21), 7626-7636.
[http://dx.doi.org/10.1093/nar/gkq647] [PMID: 20671029]
[178]
Seybert, A.; van Dinten, L.C.; Snijder, E.J.; Ziebuhr, J. Biochemical characterization of the equine arteritis virus helicase suggests a close functional relationship between arterivirus and coronavirus helicases. J. Virol., 2000, 74(20), 9586-9593.
[http://dx.doi.org/10.1128/JVI.74.20.9586-9593.2000] [PMID: 11000230]
[179]
Ivanov, K.A.; Thiel, V.; Dobbe, J.C.; van der Meer, Y.; Snijder, E.J.; Ziebuhr, J. Multiple enzymatic activities associated with severe acute respiratory syndrome coronavirus helicase. J. Virol., 2004, 78(11), 5619-5632.
[http://dx.doi.org/10.1128/JVI.78.11.5619-5632.2004] [PMID: 15140959]
[180]
Ivanov, K.A.; Ziebuhr, J. Human coronavirus 229E nonstructural protein 13: Characterization of duplex-unwinding, nucleoside triphosphatase, and RNA 5′-triphosphatase activities. J. Virol., 2004, 78(14), 7833-7838.
[http://dx.doi.org/10.1128/JVI.78.14.7833-7838.2004] [PMID: 15220459]
[181]
Zhang, Y.; Zheng, N.; Hao, P.; Cao, Y.; Zhong, Y. A molecular docking model of SARS-CoV S1 protein in complex with its receptor, human ACE2. Comput. Biol. Chem., 2005, 29(3), 254-257.
[http://dx.doi.org/10.1016/j.compbiolchem.2005.04.008] [PMID: 15979045]
[182]
Sola, I.; Almazán, F.; Zúñiga, S.; Enjuanes, L. Continuous and discontinuous rna synthesis in coronaviruses. Annu. Rev. Virol., 2015, 2(1), 265-288.
[http://dx.doi.org/10.1146/annurev-virology-100114-055218] [PMID: 26958916]
[183]
Bouvet, M.; Imbert, I.; Subissi, L.; Gluais, L.; Canard, B.; Decroly, E. RNA 3′-end mismatch excision by the severe acute respiratory syndrome coronavirus nonstructural protein nsp10/nsp14 exoribonuclease complex. Proc. Natl. Acad. Sci. USA, 2012, 109(24), 9372-9377.
[http://dx.doi.org/10.1073/pnas.1201130109] [PMID: 22635272]
[184]
Minskaia, E.; Hertzig, T.; Gorbalenya, A.E.; Campanacci, V.; Cambillau, C.; Canard, B.; Ziebuhr, J. Discovery of an RNA virus 3′->5′ exoribonuclease that is critically involved in coronavirus RNA synthesis. Proc. Natl. Acad. Sci. USA, 2006, 103(13), 5108-5113.
[http://dx.doi.org/10.1073/pnas.0508200103] [PMID: 16549795]
[185]
Tanner, J.A.; Zheng, B.J.; Zhou, J.; Watt, R.M.; Jiang, J.Q.; Wong, K.L.; Lin, Y.P.; Lu, L.Y.; He, M.L.; Kung, H.F.; Kesel, A.J.; Huang, J.D. The adamantane-derived bananins are potent inhibitors of the helicase activities and replication of SARS coronavirus. Chem. Biol., 2005, 12(3), 303-311.
[http://dx.doi.org/10.1016/j.chembiol.2005.01.006] [PMID: 15797214]
[186]
Kim, M.K.; Yu, M.S.; Park, H.R.; Kim, K.B.; Lee, C.; Cho, S.Y.; Kang, J.; Yoon, H.; Kim, D.E.; Choo, H.; Jeong, Y.J.; Chong, Y. 2,6-Bis-arylmethyloxy-5-hydroxychromones with antiviral activity against both hepatitis C virus (HCV) and SARS-associated coronavirus (SCV). Eur. J. Med. Chem., 2011, 46(11), 5698-5704.
[http://dx.doi.org/10.1016/j.ejmech.2011.09.005] [PMID: 21925774]
[187]
Adedeji, A.O.; Singh, K.; Kassim, A.; Coleman, C.M.; Elliott, R.; Weiss, S.R.; Frieman, M.B.; Sarafianos, S.G. Evaluation of SSYA10-001 as a replication inhibitor of severe acute respiratory syndrome, mouse hepatitis, and Middle East respiratory syndrome coronaviruses. Antimicrob. Agents Chemother., 2014, 58(8), 4894-4898.
[http://dx.doi.org/10.1128/AAC.02994-14] [PMID: 24841268]
[188]
Eckerle, L.D.; Becker, M.M.; Halpin, R.A.; Li, K.; Venter, E.; Lu, X.; Scherbakova, S.; Graham, R.L.; Baric, R.S.; Stockwell, T.B.; Spiro, D.J.; Denison, M.R. Infidelity of SARS-CoV Nsp14-exonuclease mutant virus replication is revealed by complete genome sequencing. PLoS Pathog., 2010, 6(5), e1000896.
[http://dx.doi.org/10.1371/journal.ppat.1000896] [PMID: 20463816]
[189]
Eckerle, L.D.; Lu, X.; Sperry, S.M.; Choi, L.; Denison, M.R. High fidelity of murine hepatitis virus replication is decreased in nsp14 exoribonuclease mutants. J. Virol., 2007, 81(22), 12135-12144.
[http://dx.doi.org/10.1128/JVI.01296-07] [PMID: 17804504]
[190]
Saini, K.S.; Lanza, C.; Romano, M.; de Azambuja, E.; Cortes, J.; de Las Heras, B.; de Castro, J.; Lamba Saini, M.; Loibl, S.; Curigliano, G.; Twelves, C.; Leone, M.; Patnaik, M.M. Repurposing anticancer drugs for COVID-19-induced inflammation, immune dysfunction, and coagulopathy. Br. J. Cancer, 2020, 123(5), 694-697.
[http://dx.doi.org/10.1038/s41416-020-0948-x] [PMID: 32572174]
[191]
Case, J.B.; Li, Y.; Elliott, R.; Lu, X.; Graepel, K.W.; Sexton, N.R.; Smith, E.C.; Weiss, S.R.; Denison, M.R. Murine hepatitis virus nsp14 exoribonuclease activity is required for resistance to innate immunity. J. Virol., 2017, 92(1), e01531-17.
[http://dx.doi.org/10.1128/JVI.01531-17] [PMID: 29046453]
[192]
Li, X.; Zai, J.; Wang, X.; Li, Y. Potential of large “first generation” human-to-human transmission of 2019-nCoV. J. Med. Virol., 2020, 92(4), 448-454.
[http://dx.doi.org/10.1002/jmv.25693] [PMID: 31997390]
[193]
Jin, X.; Chen, Y.; Sun, Y.; Zeng, C.; Wang, Y.; Tao, J.; Wu, A.; Yu, X.; Zhang, Z.; Tian, J.; Guo, D. Characterization of the guanine-N7 methyltransferase activity of coronavirus nsp14 on nucleotide GTP. Virus Res., 2013, 176(1-2), 45-52.
[http://dx.doi.org/10.1016/j.virusres.2013.05.001] [PMID: 23702198]
[194]
Chen, Y.; Cai, H.; Pan, J.; Xiang, N.; Tien, P.; Ahola, T.; Guo, D. Functional screen reveals SARS coronavirus nonstructural protein nsp14 as a novel cap N7 methyltransferase. Proc. Natl. Acad. Sci. USA, 2009, 106(9), 3484-3489.
[http://dx.doi.org/10.1073/pnas.0808790106] [PMID: 19208801]
[195]
Bhardwaj, K.; Guarino, L.; Kao, C.C. The severe acute respiratory syndrome coronavirus Nsp15 protein is an endoribonuclease that prefers manganese as a cofactor. J. Virol., 2004, 78(22), 12218-12224.
[http://dx.doi.org/10.1128/JVI.78.22.12218-12224.2004] [PMID: 15507608]
[196]
Zirkel, F.; Roth, H.; Kurth, A.; Drosten, C.; Ziebuhr, J.; Junglen, S. Identification and characterization of genetically divergent members of the newly established family Mesoniviridae. J. Virol., 2013, 87(11), 6346-6358.
[http://dx.doi.org/10.1128/JVI.00416-13] [PMID: 23536661]
[197]
Nga, P.T.; Parquet, Mdel.C.; Lauber, C.; Parida, M.; Nabeshima, T.; Yu, F.; Thuy, N.T.; Inoue, S.; Ito, T.; Okamoto, K.; Ichinose, A.; Snijder, E.J.; Morita, K.; Gorbalenya, A.E. Discovery of the first insect nidovirus, a missing evolutionary link in the emergence of the largest RNA virus genomes. PLoS Pathog., 2011, 7(9), e1002215.
[http://dx.doi.org/10.1371/journal.ppat.1002215] [PMID: 21931546]
[198]
Baddock, H.; Brolih, S.; Yosaatmadja, Y.; Ratnaweera, M.; Bielinski, M.; Swift, L.; Cruz-Migoni, A.; Morris, G.; Schofield, C.; Gileadi, O.; McHugh, P. Characterisation of the SARS-CoV-2 ExoN (nsp14ExoN-nsp10) complex: Implications for its role in viral genome stability and inhibitor identification. bioRxiv, 2020.
[http://dx.doi.org/10.1101/2020.08.13.248211]
[199]
Bhardwa,j K.; Palaninathan, S.; Alcantara, J.M.; Yi, L.L.; Guarino, L.; Sacchettini, J.C.. Structural and functional analyses of the severe acute respiratory syndrome coronavirus endoribonuclease Nsp15. J. Biol. Chem., 2008, 283, 3655-3664.
[http://dx.doi.org/10.1074/jbc.M708375200]
[200]
Kim, Y.; Jedrzejczak, R.; Maltseva, N.I.; Wilamowski, M.; Endres, M.; Godzik, A.; Michalska, K.; Joachimiak, A. Crystal structure of Nsp15 endoribonuclease NendoU from SARS-CoV-2. Protein Sci., 2020, 29(7), 1596-1605.
[http://dx.doi.org/10.1002/pro.3873] [PMID: 32304108]
[201]
Xu, L.H.; Huang, M.; Fang, S.G.; Liu, D.X. Coronavirus infection induces DNA replication stress partly through interaction of its nonstructural protein 13 with the p125 subunit of DNA polymerase δ. J. Biol. Chem., 2011, 286(45), 39546-39559.
[http://dx.doi.org/10.1074/jbc.M111.242206] [PMID: 21918226]
[202]
Kang, H.; Bhardwaj, K.; Li, Y.; Palaninathan, S.; Sacchettini, J.; Guarino, L.; Leibowitz, J.L.; Kao, C.C. Biochemical and genetic analyses of murine hepatitis virus Nsp15 endoribonuclease. J. Virol., 2007, 81(24), 13587-13597.
[http://dx.doi.org/10.1128/JVI.00547-07] [PMID: 17898055]
[203]
Deng, X.; Baker, S.C. An “Old” protein with a new story: Coronavirus endoribonuclease is important for evading host antiviral defenses. Virology, 2018, 517, 157-163.
[http://dx.doi.org/10.1016/j.virol.2017.12.024] [PMID: 29307596]
[204]
Deng, X.; Hackbart, M.; Mettelman, R.C.; O’Brien, A.; Mielech, A.M.; Yi, G.; Kao, C.C.; Baker, S.C. Coronavirus nonstructural protein 15 mediates evasion of dsRNA sensors and limits apoptosis in macrophages. Proc. Natl. Acad. Sci. USA, 2017, 114(21), E4251-E4260.
[http://dx.doi.org/10.1073/pnas.1618310114] [PMID: 28484023]
[205]
Selvaraj, C.; Dinesh, D.C.; Panwar, U.; Abhirami, R.; Boura, E.; Singh, S.K. Structure-based virtual screening and molecular dynamics simulation of SARS-CoV-2 Guanine-N7 methyltransferase (nsp14) for identifying antiviral inhibitors against COVID-19. J. Biomol. Struct. Dyn., 2020, 1-12.
[http://dx.doi.org/10.1080/07391102.2020.1778535] [PMID: 32567979]
[206]
Nelson, C.A.; Pekosz, A.; Lee, C.A.; Diamond, M.S.; Fremont, D.H. Structure and intracellular targeting of the SARS-coronavirus Orf7a accessory protein. Structure, 2005, 13(1), 75-85.
[http://dx.doi.org/10.1016/j.str.2004.10.010] [PMID: 15642263]
[207]
Cong, Y.; Ulasli, M.; Schepers, H.; Mauthe, M.; V’kovski, P.; Kriegenburg, F.; Thiel, V.; de Haan, C.A.M.; Reggiori, F. Nucleocapsid protein recruitment to replication-transcription complexes plays a crucial role in coronaviral life cycle. J. Virol. J. Virol., 2020, 94(4), 1-10.
[http://dx.doi.org/10.1128/JVI.01925-19] [PMID: 31776274]
[208]
Ahmed, W.; Angel, N.; Edson, J.; Bibby, K.; Bivins, A.; O’Brien, J.W.; Choi, P.M.; Kitajima, M.; Simpson, S.L.; Li, J.; Tscharke, B.; Verhagen, R.; Smith, W.J.M.; Zaugg, J.; Dierens, L.; Hugenholtz, P.; Thomas, K.V.; Mueller, J.F. First confirmed detection of SARS-CoV-2 in untreated wastewater in Australia: A proof of concept for the wastewater surveillance of COVID-19 in the community. Sci. Total Environ., 2020, 728, 138764.
[http://dx.doi.org/10.1016/j.scitotenv.2020.138764] [PMID: 32387778]
[209]
Jin, Y.; Yang, H.; Ji, W.; Wu, W.; Chen, S.; Zhang, W.; Duan, G. Virology, epidemiology, pathogenesis, and control of COVID-19. Viruses, 2020, 12(4), E372.
[http://dx.doi.org/10.3390/v12040372] [PMID: 32230900]
[210]
Hassan, S.A.; Sheikh, F.N.; Jamal, S.; Ezeh, J.K.; Akhtar, A. Coronavirus (COVID-19): A review of clinical features, diagnosis, and treatment. cureus, 2020, 12(3), e7355.
[http://dx.doi.org/10.7759/cureus.7355] [PMID: 32328367]
[211]
Sheikh, A.; Al-Taher, A.; Al-Nazawi, M.; Al-Mubarak, A.I.; Kandeel, M. Analysis of preferred codon usage in the coronavirus N genes and their implications for genome evolution and vaccine design. J. Virol. Methods, 2020, 277, 113806.
[http://dx.doi.org/10.1016/j.jviromet.2019.113806] [PMID: 31911390]
[212]
Amanat, F.; Krammer, F. SARS-CoV-2 vaccines: Status report. Immunity, 2020, 52(4), 583-589.
[http://dx.doi.org/10.1016/j.immuni.2020.03.007] [PMID: 32259480]
[213]
Bartlam, M.; Xu, Y.; Rao, Z. Structural proteomics of the SARS coronavirus: A model response to emerging infectious diseases. J. Struct. Funct. Genomics, 2007, 8(2-3), 85-97.
[http://dx.doi.org/10.1007/s10969-007-9024-5] [PMID: 17680348]
[214]
Kang, S.; Yang, M.; Hong, Z.; Zhang, L.; Huang, Z.; Chen, X.; He, S.; Zhou, Z.; Zhou, Z.; Chen, Q.; Yan, Y.; Zhang, C.; Shan, H.; Chen, S. Crystal structure of SARS-CoV-2 nucleocapsid protein RNA binding domain reveals potential unique drug targeting sites. Acta Pharm. Sin. B, 2020, 10(7), 1228-1238.
[http://dx.doi.org/10.1016/j.apsb.2020.04.009] [PMID: 32363136]
[215]
Song, H.D.; Tu, C.C.; Zhang, G.W.; Wang, S.Y.; Zheng, K.; Lei, L.C.; Chen, Q.X.; Gao, Y.W.; Zhou, H.Q.; Xiang, H.; Zheng, H.J.; Chern, S.W.; Cheng, F.; Pan, C.M.; Xuan, H.; Chen, S.J.; Luo, H.M.; Zhou, D.H.; Liu, Y.F.; He, J.F.; Qin, P.Z.; Li, L.H.; Ren, Y.Q.; Liang, W.J.; Yu, Y.D.; Anderson, L.; Wang, M.; Xu, R.H.; Wu, X.W.; Zheng, H.Y.; Chen, J.D.; Liang, G.; Gao, Y.; Liao, M.; Fang, L.; Jiang, L.Y.; Li, H.; Chen, F.; Di, B.; He, L.J.; Lin, J.Y.; Tong, S.; Kong, X.; Du, L.; Hao, P.; Tang, H.; Bernini, A.; Yu, X.J.; Spiga, O.; Guo, Z.M.; Pan, H.Y.; He, W.Z.; Manuguerra, J.C.; Fontanet, A.; Danchin, A.; Niccolai, N.; Li, Y.X.; Wu, C.I.; Zhao, G.P. Cross-host evolution of severe acute respiratory syndrome coronavirus in palm civet and human. Proc. Natl. Acad. Sci. USA, 2005, 102(7), 2430-2435.
[http://dx.doi.org/10.1073/pnas.0409608102] [PMID: 15695582]
[216]
Oostra, M.; de Haan, C.A.; de Groot, R.J.; Rottier, P.J. Glycosylation of the severe acute respiratory syndrome coronavirus triple-spanning membrane proteins 3a and M. J. Virol, 2006, 80(5), 2326-2336.
[217]
Tan, Y.J.; Fielding, B.C.; Goh, P.Y.; Shen, S.; Tan, T.H.; Lim, S.G.; Hong, W. Overexpression of 7a, a protein specifically encoded by the severe acute respiratory syndrome coronavirus, induces apoptosis via a caspase-dependent pathway. J. Virol., 2004, 78(24), 14043-14047.
[http://dx.doi.org/10.1128/JVI.78.24.14043-14047.2004] [PMID: 15564512]
[218]
Geng, H.; Liu, Y.M.; Chan, W.S.; Lo, A.W.; Au, D.M.; Waye, M.M.; Ho, Y.Y. The putative protein 6 of the severe acute respiratory syndrome-associated coronavirus: expression and functional characterization. FEBS Lett., 2005, 579(30), 6763-6768.
[http://dx.doi.org/10.1016/j.febslet.2005.11.007] [PMID: 16310783]
[219]
Pewe, L.; Zhou, H.; Netland, J.; Tangudu, C.; Olivares, H.; Shi, L.; Look, D.; Gallagher, T.; Perlman, S. A severe acute respiratory syndrome-associated coronavirus-specific protein enhances virulence of an attenuated murine coronavirus. J. Virol., 2005, 79(17), 11335-11342.
[http://dx.doi.org/10.1128/JVI.79.17.11335-11342.2005] [PMID: 16103185]
[220]
Kopecky-Bromberg, S.A.; Martínez-Sobrido, L.; Frieman, M.; Baric, R.A.; Palese, P. Severe acute respiratory syndrome coronavirus open reading frame (ORF) 3b, ORF 6, and nucleocapsid proteins function as interferon antagonists. J. Virol., 2007, 81(2), 548-557.
[http://dx.doi.org/10.1128/JVI.01782-06] [PMID: 17108024]
[221]
Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.H.; Nitsche, A.; Müller, M.A.; Drosten, C.; Pöhlmann, S. SARS-CoV-2 cell entry depends on ace2 and tmprss2 and is blocked by a clinically proven protease inhibitor. Cell, 2020, 181(2), 271-280.e8.
[http://dx.doi.org/10.1016/j.cell.2020.02.052] [PMID: 32142651]
[222]
Li, W.; Moore, M.J.; Vasilieva, N.; Sui, J.; Wong, S.K.; Berne, M.A.; Somasundaran, M.; Sullivan, J.L.; Luzuriaga, K.; Greenough, T.C.; Choe, H.; Farzan, M. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature, 2003, 426(6965), 450-454.
[http://dx.doi.org/10.1038/nature02145] [PMID: 14647384]
[223]
Glowacka, I.; Bertram, S.; Müller, M.A.; Allen, P.; Soilleux, E.; Pfefferle, S.; Steffen, I.; Tsegaye, T.S.; He, Y.; Gnirss, K.; Niemeyer, D.; Schneider, H.; Drosten, C.; Pöhlmann, S. Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response. J. Virol., 2011, 85(9), 4122-4134.
[http://dx.doi.org/10.1128/JVI.02232-10] [PMID: 21325420]
[224]
Matsuyama, S.; Nagata, N.; Shirato, K.; Kawase, M.; Takeda, M.; Taguchi, F. Efficient activation of the severe acute respiratory syndrome coronavirus spike protein by the transmembrane protease TMPRSS2. J. Virol., 2010, 84(24), 12658-12664.
[http://dx.doi.org/10.1128/JVI.01542-10] [PMID: 20926566]
[225]
Ge, X.Y.; Li, J.L.; Yang, X.L.; Chmura, A.A.; Zhu, G.; Epstein, J.H.; Mazet, J.K.; Hu, B.; Zhang, W.; Peng, C.; Zhang, Y.J.; Luo, C.M.; Tan, B.; Wang, N.; Zhu, Y.; Crameri, G.; Zhang, S.Y.; Wang, L.F.; Daszak, P.; Shi, Z.L. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature, 2013, 503(7477), 535-538.
[http://dx.doi.org/10.1038/nature12711] [PMID: 24172901]
[226]
Menachery, V.D.; Dinnon, K.H., III; Yount, B.L., Jr; McAnarney, E.T.; Gralinski, L.E.; Hale, A.; Graham, R.L.; Scobey, T.; Anthony, S.J.; Wang, L.; Graham, B.; Randell, S.H.; Lipkin, W.I.; Baric, R.S. Trypsin treatment unlocks barrier for zoonotic bat coronavirus infection. J. Virol., 2020, 94(5), 94.
[http://dx.doi.org/10.1128/JVI.01774-19] [PMID: 31801868]
[227]
Jia, H. Pulmonary angiotensin-converting enzyme 2 (ace2) and inflammatory lung disease. Shock, 2016, 46(3), 239-248.
[http://dx.doi.org/10.1097/SHK.0000000000000633] [PMID: 27082314]
[228]
Zhang, H.; Penninger, J.M.; Li, Y.; Zhong, N.; Slutsky, A.S. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: Molecular mechanisms and potential therapeutic target. Intensive Care Med., 2020, 46(4), 586-590.
[http://dx.doi.org/10.1007/s00134-020-05985-9] [PMID: 32125455]
[229]
Mourad, J.J.; Levy, B.I. Interaction between RAAS inhibitors and ACE2 in the context of COVID-19. Nat. Rev. Cardiol., 2020, 17(5), 313.
[http://dx.doi.org/10.1038/s41569-020-0368-x] [PMID: 32231328]
[230]
Diaz, J.H. Hypothesis: Angiotensin-converting enzyme inhibitors and angiotensin receptor blockers may increase the risk of severe COVID-19. J. Travel Med, 2020, 27(3), taaa041.
[http://dx.doi.org/10.1093/jtm/taaa041] [PMID: 32186711]
[231]
Chary, M.A.; Barbuto, A.F.; Izadmehr, S.; Hayes, B.D.; Burns, M.M. COVID-19: Therapeutics and their toxicities. J. Med. Toxicol., 2020, 16(3), 284-294.
[http://dx.doi.org/10.1007/s13181-020-00777-5] [PMID: 32356252]
[232]
Samavati, L.; Uhal, B.D. ACE2, much more than just a receptor for sars-cov-2. Front. Cell. Infect. Microbiol., 2020, 10, 317.
[http://dx.doi.org/10.3389/fcimb.2020.00317] [PMID: 32582574]
[233]
Shang, L.; Zhao, J.; Hu, Y.; Du, R.; Cao, B. On the use of corticosteroids for 2019-nCoV pneumonia. Lancet, 2020, 395(10225), 683-684.
[http://dx.doi.org/10.1016/S0140-6736(20)30361-5] [PMID: 32122468]
[234]
Monteil, V.; Kwon, H.; Prado, P.; Hagelkrüys, A.; Wimmer, R.A.; Stahl, M.; Leopoldi, A.; Garreta, E.; Hurtado Del Pozo, C.; Prosper, F.; Romero, J.P.; Wirnsberger, G.; Zhang, H.; Slutsky, A.S.; Conder, R.; Montserrat, N.; Mirazimi, A.; Penninger, J.M. Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2. Cell, 2020, 181(4), 905-913.e7.
[http://dx.doi.org/10.1016/j.cell.2020.04.004] [PMID: 32333836]
[235]
Shisheva, A. PIKfyve: Partners, significance, debates and paradoxes. Cell Biol. Int., 2008, 32(6), 591-604.
[http://dx.doi.org/10.1016/j.cellbi.2008.01.006] [PMID: 18304842]
[236]
Lehman, J.M.; Laffin, J.; Friedrich, T.D. Simian virus 40 induces multiple S phases with the majority of viral DNA replication in the G2 and second S phase in CV-1 cells. Exp. Cell Res., 2000, 258(1), 215-222.
[http://dx.doi.org/10.1006/excr.2000.4927] [PMID: 10912803]
[237]
Lim, S.P.; Noble, C.G.; Nilar, S.; Shi, P.Y.; Yokokawa, F. Discovery of potent non-nucleoside inhibitors of dengue viral rna-dependent rna polymerase from fragment screening and structure-guided design. Adv. Exp. Med. Biol., 2018, 1062, 187-198.
[http://dx.doi.org/10.1007/978-981-10-8727-1_14] [PMID: 29845534]
[238]
Gordon, D.E.; Jang, G.M.; Bouhaddou, M.; Xu, J.; Obernier, K.; White, K.M.; O’Meara, M.J.; Rezelj, V.V.; Guo, J.Z.; Swaney, D.L.; Tummino, T.A.; Hüttenhain, R.; Kaake, R.M.; Richards, A.L.; Tutuncuoglu, B.; Foussard, H.; Batra, J.; Haas, K.; Modak, M.; Kim, M.; Haas, P.; Polacco, B.J.; Braberg, H.; Fabius, J.M.; Eckhardt, M.; Soucheray, M.; Bennett, M.J.; Cakir, M.; McGregor, M.J.; Li, Q.; Meyer, B.; Roesch, F.; Vallet, T.; Mac Kain, A.; Miorin, L.; Moreno, E.; Naing, Z.Z.C.; Zhou, Y.; Peng, S.; Shi, Y.; Zhang, Z.; Shen, W.; Kirby, I.T.; Melnyk, J.E.; Chorba, J.S.; Lou, K.; Dai, S.A.; Barrio-Hernandez, I.; Memon, D.; Hernandez-Armenta, C.; Lyu, J.; Mathy, C.J.P.; Perica, T.; Pilla, K.B.; Ganesan, S.J.; Saltzberg, D.J.; Rakesh, R.; Liu, X.; Rosenthal, S.B.; Calviello, L.; Venkataramanan, S.; Liboy-Lugo, J.; Lin, Y.; Huang, X.P.; Liu, Y.; Wankowicz, S.A.; Bohn, M.; Safari, M.; Ugur, F.S.; Koh, C.; Savar, N.S.; Tran, Q.D.; Shengjuler, D.; Fletcher, S.J.; O’Neal, M.C.; Cai, Y.; Chang, J.C.J.; Broadhurst, D.J.; Klippsten, S.; Sharp, P.P.; Wenzell, N.A.; Kuzuoglu-Ozturk, D.; Wang, H.Y.; Trenker, R.; Young, J.M.; Cavero, D.A.; Hiatt, J.; Roth, T.L.; Rathore, U.; Subramanian, A.; Noack, J.; Hubert, M.; Stroud, R.M.; Frankel, A.D.; Rosenberg, O.S.; Verba, K.A.; Agard, D.A.; Ott, M.; Emerman, M.; Jura, N.; von Zastrow, M.; Verdin, E.; Ashworth, A.; Schwartz, O.; d’Enfert, C.; Mukherjee, S.; Jacobson, M.; Malik, H.S.; Fujimori, D.G.; Ideker, T.; Craik, C.S.; Floor, S.N.; Fraser, J.S.; Gross, J.D.; Sali, A.; Roth, B.L.; Ruggero, D.; Taunton, J.; Kortemme, T.; Beltrao, P.; Vignuzzi, M.; García-Sastre, A.; Shokat, K.M.; Shoichet, B.K.; Krogan, N.J. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature, 2020, 583(7816), 459-468.
[http://dx.doi.org/10.1038/s41586-020-2286-9] [PMID: 32353859]
[239]
Tutuncuoglu, B.; Cakir, M.; Batra, J.; Bouhaddou, M.; Eckhardt, M.; Gordon, D.E.; Krogan, N.J. The landscape of human cancer proteins targeted by sars-cov-2. Cancer Discov., 2020, 10(7), 916-921.
[http://dx.doi.org/10.1158/2159-8290.CD-20-0559] [PMID: 32444466]
[240]
Andersen, P.I.; Ianevski, A.; Lysvand, H.; Vitkauskiene, A.; Oksenych, V.; Bjørås, M.; Telling, K.; Lutsar, I.; Dumpis, U.; Irie, Y.; Tenson, T.; Kantele, A.; Kainov, D.E. Discovery and development of safe-in-man broad-spectrum antiviral agents. Int. J. Infect. Dis., 2020, 93, 268-276.
[http://dx.doi.org/10.1016/j.ijid.2020.02.018] [PMID: 32081774]
[241]
Bösl, K.; Ianevski, A.; Than, T.T.; Andersen, P.I.; Kuivanen, S.; Teppor, M.; Zusinaite, E.; Dumpis, U.; Vitkauskiene, A.; Cox, R.J.; Kallio-Kokko, H.; Bergqvist, A.; Tenson, T.; Merits, A.; Oksenych, V.; Bjørås, M.; Anthonsen, M.W.; Shum, D.; Kaarbø, M.; Vapalahti, O.; Windisch, M.P.; Superti-Furga, G.; Snijder, B.; Kainov, D.; Kandasamy, R.K. Common nodes of virus-host interaction revealed through an integrated network analysis. Front. Immunol., 2019, 10, 2186.
[http://dx.doi.org/10.3389/fimmu.2019.02186] [PMID: 31636628]
[242]
Skipper, C.P.; Pastick, K.A.; Engen, N.W.; Bangdiwala, A.S.; Abassi, M.; Lofgren, S.M.; Williams, D.A.; Okafor, E.C.; Pullen, M.F.; Nicol, M.R.; Nascene, A.A.; Hullsiek, K.H.; Cheng, M.P.; Luke, D.; Lother, S.A.; MacKenzie, L.J.; Drobot, G.; Kelly, L.E.; Schwartz, I.S.; Zarychanski, R.; McDonald, E.G.; Lee, T.C.; Rajasingham, R.; Boulware, D.R. hydroxylchloroquine in nonhospitalized adults with early COVID-19: A randomized trail. Ann. Intern. Med., 2020, 173(8), 623-631.
[http://dx.doi.org/10.7326/M20-4207] [PMID: 32673060]
[243]
Khuroo, M.S. Chloroquine and hydroxychloroquine in coronavirus disease 2019 (COVID-19). Facts, fiction and the hype: A critical appraisal. Int. J. Antimicrob. Agents, 2020, 56(3), 106101.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.106101] [PMID: 32687949]
[244]
Malin, J.J.; Suárez, I.; Priesner, V.; Fätkenheuer, G.; Rybniker, J. Remdesivir against COVID-19 and other viral diseases. Clin. Microbiol. Rev., 2020, 34(1), e00162-20.
[http://dx.doi.org/10.1128/CMR.00162-20] [PMID: 33055231]
[245]
Hung, I.F.; Lung, K.C.; Tso, E.Y.; Liu, R.; Chung, T.W.; Chu, M.Y.; Ng, Y.Y.; Lo, J.; Chan, J.; Tam, A.R.; Shum, H.P.; Chan, V.; Wu, A.K.; Sin, K.M.; Leung, W.S.; Law, W.L.; Lung, D.C.; Sin, S.; Yeung, P.; Yip, C.C.; Zhang, R.R.; Fung, A.Y.; Yan, E.Y.; Leung, K.H.; Ip, J.D.; Chu, A.W.; Chan, W.M.; Ng, A.C.; Lee, R.; Fung, K.; Yeung, A.; Wu, T.C.; Chan, J.W.; Yan, W.W.; Chan, W.M.; Chan, J.F.; Lie, A.K.; Tsang, O.T.; Cheng, V.C.; Que, T.L.; Lau, C.S.; Chan, K.H.; To, K.K.; Yuen, K.Y. Triple combination of interferon beta-1b, lopinavir-ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: An open-label, randomised, phase 2 trial. Lancet, 2020, 395(10238), 1695-1704.
[http://dx.doi.org/10.1016/S0140-6736(20)31042-4] [PMID: 32401715]
[246]
Zhou, P.; Yang, X.L.; Wang, X.G.; Hu, B.; Zhang, L.; Zhang, W. Discovery of a novel coronavirus associated with the recent pneumonia outbreak in humans and its potential bat origin. bioRxiv, 2020.
[247]
Gautret, P.; Lagier, J.C.; Parola, P.; Hoang, V.T.; Meddeb, L.; Mailhe, M. DoudieR, B.; Courjon, J.; Giordanengo, V.; Vieira, V.E.; Tissot Dupont, H.; Honoré, S.; Colson, P.; Chabrière, E.; La Scola, B.; Rolain, J.M.; Brouqui, P.; Raoult, D. Hydroxychloroquine and azithromycin as a treatment of COVID-19: Results of an open-label non-randomized clinical trial. Int J Antimicrob Agents, 2020, 56(1), 105949.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105949] [PMID: 32205204]
[248]
Kadam, K.U.; Wilson, I.A. Structure of Arbidol with influenza hemagglutinin. Proc. Natl. Acad. Sci. USA, 2017, 114, 206-214.
[http://dx.doi.org/10.1073/pnas.1617020114] [PMID: 28003465]
[249]
Sheahan, T.P.; Sims, A.C.; Leist, S.R.; Schäfer, A.; Won, J.; Brown, A.J.; Montgomery, S.A.; Hogg, A.; Babusis, D.; Clarke, M.O.; Spahn, J.E.; Bauer, L.; Sellers, S.; Porter, D.; Feng, J.Y.; Cihlar, T.; Jordan, R.; Denison, M.R.; Baric, R.S. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat. Commun., 2020, 11(1), 222.
[http://dx.doi.org/10.1038/s41467-019-13940-6] [PMID: 31924756]
[250]
Hayden, F.G.; Shindo, N. Influenza virus polymerase inhibitors in clinical development. Curr. Opin. Infect. Dis., 2019, 32(2), 176-186.
[http://dx.doi.org/10.1097/QCO.0000000000000532] [PMID: 30724789]
[251]
Xu, X.; Han, M.; Li, T.; Sun, W.; Wang, D.; Fu, B.; Zhou, Y.; Zheng, X.; Yang, Y.; Li, X.; Zhang, X.; Pan, A.; Wei, H. Effective treatment of severe COVID-19 patients with tocilizumab. Proc. Natl. Acad. Sci. USA, 2020, 117(20), 10970-10975.
[http://dx.doi.org/10.1073/pnas.2005615117] [PMID: 32350134]
[252]
Drosten, C.; Gunther, S.; Preiser, W.; van der Werf, S.; Brodt, H.R.; Becker, S.; Rabenau, H.; Panning, M.; Kolesnikova, L.; Fouchier, R.A. SARS coronavirus 7a protein blocks cell cycle progression at G0/G1 phase via the cyclin D3/pRb pathway. N. Engl. J. Med., 2003, 348, 1967-1976.
[http://dx.doi.org/10.1056/NEJMoa030747] [PMID: 12690091]
[253]
Ksiazek, T.G.; Erdman, D.; Goldsmith, C.S.; Zaki, S.R.; Peret, T.; Emery, S.; Tong, S.; Urbani, C.; Comer, J.A.; Lim, W.; Rollin, P.E.; Dowell, S.F.; Ling, A.E.; Humphrey, C.D.; Shieh, W.J.; Guarner, J.; Paddock, C.D.; Rota, P.; Fields, B.; DeRisi, J.; Yang, J.Y.; Cox, N.; Hughes, J.M.; LeDuc, J.W.; Bellini, W.J.; Anderson, L.J. A novel coronavirus associated with severe acute respiratory syndrome. N. Engl. J. Med., 2003, 348(20), 1953-1966.
[http://dx.doi.org/10.1056/NEJMoa030781] [PMID: 12690092]
[254]
Meier, C.; Aricescu, A.R.; Assenberg, R.; Aplin, R.T.; Gilbert, R.J.C.; Grimes, J.M.; Stuart, D.I. The crystal structure of ORF-9b, a lipid binding protein from the SARS coronavirus. Structure, 2006, 14(7), 1157-1165.
[http://dx.doi.org/10.1016/j.str.2006.05.012] [PMID: 16843897]
[255]
Siddell, S.G.; Ziebuhr, J.; Snijder, E.J. Topley & Wilson’s microbiology and microbia infections. 10; Mahy, B.W.J.; terMeulen, V., Eds.; Hodder Arnold: London, 2005, pp. 823-856.
[256]
van der Hoek, L.; Pyrc, K.; Jebbink, M.F.; Vermeulen-Oost, W.; Berkhout, R.J.; Wolthers, K.C.; Wertheim-van Dillen, P.M.; Kaandorp, J.; Spaargaren, J.; Berkhout, B. Identification of a new human coronavirus. Nat. Med., 2004, 10(4), 368-373.
[http://dx.doi.org/10.1038/nm1024] [PMID: 15034574]
[257]
Woo, P.C.; Lau, S.K.; Chu, C.M.; Chan, K.H.; Tsoi, H.W.; Huang, Y.; Wong, B.H.; Poon, R.W.; Cai, J.J.; Luk, W.K. Phylogenetic and recombination analysis of coronavirus HKU1, a novel coronavirus from patients with pneumonia. J. Virol., 2005, 79, 884-895.
[http://dx.doi.org/10.1128/JVI.79.2.884-895.2005] [PMID: 15613317]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy