Review Article

营养抗氧化治疗糖尿病血管并发症的最新进展:综合综述

卷 29, 期 11, 2022

发表于: 10 August, 2021

页: [1920 - 1935] 页: 16

弟呕挨: 10.2174/0929867328666210810142527

价格: $65

Open Access Journals Promotions 2
摘要

糖尿病(DM)和DM引起的血管并发症是重要的全球医疗保健问题,导致患者的生活质量下降。患者残疾和死亡的主要原因是快速进展的微血管和大血管疾病。目前,自由基氧化被认为是糖尿病及相关并发症发生的主要机制之一。在正常的生理条件下,自由基的水平和抗氧化防御能力是平衡的。然而,在慢性高血糖过程中,抗氧化防御系统和促氧化剂之间发生不平衡,可能引发过量自由基的形成,导致脂质过氧化的激活和剧毒自由基氧化产物的积累。这也伴随着糖尿病患者不同程度的胰岛素缺乏和胰岛素抵抗。在激活自由基生成的同时,抗氧化防御因子(超氧化物歧化酶、过氧化氢酶、谷胱甘肽过氧化物酶、谷胱甘肽还原酶、维生素C和E)的活性降低,糖尿病并发症加速。因此,我们推测抗氧化剂可能在糖尿病患者的治疗中发挥积极的作用,以预防糖尿病引起的血管并发症。然而,这一点还没有得到充分的研究。在这篇综述中,我们讨论了氧化应激诱导的糖尿病并发症的潜在机制,以及抗氧化剂在缓解dm诱导的血管并发症中的作用。

关键词: 抗氧化制剂,氧化应激,糖尿病血管并发症,糖尿病,线粒体,神经保护。

[1]
Shi, Y.; Vanhoutte, P.M. Macro- and microvascular endothelial dysfunction in diabetes. J. Diabetes, 2017, 9(5), 434-449.
[http://dx.doi.org/10.1111/1753-0407.12521] [PMID: 28044409]
[2]
Zwingli, G.; Yerly, J.; Mivelaz, Y.; Stoppa-Vaucher, S.; Dwyer, A.A.; Pitteloud, N.; Stuber, M.; Hauschild, M. Non-invasive assessment of coronary endothelial function in children and adolescents with type 1 diabetes mellitus using isometric handgrip exercise-MRI: A feasibility study. PLoS One, 2020, 15(2), e0228569.
[http://dx.doi.org/10.1371/journal.pone.0228569] [PMID: 32053613]
[3]
Vecchié, A.; Montecucco, F.; Carbone, F.; Dallegri, F.; Bonaventura, A. diabetes and vascular disease: is it all about glycemia? Curr. Pharm. Des., 2019, 25(29), 3112-3127.
[http://dx.doi.org/10.2174/1381612825666190830181944] [PMID: 31470783]
[4]
Jung, C.H.; Mok, J.O. Recent updates on vascular complications in patients with type 2 diabetes mellitus. Endocrinol. Metab. (Seoul), 2020, 35(2), 260-271.
[http://dx.doi.org/10.3803/EnM.2020.35.2.260] [PMID: 32615710]
[5]
Zelniker, T.A.; Wiviott, S.D.; Raz, I. Im, K.; Goodrich, E.L.; Bonaca, M.P.; Mosenzon, O.; Kato, E.T.; Cahn, A.; Furtado, R.H.M.; Bhatt, D.L.; Leiter, L.A.; McGuire, D.K.; Wilding, J.P.H.; Sabatine, M.S. SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet, 2019, 393(10166), 31-39.
[http://dx.doi.org/10.1016/S0140-6736(18)32590-X] [PMID: 30424892]
[6]
Zanuso, S.; Sacchetti, M.; Sundberg, C.J.; Orlando, G.; Benvenuti, P.; Balducci, S. Exercise in type 2 diabetes: genetic, metabolic and neuromuscular adaptations. A review of the evidence. Br. J. Sports Med., 2017, 51(21), 1533-1538.
[http://dx.doi.org/10.1136/bjsports-2016-096724] [PMID: 28501806]
[7]
Salehpour, F.; Mahmoudi, J.; Kamari, F.; Sadigh-Eteghad, S.; Rasta, S.H.; Hamblin, M.R. Brain Photobiomodulation Therapy: A Narrative Review. Mol. Neurobiol., 2018, 55(8), 6601-6636.
[http://dx.doi.org/10.1007/s12035-017-0852-4] [PMID: 29327206]
[8]
Heggermont, W.A.; Papageorgiou, A.P.; Heymans, S.; van Bilsen, M. Metabolic support for the heart: complementary therapy for heart failure? Eur. J. Heart Fail., 2016, 18(12), 1420-1429.
[http://dx.doi.org/10.1002/ejhf.678] [PMID: 27813339]
[9]
Goodpaster, B.H.; Sparks, L.M. Metabolic flexibility in health and disease. Cell Metab., 2017, 25(5), 1027-1036.
[http://dx.doi.org/10.1016/j.cmet.2017.04.015] [PMID: 28467922]
[10]
Muriach, M.; Flores-Bellver, M.; Romero, F.J.; Barcia, J.M. Diabetes and the brain: oxidative stress, inflammation, and autophagy. Oxid. Med. Cell. Longev., 2014, 2014, 102158.
[http://dx.doi.org/10.1155/2014/102158] [PMID: 25215171]
[11]
Cai, X.; Zhang, Y.; Li, M.; Wu, J.H.; Mai, L.; Li, J.; Yang, Y.; Hu, Y.; Huang, Y. Association between prediabetes and risk of all cause mortality and cardiovascular disease: updated meta-analysis. BMJ, 2020, 370, m2297.
[http://dx.doi.org/10.1136/bmj.m2297] [PMID: 32669282]
[12]
Leung, A.; Amaram, V.; Natarajan, R. Linking diabetic vascular complications with LncRNAs. Vascul. Pharmacol., 2019, 114, 139-144.
[http://dx.doi.org/10.1016/j.vph.2018.01.007] [PMID: 29398367]
[13]
Dhawan, S.; Natarajan, R. Epigenetics and type 2 diabetes risk. Curr. Diab. Rep., 2019, 19(8), 47.
[http://dx.doi.org/10.1007/s11892-019-1168-8] [PMID: 31250127]
[14]
Glovaci, D.; Fan, W.; Wong, N.D. Epidemiology of diabetes mellitus and cardiovascular disease. Curr. Cardiol. Rep., 2019, 21(4), 21.
[http://dx.doi.org/10.1007/s11886-019-1107-y] [PMID: 30828746]
[15]
Monnier, L.; Mas, E.; Ginet, C.; Michel, F.; Villon, L.; Cristol, J.P.; Colette, C. Activation of oxidative stress by acute glucose fluctuations compared with sustained chronic hyperglycemia in patients with type 2 diabetes. JAMA, 2006, 295(14), 1681-1687.
[http://dx.doi.org/10.1001/jama.295.14.1681] [PMID: 16609090]
[16]
Luc, K.; Schramm-Luc, A.; Guzik, T.J.; Mikolajczyk, T.P. Oxidative stress and inflammatory markers in prediabetes and diabetes. J. Physiol. Pharmacol., 2019, 70(6)
[http://dx.doi.org/10.26402/jpp.2019.6.01] [PMID: 32084643]
[17]
Lamb, R.E.; Goldstein, B.J. Modulating an oxidative-inflammatory cascade: potential new treatment strategy for improving glucose metabolism, insulin resistance, and vascular function. Int. J. Clin. Pract., 2008, 62(7), 1087-1095.
[http://dx.doi.org/10.1111/j.1742-1241.2008.01789.x] [PMID: 18489578]
[18]
Kregel, K.C.; Zhang, H.J. An integrated view of oxidative stress in aging: basic mechanisms, functional effects, and pathological considerations. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2007, 292(1), R18-R36.
[http://dx.doi.org/10.1152/ajpregu.00327.2006] [PMID: 16917020]
[19]
Chusak, C.; Pasukamonset, P.; Chantarasinlapin, P.; Adisakwattana, S. Postprandial glycemia, insulinemia, and antioxidant status in healthy subjects after ingestion of bread made from anthocyanin-rich riceberry rice. Nutrients, 2020, 12(3), E782.
[http://dx.doi.org/10.3390/nu12030782] [PMID: 32188005]
[20]
Guzik, T.J.; Harrison, D.G. Vascular NADPH oxidases as drug targets for novel antioxidant strategies. Drug Discov. Today, 2006, 11(11-12), 524-533.
[http://dx.doi.org/10.1016/j.drudis.2006.04.003] [PMID: 16713904]
[21]
Davidson, S.M.; Duchen, M.R. Endothelial mitochondria: contributing to vascular function and disease. Circ. Res., 2007, 100(8), 1128-1141.
[http://dx.doi.org/10.1161/01.RES.0000261970.18328.1d] [PMID: 17463328]
[22]
Fatehi-Hassanabad, Z.; Chan, C.B.; Furman, B.L. Reactive oxygen species and endothelial function in diabetes. Eur. J. Pharmacol., 2010, 636(1-3), 8-17.
[http://dx.doi.org/10.1016/j.ejphar.2010.03.048] [PMID: 20371238]
[23]
Newsholme, P.; Cruzat, V.F.; Keane, K.N.; Carlessi, R.; de Bittencourt, P.I. Jr. Molecular mechanisms of ROS production and oxidative stress in diabetes. Biochem. J., 2016, 473(24), 4527-4550.
[http://dx.doi.org/10.1042/BCJ20160503C] [PMID: 27941030]
[24]
Yaribeygi, H.; Sathyapalan, T.; Atkin, S.L.; Sahebkar, A. Molecular mechanisms linking oxidative stress and diabetes mellitus. Oxid. Med. Cell. Longev., 2020, 2020, 8609213.
[http://dx.doi.org/10.1155/2020/8609213] [PMID: 32215179]
[25]
Bey, E.A.; Xu, B.; Bhattacharjee, A.; Oldfield, C.M.; Zhao, X.; Li, Q.; Subbulakshmi, V.; Feldman, G.M.; Wientjes, F.B.; Cathcart, M.K. Protein kinase C delta is required for p47phox phosphorylation and translocation in activated human monocytes. J. Immunol., 2004, 173(9), 5730-5738.
[http://dx.doi.org/10.4049/jimmunol.173.9.5730] [PMID: 15494525]
[26]
Naruse, K.; Rask-Madsen, C.; Takahara, N.; Ha, S.W.; Suzuma, K.; Way, K.J.; Jacobs, J.R.; Clermont, A.C.; Ueki, K.; Ohshiro, Y.; Zhang, J.; Goldfine, A.B.; King, G.L. Activation of vascular protein kinase C-beta inhibits Akt-dependent endothelial nitric oxide synthase function in obesity-associated insulin resistance. Diabetes, 2006, 55(3), 691-698.
[http://dx.doi.org/10.2337/diabetes.55.03.06.db05-0771] [PMID: 16505232]
[27]
Mellor, K.M.; Brimble, M.A.; Delbridge, L.M. Glucose as an agent of post-translational modification in diabetes--New cardiac epigenetic insights. Life Sci., 2015, 129, 48-53.
[http://dx.doi.org/10.1016/j.lfs.2014.03.020] [PMID: 24699006]
[28]
Lovestone, S.; Smith, U. Advanced glycation end products, dementia, and diabetes. Proc. Natl. Acad. Sci. USA, 2014, 111(13), 4743-4744.
[http://dx.doi.org/10.1073/pnas.1402277111] [PMID: 24707042]
[29]
Ohmura, C.; Watada, H.; Azuma, K.; Shimizu, T.; Kanazawa, A.; Ikeda, F.; Yoshihara, T.; Fujitani, Y.; Hirose, T.; Tanaka, Y.; Kawamori, R. Aldose reductase inhibitor, epalrestat, reduces lipid hydroperoxides in type 2 diabetes. Endocr. J., 2009, 56(1), 149-156.
[http://dx.doi.org/10.1507/endocrj.K08E-237] [PMID: 18997444]
[30]
Queisser, M.A.; Yao, D.; Geisler, S.; Hammes, H.P.; Lochnit, G.; Schleicher, E.D.; Brownlee, M.; Preissner, K.T. Hyperglycemia impairs proteasome function by methylglyoxal. Diabetes, 2010, 59(3), 670-678.
[http://dx.doi.org/10.2337/db08-1565] [PMID: 20009088]
[31]
Thornalley, P.J.; Langborg, A.; Minhas, H.S. Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose. Biochem. J., 1999, 344(Pt 1), 109-116.
[http://dx.doi.org/10.1042/bj3440109] [PMID: 10548540]
[32]
Koga, M.; Murai, J.; Morita, S.; Saito, H.; Kasayama, S. Comparison of annual variability in HbA1c and glycated albumin in patients with type 1 vs. type 2 diabetes mellitus. J. Diabetes Complications, 2013, 27(3), 211-213.
[http://dx.doi.org/10.1016/j.jdiacomp.2012.12.001] [PMID: 23312788]
[33]
Gholap, N.N.; Davies, M.J.; Mostafa, S.A.; Khunti, K. Diagnosing type 2 diabetes and identifying high-risk individuals using the new glycated haemoglobin (HbA1c) criteria. Br. J. Gen. Pract., 2013, 63(607), e165-e167.
[http://dx.doi.org/10.3399/bjgp13X663244] [PMID: 23561696]
[34]
Wells-Knecht, K.J.; Brinkmann, E.; Wells-Knecht, M.C.; Litchfield, J.E.; Ahmed, M.U.; Reddy, S.; Zyzak, D.V.; Thorpe, S.R.; Baynes, J.W. New biomarkers of Maillard reaction damage to proteins. Nephrol. Dial. Transplant., 1996, 11(Suppl. 5), 41-47.
[http://dx.doi.org/10.1093/ndt/11.supp5.41] [PMID: 9044306]
[35]
Wells-Knecht, K.J.; Zyzak, D.V.; Litchfield, J.E.; Thorpe, S.R.; Baynes, J.W. Mechanism of autoxidative glycosylation: identification of glyoxal and arabinose as intermediates in the autoxidative modification of proteins by glucose. Biochemistry, 1995, 34(11), 3702-3709.
[http://dx.doi.org/10.1021/bi00011a027] [PMID: 7893666]
[36]
Rask-Madsen, C.; King, G.L. Vascular complications of diabetes: mechanisms of injury and protective factors. Cell Metab., 2013, 17(1), 20-33.
[http://dx.doi.org/10.1016/j.cmet.2012.11.012] [PMID: 23312281]
[37]
Wu, D.; Gong, C.X.; Meng, X.; Yang, Q.L. Correlation between blood glucose fluctuations and activation of oxidative stress in type 1 diabetic children during the acute metabolic disturbance period. Chin. Med. J. (Engl.), 2013, 126(21), 4019-4022.
[PMID: 24229667]
[38]
Gerber, P.A.; Rutter, G.A. The role of oxidative stress and hypoxia in pancreatic beta-cell dysfunction in diabetes mellitus. Antioxid. Redox Signal., 2017, 26(10), 501-518.
[http://dx.doi.org/10.1089/ars.2016.6755] [PMID: 27225690]
[39]
Miki, A.; Ricordi, C.; Sakuma, Y.; Yamamoto, T.; Misawa, R.; Mita, A.; Molano, R.D.; Vaziri, N.D.; Pileggi, A.; Ichii, H. Divergent antioxidant capacity of human islet cell subsets: A potential cause of beta-cell vulnerability in diabetes and islet transplantation. PLoS One, 2018, 13(5), e0196570.
[http://dx.doi.org/10.1371/journal.pone.0196570] [PMID: 29723228]
[40]
Green, H.L.H.; Brewer, A.C. Dysregulation of 2-oxoglutarate-dependent dioxygenases by hyperglycaemia: does this link diabetes and vascular disease? Clin. Epigenetics, 2020, 12(1), 59.
[http://dx.doi.org/10.1186/s13148-020-00848-y] [PMID: 32345373]
[41]
Sifuentes-Franco, S.; Pacheco-Moisés, F.P.; Rodríguez-Carrizalez, A.D.; Miranda-Díaz, A.G. The role of oxidative stress, mitochondrial function, and autophagy in diabetic polyneuropathy. J. Diabetes Res., 2017, 2017, 1673081.
[http://dx.doi.org/10.1155/2017/1673081] [PMID: 29204450]
[42]
Calderon, G.D.; Juarez, O.H.; Hernandez, G.E.; Punzo, S.M.; De la Cruz, Z.D. Oxidative stress and diabetic retinopathy: development and treatment. Eye (Lond.), 2017, 31(8), 1122-1130.
[http://dx.doi.org/10.1038/eye.2017.64] [PMID: 28452994]
[43]
Lima, A.H.R.A.; Correia, M.A.; Soares, A.H.G.; Farah, B.Q.; Forjaz, C.L.M.; Silva, A.S.; Brasileiro-Santos, M.S.; Santos, A.C.; Ritti-Dias, R.M. Acute effects of walking and combined exercise on oxidative stress and vascular function in peripheral artery disease. Clin. Physiol. Funct. Imaging, 2018, 38(1), 69-75.
[http://dx.doi.org/10.1111/cpf.12384] [PMID: 27491344]
[44]
Koutakis, P.; Ismaeel, A.; Farmer, P.; Purcell, S.; Smith, R.S.; Eidson, J.L.; Bohannon, W.T. Oxidative stress and antioxidant treatment in patients with peripheral artery disease. Physiol. Rep., 2018, 6(7), e13650.
[http://dx.doi.org/10.14814/phy2.13650] [PMID: 29611350]
[45]
Turan, B. Role of antioxidants in redox regulation of diabetic cardiovascular complications. Curr. Pharm. Biotechnol., 2010, 11(8), 819-836.
[http://dx.doi.org/10.2174/138920110793262123] [PMID: 20874678]
[46]
Domingueti, C.P.; Dusse, L.M.; Carvalho, Md.; de Sousa, L.P.; Gomes, K.B.; Fernandes, A.P. Diabetes mellitus: The linkage between oxidative stress, inflammation, hypercoagulability and vascular complications. J. Diabetes Complications, 2016, 30(4), 738-745.
[http://dx.doi.org/10.1016/j.jdiacomp.2015.12.018] [PMID: 26781070]
[47]
Petrie, J.R.; Guzik, T.J.; Touyz, R.M. Diabetes, hypertension, and cardiovascular disease: clinical insights and vascular mechanisms. Can. J. Cardiol., 2018, 34(5), 575-584.
[http://dx.doi.org/10.1016/j.cjca.2017.12.005] [PMID: 29459239]
[48]
Gruden, G.; Barutta, F.; Kunos, G.; Pacher, P. Role of the endocannabinoid system in diabetes and diabetic complications. Br. J. Pharmacol., 2016, 173(7), 1116-1127.
[http://dx.doi.org/10.1111/bph.13226] [PMID: 26076890]
[49]
Al-Khaldi, A.; Sultan, S. The expression of sirtuins, superoxide dismutase, and lipid peroxidation status in peripheral blood from patients with diabetes and hypothyroidism. BMC Endocr. Disord., 2019, 19(1), 19.
[http://dx.doi.org/10.1186/s12902-019-0350-y] [PMID: 30736780]
[50]
Widlansky, M.E.; Hill, R.B. Mitochondrial regulation of diabetic vascular disease: an emerging opportunity. Transl. Res., 2018, 202, 83-98.
[http://dx.doi.org/10.1016/j.trsl.2018.07.015] [PMID: 30144425]
[51]
Kaneto, H.; Matsuoka, T.A. Role of pancreatic transcription factors in maintenance of mature β-cell function. Int. J. Mol. Sci., 2015, 16(3), 6281-6297.
[http://dx.doi.org/10.3390/ijms16036281] [PMID: 25794287]
[52]
Pagnin, E.; Fadini, G.; de Toni, R.; Tiengo, A.; Calò, L.; Avogaro, A. Diabetes induces p66shc gene expression in human peripheral blood mononuclear cells: relationship to oxidative stress. J. Clin. Endocrinol. Metab., 2005, 90(2), 1130-1136.
[http://dx.doi.org/10.1210/jc.2004-1283] [PMID: 15562031]
[53]
Golbidi, S.; Badran, M.; Laher, I. Antioxidant and anti-inflammatory effects of exercise in diabetic patients. Exp. Diabetes Res., 2012, 2012, 941868.
[http://dx.doi.org/10.1155/2012/941868] [PMID: 22007193]
[54]
Barone, M.T.; Menna-Barreto, L. Diabetes and sleep: a complex cause-and-effect relationship. Diabetes Res. Clin. Pract., 2011, 91(2), 129-137.
[http://dx.doi.org/10.1016/j.diabres.2010.07.011] [PMID: 20810183]
[55]
Ge, S.; Xie, J.; Zheng, L.; Yang, L.; Zhu, H.; Cheng, X.; Shen, F. Associations of serum anti-ganglioside antibodies and inflammatory markers in diabetic peripheral neuropathy. Diabetes Res. Clin. Pract., 2016, 115, 68-75.
[http://dx.doi.org/10.1016/j.diabres.2016.02.005] [PMID: 27242125]
[56]
Ryan, S. Adipose tissue inflammation by intermittent hypoxia: mechanistic link between obstructive sleep apnoea and metabolic dysfunction. J. Physiol., 2017, 595(8), 2423-2430.
[http://dx.doi.org/10.1113/JP273312] [PMID: 27901270]
[57]
Odegaard, J.I.; Chawla, A. Pleiotropic actions of insulin resistance and inflammation in metabolic homeostasis. Science, 2013, 339(6116), 172-177.
[http://dx.doi.org/10.1126/science.1230721] [PMID: 23307735]
[58]
Bierhaus, A.; Haslbeck, K.M.; Humpert, P.M.; Liliensiek, B.; Dehmer, T.; Morcos, M.; Sayed, A.A.; Andrassy, M.; Schiekofer, S.; Schneider, J.G.; Schulz, J.B.; Heuss, D.; Neundörfer, B.; Dierl, S.; Huber, J.; Tritschler, H.; Schmidt, A.M.; Schwaninger, M.; Haering, H.U.; Schleicher, E.; Kasper, M.; Stern, D.M.; Arnold, B.; Nawroth, P.P. Loss of pain perception in diabetes is dependent on a receptor of the immunoglobulin superfamily. J. Clin. Invest., 2004, 114(12), 1741-1751.
[http://dx.doi.org/10.1172/JCI18058] [PMID: 15599399]
[59]
Rodriguez-Calvo, T.; Ekwall, O.; Amirian, N.; Zapardiel-Gonzalo, J.; von Herrath, M.G. Increased immune cell infiltration of the exocrine pancreas: a possible contribution to the pathogenesis of type 1 diabetes. Diabetes, 2014, 63(11), 3880-3890.
[http://dx.doi.org/10.2337/db14-0549] [PMID: 24947367]
[60]
Pathiraja, V.; Kuehlich, J.P.; Campbell, P.D.; Krishnamurthy, B.; Loudovaris, T.; Coates, P.T.; Brodnicki, T.C.; O’Connell, P.J.; Kedzierska, K.; Rodda, C.; Bergman, P.; Hill, E.; Purcell, A.W.; Dudek, N.L.; Thomas, H.E.; Kay, T.W.; Mannering, S.I. Proinsulin-specific, HLA-DQ8, and HLA-DQ8-transdimer-restricted CD4+ T cells infiltrate islets in type 1 diabetes. Diabetes, 2015, 64(1), 172-182.
[http://dx.doi.org/10.2337/db14-0858] [PMID: 25157096]
[61]
Coppieters, K.T.; Dotta, F.; Amirian, N.; Campbell, P.D.; Kay, T.W.; Atkinson, M.A.; Roep, B.O.; von Herrath, M.G. Demonstration of islet-autoreactive CD8 T cells in insulitic lesions from recent onset and long-term type 1 diabetes patients. J. Exp. Med., 2012, 209(1), 51-60.
[http://dx.doi.org/10.1084/jem.20111187] [PMID: 22213807]
[62]
Sarikonda, G.; Pettus, J.; Phatak, S.; Sachithanantham, S.; Miller, J.F.; Wesley, J.D.; Cadag, E.; Chae, J.; Ganesan, L.; Mallios, R.; Edelman, S.; Peters, B.; von Herrath, M. CD8 T-cell reactivity to islet antigens is unique to type 1 while CD4 T-cell reactivity exists in both type 1 and type 2 diabetes. J. Autoimmun., 2014, 50, 77-82.
[http://dx.doi.org/10.1016/j.jaut.2013.12.003] [PMID: 24387802]
[63]
Roep, B.O.; Thomaidou, S.; van Tienhoven, R.; Zaldumbide, A. Type 1 diabetes mellitus as a disease of the β-cell (do not blame the immune system?). Nat. Rev. Endocrinol., 2021, 17(3), 150-161.
[http://dx.doi.org/10.1038/s41574-020-00443-4] [PMID: 33293704]
[64]
Malekmohammad, K.; Sewell, R.D.E.; Rafieian-Kopaei, M. Antioxidants and Atherosclerosis: Mechanistic Aspects. Biomolecules, 2019, 9(8), E301.
[http://dx.doi.org/10.3390/biom9080301] [PMID: 31349600]
[65]
Machado, A.D.; Andrade, G.R.G.; Levy, J.; Ferreira, S.S.; Marchioni, D.M. Association between vitamins and minerals with antioxidant effects and coronary artery calcification in adults and older adults: a systematic review. Curr. Pharm. Des., 2019, 25(22), 2474-2479.
[http://dx.doi.org/10.2174/1381612825666190722101954] [PMID: 31333116]
[66]
McGuire, D.K.; Shih, W.J.; Cosentino, F.; Charbonnel, B.; Cherney, D.Z.I.; Dagogo-Jack, S.; Pratley, R.; Greenberg, M.; Wang, S.; Huyck, S.; Gantz, I.; Terra, S.G.; Masiukiewicz, U.; Cannon, C.P. Association of SGLT2 inhibitors with cardiovascular and kidney outcomes in patients with type 2 diabetes: a meta-analysis. JAMA Cardiol., 2021, 6(2), 148-158.
[http://dx.doi.org/10.1001/jamacardio.2020.4511] [PMID: 33031522]
[67]
Amanat, S.; Ghahri, S.; Dianatinasab, A.; Fararouei, M.; Dianatinasab, M. Exercise and type 2 diabetes.In: Physical Exercise for Human Health; Springer: Singapore, 2020, pp. 91-105.
[http://dx.doi.org/10.1007/978-981-15-1792-1_6]
[68]
Malik, A.; Morya, R.K.; Saha, S.; Singh, P.K.; Bhadada, S.K.; Rana, S.V. Oxidative stress and inflammatory markers in type 2 diabetic patients. Eur. J. Clin. Invest., 2020, 50(6), e13238.
[http://dx.doi.org/10.1111/eci.13238] [PMID: 32298466]
[69]
Edwards, J.L.; Vincent, A.M.; Cheng, H.T.; Feldman, E.L. Diabetic neuropathy: mechanisms to management. Pharmacol. Ther., 2008, 120(1), 1-34.
[http://dx.doi.org/10.1016/j.pharmthera.2008.05.005] [PMID: 18616962]
[70]
Lu, J.; Huang, Y.; Zhang, X.; Xu, Y.; Nie, S. Noncoding RNAs involved in DNA methylation and histone methylation, and acetylation in diabetic vascular complications. Pharmacol. Res., 2021., 105520.
[http://dx.doi.org/10.1016/j.phrs.2021.105520] [PMID: 33639232]
[71]
Ismaeel, A.; Papoutsi, E.; Miserlis, D.; Lavado, R.; Haynatzki, G.; Casale, G.P.; Bohannon, W.T.; Smith, R.S.; Eidson, J.L.; Brumberg, R.; Hayson, A.; Kirk, J.S.; Castro, C.; Sawicki, I.; Konstantinou, C.; Brewster, L.P.; Pipinos, I.I.; Koutakis, P. The nitric oxide system in peripheral artery disease: connection with oxidative stress and biopterins. Antioxidants, 2020, 9(7), 590.
[http://dx.doi.org/10.3390/antiox9070590] [PMID: 32640613]
[72]
Bartkoski, S.; Day, M. Alpha-lipoic acid for treatment of diabetic peripheral neuropathy. Am. Fam. Physician, 2016, 93(9), 786.
[PMID: 27175957]
[73]
Lee, K.A.; Lee, N.Y.; Park, T.S.; Jin, H.Y. Comparison of peripheral nerve protection between insulin-based glucose control and alpha lipoic acid (ALA) in the streptozotocin (STZ)-induced diabetic rat. Endocrine, 2018, 61(1), 58-67.
[http://dx.doi.org/10.1007/s12020-018-1613-5] [PMID: 29736880]
[74]
Rochette, L.; Ghibu, S.; Muresan, A.; Vergely, C. Alpha-lipoic acid: molecular mechanisms and therapeutic potential in diabetes. Can. J. Physiol. Pharmacol., 2015, 93(12), 1021-1027.
[http://dx.doi.org/10.1139/cjpp-2014-0353] [PMID: 26406389]
[75]
Yang, H.; Zhao, F.; Jiang, G.; Sun, Z.; Mei, X. A novel deep learning approach for machinery prognostics based on time windows. Appl. Sci. (Basel), 2019, 9, 4813.
[http://dx.doi.org/10.3390/app9224813]
[76]
Hennessy, M.; Hamblin, M.R. Photobiomodulation and the brain: a new paradigm. J. Opt., 2017, 19(1), 013003.
[http://dx.doi.org/10.1088/2040-8986/19/1/013003] [PMID: 28580093]
[77]
Dehdashtian, E.; Mehrzadi, S.; Yousefi, B.; Hosseinzadeh, A.; Reiter, R.J.; Safa, M.; Ghaznavi, H.; Naseripour, M. Diabetic retinopathy pathogenesis and the ameliorating effects of melatonin; involvement of autophagy, inflammation and oxidative stress. Life Sci., 2018, 193, 20-33.
[http://dx.doi.org/10.1016/j.lfs.2017.12.001] [PMID: 29203148]
[78]
Jakaria, M.; Azam, S.; Haque, M.E.; Jo, S-H.; Uddin, M.S.; Kim, I-S.; Choi, D-K. Taurine and its analogs in neurological disorders: Focus on therapeutic potential and molecular mechanisms. Redox Biol., 2019, 24, 101223.
[http://dx.doi.org/10.1016/j.redox.2019.101223] [PMID: 31141786]
[79]
Cheng, D.; Liang, B.; Li, Y. Antihyperglycemic effect of Ginkgo biloba extract in streptozotocin-induced diabetes in rats. BioMed Res. Int., 2013, 2013, 162724.
[http://dx.doi.org/10.1155/2013/162724]]
[80]
Kudolo, G.B. The effect of 3-month ingestion of Ginkgo biloba extract on pancreatic β-cell function in response to glucose loading in normal glucose tolerant individuals. J. Clin. Pharmacol., 2000, 40(6), 647-654.
[http://dx.doi.org/10.1002/j.1552-4604.2000.tb05991.x] [PMID: 10868316]
[81]
Aziz, T.A.; Hussain, S.A.; Mahwi, T.O.; Ahmed, Z.A.; Rahman, H.S.; Rasedee, A. The efficacy and safety of Ginkgo biloba extract as an adjuvant in type 2 diabetes mellitus patients ineffectively managed with metformin: a double-blind, randomized, placebo-controlled trial. Drug Des. Devel. Ther., 2018, 12, 735-742.
[http://dx.doi.org/10.2147/DDDT.S157113] [PMID: 29670330]
[82]
Sarkar, P.; Basak, P.; Ghosh, S.; Kundu, M.; Sil, P.C. Prophylactic role of taurine and its derivatives against diabetes mellitus and its related complications. Food Chem. Toxicol., 2017, 110, 109-121.
[http://dx.doi.org/10.1016/j.fct.2017.10.022] [PMID: 29050977]
[83]
Karamitri, A.; Jockers, R. Melatonin in type 2 diabetes mellitus and obesity. Nat. Rev. Endocrinol., 2019, 15(2), 105-125.
[http://dx.doi.org/10.1038/s41574-018-0130-1] [PMID: 30531911]
[84]
Al-Qahtani, S.M.; Bryzgalova, G.; Valladolid-Acebes, I.; Korach-André, M.; Dahlman-Wright, K.; Efendić, S.; Berggren, P-O.; Portwood, N. 17β-Estradiol suppresses visceral adipogenesis and activates brown adipose tissue-specific gene expression. Horm. Mol. Biol. Clin. Investig., 2017, 29(1), 13-26.
[PMID: 27831918]
[85]
Zhang, S.-y.; Yang, K.-l.; Zeng, L.-t.; Wu, X.-h.; Huang, H.-y. Effectiveness of coenzyme Q10 supplementation for type 2 diabetes mellitus: a systematic review and meta-analysis. Int. J. Endocrinol., 2018, 2018
[http://dx.doi.org/10.1155/2018/6484839]
[86]
Hunt, R.H. Prostaglandins for peptic ulcer disease. Lancet, 1987, 1(8544), 1262.
[http://dx.doi.org/10.1016/S0140-6736(87)92709-7] [PMID: 2884391]
[87]
Kulashekar, M.; Stom, S.M.; Peuler, J.D. Resveratrol’s potential in the adjunctive management of cardiovascular disease, obesity, diabetes, alzheimer disease, and cancer. J. Osteopathic Med., 2018, 118(9), 596-605.
[http://dx.doi.org/10.7556/jaoa.2018.133] [PMID: 30178049]
[88]
Franklin, T.R.; Ehrman, R.; Lynch, K.G.; Harper, D.; Sciortino, N.; O’Brien, C.P.; Childress, A.R. Menstrual cycle phase at quit date predicts smoking status in an NRT treatment trial: a retrospective analysis. J. Womens Health (Larchmt.), 2008, 17(2), 287-292.
[http://dx.doi.org/10.1089/jwh.2007.0423] [PMID: 18321180]
[89]
Lan, N.S.R.; Fegan, P.G.; Yeap, B.B.; Rankin, J.M.; Watts, G.F. Icosapent ethyl for dyslipidaemia in patients with diabetes and coronary artery disease: Act now to reduce it. Diabetes Obes. Metab., 2019, 21(7), 1734-1736.
[http://dx.doi.org/10.1111/dom.13689] [PMID: 30834678]
[90]
Fernandes, I.; Pérez-Gregorio, R.; Soares, S.; Mateus, N.; de Freitas, V. Wine flavonoids in health and disease prevention. Molecules, 2017, 22(2), 292.
[http://dx.doi.org/10.3390/molecules22020292] [PMID: 28216567]
[91]
Gasmi, A.; Mujawdiya, P.K.; Shanaida, M.; Ongenae, A.; Lysiuk, R.; Doşa, M.D.; Tsal, O.; Piscopo, S.; Chirumbolo, S.; Bjørklund, G. Calanus oil in the treatment of obesity-related low-grade inflammation, insulin resistance, and atherosclerosis. Appl. Microbiol. Biotechnol., 2020, 104(3), 967-979.
[http://dx.doi.org/10.1007/s00253-019-10293-4] [PMID: 31853565]
[92]
Al-Ishaq, R.K.; Abotaleb, M.; Kubatka, P.; Kajo, K.; Büsselberg, D. Flavonoids and their anti-diabetic effects: cellular mechanisms and effects to improve blood sugar levels. Biomolecules, 2019, 9(9), 430.
[http://dx.doi.org/10.3390/biom9090430] [PMID: 31480505]
[93]
Banjari, I.; Misir, A.; Pavlić, M.; Herath, P.N.; Waisundara, V.Y. Traditional herbal medicines for diabetes used in Europe and Asia: remedies from Croatia and Sri Lanka. Altern. Ther. Health Med., 2019, 25(3), 40-52.
[PMID: 31160545]
[94]
Chuengsamarn, S.; Rattanamongkolgul, S.; Luechapudiporn, R.; Phisalaphong, C.; Jirawatnotai, S. Curcumin extract for prevention of type 2 diabetes. Diabetes Care, 2012, 35(11), 2121-2127.
[http://dx.doi.org/10.2337/dc12-0116] [PMID: 22773702]
[95]
Kanwugu, O.N.; Glukhareva, T.V.; Danilova, I.G.; Kovaleva, E.G. Natural antioxidants in diabetes treatment and management: prospects of astaxanthin. Crit. Rev. Food Sci. Nutr., 2021, 1-24.
[http://dx.doi.org/10.1080/10408398.2021.1881434] [PMID: 33591215]
[96]
Han, J.; Tan, C.; Wang, Y.; Yang, S.; Tan, D. Betanin reduces the accumulation and cross-links of collagen in high-fructose-fed rat heart through inhibiting non-enzymatic glycation. Chem. Biol. Interact., 2015, 227, 37-44.
[http://dx.doi.org/10.1016/j.cbi.2014.12.032] [PMID: 25559852]
[97]
Xi, M.; Hai, C.; Tang, H.; Wen, A.; Chen, H.; Liu, R.; Liang, X.; Chen, M. Antioxidant and antiglycation properties of triterpenoid saponins from Aralia taibaiensis traditionally used for treating diabetes mellitus. Redox Rep., 2010, 15(1), 20-28.
[http://dx.doi.org/10.1179/174329210X12650506623041] [PMID: 20196925]
[98]
Sun, W.; Zhang, Z.; Chen, Q.; Yin, X.; Fu, Y.; Zheng, Y.; Cai, L.; Kim, K-S.; Kim, K.H.; Tan, Y. Inhibitory effect of Magnolia officinalis and lovastatin on aortic oxidative stress and apoptosis in hyperlipidemic rabbits. J. Cardiovas. Pharmacol., 2014, 47, 463-468.
[99]
Chang, W-C.; Yu, Y-M.; Hsu, Y-M.; Wu, C-H.; Yin, P-L.; Chiang, S-Y.; Hung, J-S. Inhibitory effect of Magnolia officinalis and lovastatin on aortic oxidative stress and apoptosis in hyperlipidemic rabbits. J. Cardiovasc. Pharmacol., 2006, 47(3), 463-468.
[PMID: 16633091]
[100]
Zhang, Z.; Chen, J.; Zhou, S.; Wang, S.; Cai, X.; Conklin, D.J.; Kim, K-S.; Kim, K.H.; Tan, Y.; Zheng, Y.; Kim, Y.H.; Cai, L. Magnolia bioactive constituent 4-O-methylhonokiol prevents the impairment of cardiac insulin signaling and the cardiac pathogenesis in high-fat diet-induced obese mice. Int. J. Biol. Sci., 2015, 11(8), 879-891.
[http://dx.doi.org/10.7150/ijbs.12101] [PMID: 26157343]
[101]
Khanra, R.; Dewanjee, S.; K., Dua T.; Sahu, R.; Gangopadhyay, M.; De Feo, V.; Zia-Ul-Haq, M. Abroma augusta L. (Malvaceae) leaf extract attenuates diabetes induced nephropathy and cardiomyopathy via inhibition of oxidative stress and inflammatory response. J. Transl. Med., 2015, 13, 6.
[http://dx.doi.org/10.1186/s12967-014-0364-1] [PMID: 25591455]
[102]
Zemestani, M.; Rafraf, M.; Asghari-Jafarabadi, M. Chamomile tea improves glycemic indices and antioxidants status in patients with type 2 diabetes mellitus. Nutrition, 2016, 32(1), 66-72.
[http://dx.doi.org/10.1016/j.nut.2015.07.011] [PMID: 26437613]
[103]
Yan, B.; Ren, J.; Zhang, Q.; Gao, R.; Zhao, F.; Wu, J.; Yang, J. Antioxidative effects of natural products on diabetic cardiomyopathy. J. Diabetes Res., 2017, 2017
[http://dx.doi.org/10.1155/2017/2070178]
[104]
Sundar Dhilip Kumar, S.; Houreld, N.N.; Abrahamse, H. Therapeutic potential and recent advances of curcumin in the treatment of aging-associated diseases. Molecules, 2018, 23(4), 835.
[http://dx.doi.org/10.3390/molecules23040835] [PMID: 29621160]
[105]
Di Vincenzo, A.; Tana, C.; El Hadi, H.; Pagano, C.; Vettor, R.; Rossato, M. Antioxidant, anti-inflammatory, and metabolic properties of tocopherols and tocotrienols: clinical implications for vitamin E supplementation in diabetic kidney disease. Int. J. Mol. Sci., 2019, 20(20), 5101.
[http://dx.doi.org/10.3390/ijms20205101] [PMID: 31618817]
[106]
Bril, F.; Biernacki, D.M.; Kalavalapalli, S.; Lomonaco, R.; Subbarayan, S.K.; Lai, J.; Tio, F.; Suman, A.; Orsak, B.K.; Hecht, J.; Cusi, K. Role of vitamin E for nonalcoholic steatohepatitis in patients with type 2 diabetes: a randomized controlled trial. Diabetes Care, 2019, 42(8), 1481-1488.
[http://dx.doi.org/10.2337/dc19-0167] [PMID: 31332029]
[107]
Rautiainen, S.; Manson, J.E.; Lichtenstein, A.H.; Sesso, H.D. Dietary supplements and disease prevention - a global overview. Nat. Rev. Endocrinol., 2016, 12(7), 407-420.
[http://dx.doi.org/10.1038/nrendo.2016.54] [PMID: 27150288]
[108]
Holt, R.I. Editor’s selection: This month’s highlighted articles: vitamins and diabetes. Diabet. Med., 2016, 33(3), 279.
[http://dx.doi.org/10.1111/dme.13073] [PMID: 26864821]
[109]
Forte, M.; Schirone, L.; Ameri, P.; Basso, C.; Catalucci, D.; Modica, J.; Chimenti, C.; Crotti, L.; Frati, G.; Rubattu, S.; Schiattarella, G.G.; Torella, D.; Perrino, C.; Indolfi, C.; Sciarretta, S. The role of mitochondrial dynamics in cardiovascular diseases. Br. J. Pharmacol., 2021, 178(10), 2060-2076.
[http://dx.doi.org/10.1111/bph.15068] [PMID: 32294237]
[110]
Etchamendy, N.; Enderlin, V.; Marighetto, A.; Pallet, V.; Higueret, P.; Jaffard, R. Vitamin A deficiency and relational memory deficit in adult mice: relationships with changes in brain retinoid signalling. Behav. Brain Res., 2003, 145(1-2), 37-49.
[http://dx.doi.org/10.1016/S0166-4328(03)00099-8] [PMID: 14529804]
[111]
Baburao Jain, A.; Anand Jain, V. Vitamin E, its beneficial role in diabetes mellitus (DM) and its complications. J. Clin. Diagn. Res., 2012, 6(10), 1624-1628.
[PMID: 23373014]
[112]
Dakhale, G.N.; Chaudhari, H.V.; Shrivastava, M. Supplementation of vitamin C reduces blood glucose and improves glycosylated hemoglobin in type 2 diabetes mellitus: a randomized, double-blind study. Adv. Pharmacol. Sci., 2011, 2011
[http://dx.doi.org/10.1155/2011/195271]
[113]
Unuofin, J.O.; Lebelo, S.L. Antioxidant effects and mechanisms of medicinal plants and their bioactive compounds for the prevention and treatment of type 2 diabetes: an updated review; Oxidative Med. Cellular Longevity, 2020, 2020, .
[http://dx.doi.org/10.1155/2020/1356893]
[114]
Kohler, L.N.; Foote, J.; Kelley, C.P.; Florea, A.; Shelly, C.; Chow, H.S.; Hsu, P.; Batai, K.; Ellis, N.; Saboda, K.; Lance, P.; Jacobs, E.T. Selenium and type 2 diabetes: systematic review. Nutrients, 2018, 10(12), 1924.
[http://dx.doi.org/10.3390/nu10121924] [PMID: 30563119]
[115]
Vinceti, M.; Filippini, T.; Rothman, K.J. Selenium exposure and the risk of type 2 diabetes: a systematic review and meta-analysis. Eur. J. Epidemiol., 2018, 33(9), 789-810.
[http://dx.doi.org/10.1007/s10654-018-0422-8] [PMID: 29974401]
[116]
Mahdavi Gorabi, A.; Hasani, M.; Djalalinia, S.; Zarei, M.; Ejtahed, H.; Abdar, M.E.; Asayesh, H.; Azimzadeh, M.; Qorbani, M.; Noroozi, M. Effect of selenium supplementation on glycemic indices: a meta-analysis of randomized controlled trials. J. Diabetes Metab. Disord., 2019, 18(2), 349-362.
[http://dx.doi.org/10.1007/s40200-019-00419-w] [PMID: 31890660]
[117]
Chabosseau, P.; Rutter, G.A. Zinc and diabetes. Arch. Biochem. Biophys., 2016, 611, 79-85.
[http://dx.doi.org/10.1016/j.abb.2016.05.022] [PMID: 27262257]
[118]
San Mauro-Martin, I.; Ruiz-León, A.M.; Camina-Martín, M.A.; Garicano-Vilar, E.; Collado-Yurrita, L.; Mateo-Silleras, Bd. Redondo Del Río, Mde. P. [Chromium supplementation in patients with type 2 diabetes and high risk of type 2 diabetes: a meta-analysis of randomized controlled trials] Nutr. Hosp., 2016, 33(1), 27.
[http://dx.doi.org/10.20960/nh.27] [PMID: 27019254]
[119]
Tovar, J.; Johansson, M.; Björck, I. A multifunctional diet improves cardiometabolic-related biomarkers independently of weight changes: an 8-week randomized controlled intervention in healthy overweight and obese subjects. Eur. J. Nutr., 2016, 55(7), 2295-2306.
[http://dx.doi.org/10.1007/s00394-015-1039-2] [PMID: 26370118]
[120]
Du, S.; Wu, X.; Han, T.; Duan, W.; Liu, L.; Qi, J.; Niu, Y.; Na, L.; Sun, C. Dietary manganese and type 2 diabetes mellitus: two prospective cohort studies in China. Diabetologia, 2018, 61(9), 1985-1995.
[http://dx.doi.org/10.1007/s00125-018-4674-3] [PMID: 29971528]
[121]
Li, L.; Yang, X. The essential element manganese, oxidative stress, and metabolic diseases: links and interactions; Oxidative Med. Cellular Longevity, 2018, 2018, .
[http://dx.doi.org/10.1155/2018/7580707]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy