Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

Valproic Acid and Propionic Acid Modulated Mechanical Pathways Associated with Autism Spectrum Disorder at Prenatal and Neonatal Exposure

Author(s): Amit Raj Sharma, Gitika Batra , Lokesh Saini, Saurabh Sharma, Abhishek Mishra, Rubal Singla, Ashutosh Singh , Rahul Soloman Singh, Ashish Jain , Seema Bansal, Manish Modi and Bikash Medhi*

Volume 21, Issue 5, 2022

Published on: 26 November, 2021

Page: [399 - 408] Pages: 10

DOI: 10.2174/1871527320666210806165430

Price: $65

Abstract

Autism spectrum disorder (ASD) is a composite disorder of brain development with uncertain etiology and pathophysiology. Genetic factors are important in ASD causation, although environmental factors are also involved in ASD pathophysiology. Environmental factors might affect the genetic processes of brain development through the modulation of molecular pathways that might be involved with ASD. Valproic acid and propionic acid are the major environmental factors that serve as medicine and food preservative. VPA is used as an anti-epileptic medicine, but it has adverse effects on pregnant women and alters the developmental patterns of the embryo. It is a multi- targeting agent and affects 5-HT, GABA, etc. PPA is a secondary metabolite of gut microbiota that is commonly used as a food preservative. PPA plays a significant role in ASD causation by altering the several developmental molecular pathways like PTEN/Akt, mTOR/Gskβ, Cytokines activated pathways, etc., at the prenatal and neonatal stage. Moreover, ASD complexity might be increased by other important factors like vitamin A deficiency. Vitamin A is important for cortical brain development and neuronal cell differentiation. Additionally, several important genes such as RELN, Lhx2, CREB, IL-6, NMDA, BDNF, etc., are also altered in ASD and involved in brain development, central nervous system, and enteric nervous system. These genes affect neuronal differentiation, hyperactivity, oxidative stress, oxytocin, and GABA imbalance lead to improper behavior in autistic individuals. These genes are also studied in VPA and PPA ASD-like animal models. In this review, we explored the mechanical pathways that might be altered with VPA and PPA exposures at the embryonic developmental stage or neonatal developmental stage.

Keywords: Autism spectrum disorder, valproic acid, propionic acid, neuro-inflammation, neonatal development, gut microbiota.

Graphical Abstract
[1]
Gadad BS, Hewitson L, Young KA, German DC. Neuropathology and animal models of autism: genetic and environmental factors. Autism research and treatment 2013; 2013
[2]
Diagnostic and statistical manual of mental disorders. BMC Med 2013; 17: 133-7.
[3]
Zablotsky B, Black LI, Maenner MJ, Schieve LA, Blumberg SJ. Estimated prevalence of autism and other developmental disabilities following questionnaire changes in the 2014 national health interview survey. 2014.
[4]
Baio J, Wiggins L, Christensen DL, et al. Prevalence of autism spectrum disorder among children aged 8 years - autism and developmental disabilities monitoring network, 11 sites, united states, 2014. MMWR Surveill Summ 2018; 67(6): 1-23.
[http://dx.doi.org/10.15585/mmwr.ss6706a1] [PMID: 29701730]
[5]
Chaste P, Leboyer M. Autism risk factors: genes, environment, and gene-environment interactions. Dialogues Clin Neurosci 2012; 14(3): 281-92.
[http://dx.doi.org/10.31887/DCNS.2012.14.3/pchaste] [PMID: 23226953]
[6]
Alvaro PK, Roberts RM, Harris JK. A systematic review assessing bidirectionality between sleep disturbances, anxiety, and depression. Sleep 2013; 36(7): 1059-68.
[http://dx.doi.org/10.5665/sleep.2810] [PMID: 23814343]
[7]
Besag FM. Epilepsy in patients with autism: links, risks and treatment challenges. Neuropsychiatr Dis Treat 2017; 14: 1-10.
[http://dx.doi.org/10.2147/NDT.S120509] [PMID: 29296085]
[8]
Wood AG, Nadebaum C, Anderson V, et al. Prospective assessment of autism traits in children exposed to antiepileptic drugs during pregnancy. Epilepsia 2015; 56(7): 1047-55.
[http://dx.doi.org/10.1111/epi.13007] [PMID: 25963613]
[9]
Mabunga DF, Gonzales EL, Kim JW, Kim KC, Shin CY. Exploring the validity of valproic acid animal model of autism. Exp Neurobiol 2015; 24(4): 285-300.
[http://dx.doi.org/10.5607/en.2015.24.4.285] [PMID: 26713077]
[10]
Foley KA, Ossenkopp KP, Kavaliers M, Macfabe DF. Pre- and neonatal exposure to lipopolysaccharide or the enteric metabolite, propionic acid, alters development and behavior in adolescent rats in a sexually dimorphic manner. PLoS One 2014; 9(1): e87072.
[http://dx.doi.org/10.1371/journal.pone.0087072] [PMID: 24466331]
[11]
Xu M, Xu X, Li J, Li F. Association between gut microbiota and autism spectrum disorder: a systematic review and meta-analysis. Front Psychiatry 2019; 10: 473.
[http://dx.doi.org/10.3389/fpsyt.2019.00473] [PMID: 31404299]
[12]
Ihekweazu FD, Versalovic J. Development of the pediatric gut microbiome: impact on health and disease. Am J Med Sci 2018; 356(5): 413-23.
[http://dx.doi.org/10.1016/j.amjms.2018.08.005] [PMID: 30384950]
[13]
Abdelli LS, Samsam A, Naser SA. Propionic acid induces gliosis and neuro-inflammation through modulation of PTEN/AKT pathway in autism spectrum disorder. Sci Rep 2019; 9(1): 8824.
[http://dx.doi.org/10.1038/s41598-019-45348-z] [PMID: 31217543]
[14]
Chang P, Orabi B, Deranieh RM, et al. The antiepileptic drug valproic acid and other medium-chain fatty acids acutely reduce phosphoinositide levels independently of inositol in Dictyostelium. Dis Model Mech 2012; 5(1): 115-24.
[http://dx.doi.org/10.1242/dmm.008029] [PMID: 21876211]
[15]
Fukuchi M, Nii T, Ishimaru N, et al. Valproic acid induces up- or down-regulation of gene expression responsible for the neuronal excitation and inhibition in rat cortical neurons through its epigenetic actions. Neurosci Res 2009; 65(1): 35-43.
[http://dx.doi.org/10.1016/j.neures.2009.05.002] [PMID: 19463867]
[16]
Caracci MO, Ávila ME, De Ferrari GV. Synaptic Wnt/GSK3β signaling hub in autism. Neural plasticity 2016; 2016
[17]
Fathe K, Palacios A, Finnell RH. Brief report novel mechanism for valproate-induced teratogenicity. Birth Defects Res A Clin Mol Teratol 2014; 100(8): 592-7.
[http://dx.doi.org/10.1002/bdra.23277] [PMID: 25066307]
[18]
Hou Q, Wang Y, Li Y, Chen D, Yang F, Wang S. A developmental study of abnormal behaviors and altered gabaergic signaling in the VPA-treated rat model of autism. Front Behav Neurosci 2018; 12: 182.
[http://dx.doi.org/10.3389/fnbeh.2018.00182] [PMID: 30186123]
[19]
Goyal M, Gupta A, Sharma M, Mathur P, Bansal N. Fetal valproate syndrome with limb defects: An indian case report. Case Rep Pediatr 2016; 2016: 3495910.
[http://dx.doi.org/10.1155/2016/3495910] [PMID: 28003925]
[20]
Bromley RL, Baker GA, Meador KJ. Cognitive abilities and behaviour of children exposed to antiepileptic drugs in utero. Curr Opin Neurol 2009; 22(2): 162-6.
[http://dx.doi.org/10.1097/WCO.0b013e3283292401] [PMID: 19532040]
[21]
Christensen J, Grønborg TK, Sørensen MJ, et al. Prenatal valproate exposure and risk of autism spectrum disorders and childhood autism. JAMA 2013; 309(16): 1696-703.
[http://dx.doi.org/10.1001/jama.2013.2270] [PMID: 23613074]
[22]
Bromley RL, Mawer GE, Briggs M, et al. The prevalence of neurodevelopmental disorders in children prenatally exposed to antiepileptic drugs. J Neurol Neurosurg Psychiatry 2013; 84(6): 637-43.
[http://dx.doi.org/10.1136/jnnp-2012-304270] [PMID: 23370617]
[23]
Larsson P, Ulfhammer E, Magnusson M, et al. Role of histone acetylation in the stimulatory effect of valproic acid on vascular endothelial tissue-type plasminogen activator expression. PLoS One 2012; 7(2): e31573.
[http://dx.doi.org/10.1371/journal.pone.0031573] [PMID: 22363677]
[24]
Kataoka S, Takuma K, Hara Y, Maeda Y, Ago Y, Matsuda T. Autism-like behaviours with transient histone hyperacetylation in mice treated prenatally with valproic acid. Int J Neuropsychopharmacol 2013; 16(1): 91-103.
[http://dx.doi.org/10.1017/S1461145711001714] [PMID: 22093185]
[25]
Jain RA, Prakash A, Medhi B. Newer potential pharmacological targets for autism spectrum disorder. Indian J Pharmacol 2019; 51(4): 284-6.
[http://dx.doi.org/10.4103/ijp.IJP_518_19] [PMID: 31571718]
[26]
Jung GA, Yoon JY, Moon BS, et al. Valproic acid induces differentiation and inhibition of proliferation in neural progenitor cells via the beta-catenin-Ras-ERK-p21Cip/WAF1 pathway. BMC Cell Biol 2008; 9(1): 66.
[http://dx.doi.org/10.1186/1471-2121-9-66] [PMID: 19068119]
[27]
Deckmann I, Schwingel GB, Fontes-Dutra M, Bambini-Junior V, Gottfried C. Neuroimmune alterations in autism: a translational analysis focusing on the animal model of autism induced by prenatal exposure to valproic acid. Neuroimmunomodulation 2018; 25(5-6): 285-99.
[http://dx.doi.org/10.1159/000492113] [PMID: 30157484]
[28]
Bambini-Junior V, Rodrigues L, Behr GA, Moreira JC, Riesgo R, Gottfried C. Animal model of autism induced by prenatal exposure to valproate: behavioral changes and liver parameters. Brain Res 2011; 1408: 8-16.
[http://dx.doi.org/10.1016/j.brainres.2011.06.015] [PMID: 21767826]
[29]
Bambini-Junior V, Baronio D, MacKenzie J, Zanatta G, Riesgo RD, Gottfried C. Prenatal exposure to valproate in animals and autism Comprehensive guide to autism. Comprehensive guide to autism 2014; 1779-93.
[30]
Hara Y, Maeda Y, Kataoka S, Ago Y, Takuma K, Matsuda T. Effect of prenatal valproic acid exposure on cortical morphology in female mice. J Pharmacol Sci 2012; 118(4): 543-6.
[http://dx.doi.org/10.1254/jphs.12025SC] [PMID: 22447305]
[31]
Lauber E, Filice F, Schwaller B. Prenatal valproate exposure differentially affects parvalbumin-expressing neurons and related circuits in the cortex and striatum of mice. Front Mol Neurosci 2016; 9: 150.
[http://dx.doi.org/10.3389/fnmol.2016.00150] [PMID: 28066177]
[32]
Nicolini C, Fahnestock M. The valproic acid-induced rodent model of autism. Exp Neurol 2018; 299(Pt A): 217-27.
[http://dx.doi.org/10.1016/j.expneurol.2017.04.017] [PMID: 28472621]
[33]
Roullet FI, Wollaston L, Decatanzaro D, Foster JA. Behavioral and molecular changes in the mouse in response to prenatal exposure to the anti-epileptic drug valproic acid. Neuroscience 2010; 170(2): 514-22.
[http://dx.doi.org/10.1016/j.neuroscience.2010.06.069] [PMID: 20603192]
[34]
Yoshii A, Constantine-Paton M. Postsynaptic BDNF-TrkB signaling in synapse maturation, plasticity, and disease. Dev Neurobiol 2010; 70(5): 304-22.
[http://dx.doi.org/10.1002/dneu.20765] [PMID: 20186705]
[35]
Zhang X, He X, Li Q, et al. PI3K/AKT/mTOR signaling mediates valproic acid-induced neuronal differentiation of neural stem cells through epigenetic modifications. Stem Cell Reports 2017; 8(5): 1256-69.
[http://dx.doi.org/10.1016/j.stemcr.2017.04.006] [PMID: 28494938]
[36]
Gottfried C, Bambini-Junior V, Baronio D, et al. Valproic acid in autism spectrum disorder: From an environmental risk factor to a reliable animal model.Recent advances in autism spectrum disorders. IntechOpen 2013; p. 1.
[37]
Rinaldi T, Kulangara K, Antoniello K, Markram H. Elevated NMDA receptor levels and enhanced postsynaptic long-term potentiation induced by prenatal exposure to valproic acid. Proc Natl Acad Sci USA 2007; 104(33): 13501-6.
[http://dx.doi.org/10.1073/pnas.0704391104] [PMID: 17675408]
[38]
Utoguchi N, Audus KL. Carrier-mediated transport of valproic acid in BeWo cells, a human trophoblast cell line. Int J Pharm 2000; 195(1-2): 115-24.
[http://dx.doi.org/10.1016/S0378-5173(99)00398-1] [PMID: 10675689]
[39]
Sekine T, Cha SH, Endou H. The multispecific organic anion transporter (OAT) family. Pflugers Arch 2000; 440(3): 337-50.
[http://dx.doi.org/10.1007/s004240000297] [PMID: 10954321]
[40]
Liu H, Fu RY, Liao QK, et al. [Valproic acid induced intracellular GSH-redox imbalance and apoptosis of leukemic cells resistant to dexamethasone and doxorubicin]. Sichuan Da Xue Xue Bao Yi Xue Ban 2009; 40(1): 133-7.
[PMID: 19292063]
[41]
Copp AJ, Greene ND, Murdoch JN. The genetic basis of mammalian neurulation. Nat Rev Genet 2003; 4(10): 784-93.
[http://dx.doi.org/10.1038/nrg1181] [PMID: 13679871]
[42]
Kalhan SC, Marczewski SE. Methionine, homocysteine, one carbon metabolism and fetal growth. Rev Endocr Metab Disord 2012; 13(2): 109-19.
[http://dx.doi.org/10.1007/s11154-012-9215-7] [PMID: 22418620]
[43]
Murugesan S, Nirmalkar K, Hoyo-Vadillo C, García-Espitia M, Ramírez-Sánchez D, García-Mena J. Gut microbiome production of short-chain fatty acids and obesity in children. Eur J Clin Microbiol Infect Dis 2018; 37(4): 621-5.
[http://dx.doi.org/10.1007/s10096-017-3143-0] [PMID: 29196878]
[44]
Silva MM, Lidon F. Food preservatives–an overview on applications and side effects. Emir J Food Agric 2016; 366-73.
[http://dx.doi.org/10.9755/ejfa.2016-04-351]
[45]
Li Q, Han Y, Dy ABC, Hagerman RJ. The gut microbiota and autism spectrum disorders. Front Cell Neurosci 2017; 11: 120.
[http://dx.doi.org/10.3389/fncel.2017.00120] [PMID: 28503135]
[46]
Rosenfeld CS. Microbiome disturbances and autism spectrum disorders. Drug Metab Dispos 2015; 43(10): 1557-71.
[http://dx.doi.org/10.1124/dmd.115.063826] [PMID: 25852213]
[47]
Byrne CS, Chambers ES, Alhabeeb H, et al. Increased colonic propionate reduces anticipatory reward responses in the human striatum to high-energy foods. Am J Clin Nutr 2016; 104(1): 5-14.
[http://dx.doi.org/10.3945/ajcn.115.126706] [PMID: 27169834]
[48]
Byrne CS, Chambers ES, Morrison DJ, Frost G. The role of short chain fatty acids in appetite regulation and energy homeostasis. Int J Obes 2015; 39(9): 1331-8.
[http://dx.doi.org/10.1038/ijo.2015.84] [PMID: 25971927]
[49]
Rofiat AS, Fanelli F, Atanda O, et al. Fungal and bacterial metabolites associated with natural contamination of locally processed rice (Oryza sativa L.) in Nigeria. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2015; 32(6): 950-9.
[http://dx.doi.org/10.1080/19440049.2015.1027880] [PMID: 25767914]
[50]
Stavrovskaya AV, Voronkov DN, Yamshchikova NG, Ol’shanskiy AS, Khudoerkov RM, Illarioshkin SN. Experience of experimental modelling of Huntington’s disease. Hum Physiol 2016; 42(8): 898-904.
[http://dx.doi.org/10.1134/S0362119716080120]
[51]
Al-Owain M, Kaya N, Al-Shamrani H, et al. Autism spectrum disorder in a child with propionic acidemia.IJIMD reports-case and research reports. Berlin, Heidelberg: Springer 2012; pp. 63-6.
[52]
Görker I, Tüzün U. Autistic-like findings associated with a urea cycle disorder in a 4-year-old girl. J Psychiatry Neurosci 2005; 30(2): 133-5.
[PMID: 15798789]
[53]
Cotrina ML, Ferreiras S, Schneider P. High prevalence of self-reported autism spectrum disorder in the Propionic Acidemia Registry. JIMD Rep 2019; 51(1): 70-5.
[http://dx.doi.org/10.1002/jmd2.12083] [PMID: 32071841]
[54]
Shultz SR, MacFabe DF, Ossenkopp KP, et al. Intracerebroventricular injection of propionic acid, an enteric bacterial metabolic end-product, impairs social behavior in the rat: implications for an animal model of autism. Neuropharmacology 2008; 54(6): 901-11.
[http://dx.doi.org/10.1016/j.neuropharm.2008.01.013] [PMID: 18395759]
[55]
Brestoff JR, Artis D. Commensal bacteria at the interface of host metabolism and the immune system. Nat Immunol 2013; 14(7): 676-84.
[http://dx.doi.org/10.1038/ni.2640] [PMID: 23778795]
[56]
Thomas RH, Meeking MM, Mepham JR, et al. The enteric bacterial metabolite propionic acid alters brain and plasma phospholipid molecular species: further development of a rodent model of autism spectrum disorders. J Neuroinflammation 2012; 9(1): 153.
[http://dx.doi.org/10.1186/1742-2094-9-153] [PMID: 22747852]
[57]
Choi J, Lee S, Won J, et al. Pathophysiological and neurobehavioral characteristics of a propionic acid-mediated autism-like rat model. PLoS One 2018; 13(2): e0192925.
[http://dx.doi.org/10.1371/journal.pone.0192925] [PMID: 29447237]
[58]
Frye RE, Rose S, Chacko J, et al. Modulation of mitochondrial function by the microbiome metabolite propionic acid in autism and control cell lines. Transl Psychiatry 2016; 6(10): e927.
[http://dx.doi.org/10.1038/tp.2016.189] [PMID: 27779624]
[59]
El-Ansary A, Al-Salem HS, Asma A, Al-Dbass A. Glutamate excitotoxicity induced by orally administered propionic acid, a short chain fatty acid can be ameliorated by bee pollen. Lipids Health Dis 2017; 16(1): 96.
[http://dx.doi.org/10.1186/s12944-017-0485-7] [PMID: 28532421]
[60]
Frye RE, Melnyk S, Macfabe DF. Unique acyl-carnitine profiles are potential biomarkers for acquired mitochondrial disease in autism spectrum disorder. Transl Psychiatry 2013; 3(1): e220.
[http://dx.doi.org/10.1038/tp.2012.143] [PMID: 23340503]
[61]
Macfabe DF. Short-chain fatty acid fermentation products of the gut microbiome: implications in autism spectrum disorders. Microb Ecol Health Dis 2012; 23(1): 19260.
[PMID: 23990817]
[62]
Ruijschop RM, Boelrijk AE, te Giffel MC. Satiety effects of a dairy beverage fermented with propionic acid bacteria. Int Dairy J 2008; 18(9): 945-50.
[http://dx.doi.org/10.1016/j.idairyj.2008.01.004]
[63]
Ulven T. Short-chain free fatty acid receptors FFA2/GPR43 and FFA3/GPR41 as new potential therapeutic targets. Front Endocrinol (Lausanne) 2012; 3: 111.
[http://dx.doi.org/10.3389/fendo.2012.00111] [PMID: 23060857]
[64]
Zhou J, Parada LF. PTEN signaling in autism spectrum disorders. Curr Opin Neurobiol 2012; 22(5): 873-9.
[http://dx.doi.org/10.1016/j.conb.2012.05.004] [PMID: 22664040]
[65]
Wen Y, Li W, Choudhury GR, et al. Astroglial PTEN loss disrupts neuronal lamination by dysregulating radial glia-guided neuronal migration. Aging Dis 2013; 4(3): 113-26.
[PMID: 23730527]
[66]
Onore C, Yang H, Van de Water J, Ashwood P. Dynamic Akt/mTOR signaling in children with autism spectrum disorder. Front Pediatr 2017; 5: 43.
[http://dx.doi.org/10.3389/fped.2017.00043] [PMID: 28361047]
[67]
Nguyen NH, Morland C, Gonzalez SV, et al. Propionate increases neuronal histone acetylation, but is metabolized oxidatively by glia. Relevance for propionic acidemia. J Neurochem 2007; 101(3): 806-14.
[http://dx.doi.org/10.1111/j.1471-4159.2006.04397.x] [PMID: 17286595]
[68]
Wang H, Xu J, Lazarovici P, Quirion R, Zheng W. cAMP response element-binding protein (CREB): A possible signaling molecule link in the pathophysiology of Schizophrenia. Front Mol Neurosci 2018; 11: 255.
[http://dx.doi.org/10.3389/fnmol.2018.00255] [PMID: 30214393]
[69]
Shah P, Nankova BB, Parab S, La Gamma EF. Short chain fatty acids induce TH gene expression via ERK-dependent phosphorylation of CREB protein. Brain Res 2006; 1107(1): 13-23.
[http://dx.doi.org/10.1016/j.brainres.2006.05.097] [PMID: 16854387]
[70]
Nankova BB, Agarwal R, MacFabe DF, La Gamma EF. Enteric bacterial metabolites propionic and butyric acid modulate gene expression, including CREB-dependent catecholaminergic neurotransmission, in PC12 cells--possible relevance to autism spectrum disorders. PLoS One 2014; 9(8): e103740.
[http://dx.doi.org/10.1371/journal.pone.0103740] [PMID: 25170769]
[71]
Ossenkopp KP, Foley KA, Gibson J, et al. Systemic treatment with the enteric bacterial fermentation product, propionic acid, produces both conditioned taste avoidance and conditioned place avoidance in rats. Behav Brain Res 2012; 227(1): 134-41.
[http://dx.doi.org/10.1016/j.bbr.2011.10.045] [PMID: 22085877]
[72]
El-Ansary AK, Ben Bacha A, Kotb M. Etiology of autistic features: the persisting neurotoxic effects of propionic acid. J Neuroinflammation 2012; 9(1): 74.
[http://dx.doi.org/10.1186/1742-2094-9-74] [PMID: 22531301]
[73]
Cheng B, Zhu J, Yang T, et al. Vitamin A deficiency exacerbates autism-like behaviors and abnormalities of the enteric nervous system in a valproic acid-induced rat model of autism. Neurotoxicology 2020; 79: 184-90.
[http://dx.doi.org/10.1016/j.neuro.2020.06.004] [PMID: 32526256]
[74]
Higashida H, Salmina AB, Olovyannikova RY, et al. Cyclic ADP-ribose as a universal calcium signal molecule in the nervous system. Neurochem Int 2007; 51(2-4): 192-9.
[http://dx.doi.org/10.1016/j.neuint.2007.06.023] [PMID: 17664018]
[75]
Kishimoto H, Hoshino S, Ohori M, et al. Molecular mechanism of human CD38 gene expression by retinoic acid. Identification of retinoic acid response element in the first intron. J Biol Chem 1998; 273(25): 15429-34.
[http://dx.doi.org/10.1074/jbc.273.25.15429] [PMID: 9624127]
[76]
Xu X, Li C, Gao X, et al. Excessive UBE3A dosage impairs retinoic acid signaling and synaptic plasticity in autism spectrum disorders. Cell Res 2018; 28(1): 48-68.
[http://dx.doi.org/10.1038/cr.2017.132] [PMID: 29076503]
[77]
Maden M. Retinoic acid in the development, regeneration and maintenance of the nervous system. Nat Rev Neurosci 2007; 8(10): 755-65.
[http://dx.doi.org/10.1038/nrn2212] [PMID: 17882253]
[78]
Li C, Hu R, Hou N, et al. Alteration of the retinoid acid-CBP signaling pathway in neural crest induction contributes to enteric nervous system disorder. Front Pediatr 2018; 6: 382.
[http://dx.doi.org/10.3389/fped.2018.00382] [PMID: 30560112]
[79]
Asano H, Aonuma M, Sanosaka T, Kohyama J, Namihira M, Nakashima K. Astrocyte differentiation of neural precursor cells is enhanced by retinoic acid through a change in epigenetic modification. Stem Cells 2009; 27(11): 2744-52.
[http://dx.doi.org/10.1002/stem.176] [PMID: 19609931]
[80]
Park JC, Jeong WJ, Kim MY, Min D, Choi KY. Retinoic-acid-mediated HRas stabilization induces neuronal differentiation of neural stem cells during brain development. J Cell Sci 2016; 129(15): 2997-3007.
[PMID: 27185863]
[81]
Bremner JD, McCaffery P. The neurobiology of retinoic acid in affective disorders. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32(2): 315-31.
[http://dx.doi.org/10.1016/j.pnpbp.2007.07.001] [PMID: 17707566]
[82]
Tafti M, Ghyselinck NB. Functional implication of the vitamin A signaling pathway in the brain. Arch Neurol 2007; 64(12): 1706-11.
[http://dx.doi.org/10.1001/archneur.64.12.1706] [PMID: 18071033]
[83]
Rahi S, Mehan S. Understanding abnormal SMO-SHH signaling in autism spectrum disorder: Potential drug target and therapeutic goals. Cell Mol Neurobiol 2020; 1-23.
[PMID: 33206287]
[84]
Yang H, Kim J, Kim Y, Jang SW, Sestan N, Shim S. Cux2 expression regulated by Lhx2 in the upper layer neurons of the developing cortex. Biochem Biophys Res Commun 2020; 521(4): 874-9.
[http://dx.doi.org/10.1016/j.bbrc.2019.11.004] [PMID: 31708105]
[85]
Chen Y, Beffert U, Ertunc M, et al. Reelin modulates NMDA receptor activity in cortical neurons. J Neurosci 2005; 25(36): 8209-16.
[http://dx.doi.org/10.1523/JNEUROSCI.1951-05.2005] [PMID: 16148228]
[86]
Ognibene E, Adriani W, Macrì S, Laviola G. Neurobehavioural disorders in the infant reeler mouse model: interaction of genetic vulnerability and consequences of maternal separation. Behav Brain Res 2007; 177(1): 142-9.
[http://dx.doi.org/10.1016/j.bbr.2006.10.027] [PMID: 17141885]
[87]
Shi L, Fatemi SH, Sidwell RW, Patterson PH. Maternal influenza infection causes marked behavioral and pharmacological changes in the offspring. J Neurosci 2003; 23(1): 297-302.
[http://dx.doi.org/10.1523/JNEUROSCI.23-01-00297.2003] [PMID: 12514227]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy