Review Article

ALK激酶抑制剂耐药性研究进展

卷 29, 期 14, 2022

发表于: 06 August, 2021

页: [2456 - 2475] 页: 20

弟呕挨: 10.2174/0929867328666210806120347

价格: $65

摘要

背景:间变性淋巴瘤激酶ALK基因的融合与重排是导致多种癌症的重要原因,包括非小细胞肺癌(NSCLC)和间变性大细胞淋巴瘤(ALCL)。自从克唑替尼问世以来,很多ALK抑制剂相继问世,但每一代ALK抑制剂的致命缺陷是机体对药物的耐药性。因此,如何解决耐药问题成为ALK抑制剂应用开发的重要瓶颈。本文简要介绍了ALK抑制剂的耐药性和ALK抑制剂的修饰形式,为解决ALK抑制剂的耐药性和开发新一代ALK激酶抑制剂提供了理论依据。 方法:利用相关数据库查询相关文献,然后根据内容的相关性和前沿性进行筛选和选择。然后我们总结和分析合适的文章,整合和分类相关研究,最后根据主题写文章。 结果:本文从ALK耐药问题入手,先介绍ALK激酶的组成,再介绍ALK激酶抑制剂的耐药问题。后来介绍了克服ALK抗性的结构修饰,最后介绍了克服ALK抗性的方法。 结论:本文总结了 ALK 激酶抑制剂的耐药途径,并整合了为克服 ALK 耐药问题的结构修饰所做的努力,希望为下一代 ALK 激酶抑制剂的开发提供一些启示。

关键词: 非小细胞肺癌,间变性淋巴瘤激酶,ALK抑制剂,ALK耐药,ALK药物修饰,克服耐药。

[1]
Howlader, N.; Forjaz, G.; Mooradian, M.J.; Meza, R.; Kong, C.Y.; Cronin, K.A.; Mariotto, A.B.; Lowy, D.R.; Feuer, E.J. The effect of advances in lung-cancer treatment on population mortality. N. Engl. J. Med., 2020, 383(7), 640-649.
[http://dx.doi.org/10.1056/NEJMoa1916623] [PMID: 32786189]
[2]
Takeuchi, K.; Soda, M.; Togashi, Y.; Suzuki, R.; Sakata, S.; Hatano, S.; Asaka, R.; Hamanaka, W.; Ninomiya, H.; Uehara, H.; Lim Choi, Y.; Satoh, Y.; Okumura, S.; Nakagawa, K.; Mano, H.; Ishikawa, Y. RET, ROS1 and ALK fusions in lung cancer. Nat. Med., 2012, 18(3), 378-381.
[http://dx.doi.org/10.1038/nm.2658] [PMID: 22327623]
[3]
Soda, M.; Choi, Y.L.; Enomoto, M.; Takada, S.; Yamashita, Y.; Ishikawa, S.; Fujiwara, S.; Watanabe, H.; Kurashina, K.; Hatanaka, H.; Bando, M.; Ohno, S.; Ishikawa, Y.; Aburatani, H.; Niki, T.; Sohara, Y.; Sugiyama, Y.; Mano, H. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature, 2007, 448(7153), 561-566.
[http://dx.doi.org/10.1038/nature05945] [PMID: 17625570]
[4]
Puccini, A.; Marín-Ramos, N.I.; Bergamo, F.; Schirripa, M.; Lonardi, S.; Lenz, H.J.; Loupakis, F.; Battaglin, F. Safety and tolerability of c-MET inhibitors in cancer. Drug Saf., 2019, 42(2), 211-233.
[http://dx.doi.org/10.1007/s40264-018-0780-x] [PMID: 30649748]
[5]
Wong, D.W.; Leung, E.L.; So, K.K.; Tam, I.Y.; Sihoe, A.D.; Cheng, L.C.; Ho, K.K.; Au, J.S.; Chung, L.P.; Pik Wong, M. The EML4-ALK fusion gene is involved in various histologic types of lung cancers from nonsmokers with wild-type EGFR and KRAS. Cancer, 2009, 115(8), 1723-1733.
[http://dx.doi.org/10.1002/cncr.24181] [PMID: 19170230]
[6]
Kwak, E.L.; Bang, Y.J.; Camidge, D.R.; Shaw, A.T.; Solomon, B.; Maki, R.G.; Ou, S.H.; Dezube, B.J.; Jänne, P.A.; Costa, D.B.; Varella-Garcia, M.; Kim, W.H.; Lynch, T.J.; Fidias, P.; Stubbs, H.; Engelman, J.A.; Sequist, L.V.; Tan, W.; Gandhi, L.; Mino-Kenudson, M.; Wei, G.C.; Shreeve, S.M.; Ratain, M.J.; Settleman, J.; Christensen, J.G.; Haber, D.A.; Wilner, K.; Salgia, R.; Shapiro, G.I.; Clark, J.W.; Iafrate, A.J. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N. Engl. J. Med., 2010, 363(18), 1693-1703.
[http://dx.doi.org/10.1056/NEJMoa1006448] [PMID: 20979469]
[7]
Shaw, A.T.; Kim, D.W.; Mehra, R.; Tan, D.S.; Felip, E.; Chow, L.Q.; Camidge, D.R.; Vansteenkiste, J.; Sharma, S.; De Pas, T.; Riely, G.J.; Solomon, B.J.; Wolf, J.; Thomas, M.; Schuler, M.; Liu, G.; Santoro, A.; Lau, Y.Y.; Goldwasser, M.; Boral, A.L.; Engelman, J.A. Ceritinib in ALK-rearranged non-small-cell lung cancer. N. Engl. J. Med., 2014, 370(13), 1189-1197.
[http://dx.doi.org/10.1056/NEJMoa1311107] [PMID: 24670165]
[8]
Morris, S.W.; Kirstein, M.N.; Valentine, M.B.; Dittmer, K.; Shapiro, D.N.; Look, A.T.; Saltman, D.L. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin’s lymphoma. Science, 1995, 267(5196), 316-317.
[http://dx.doi.org/10.1126/science.267.5196.316-b] [PMID: 7824924]
[9]
Palmer, R.H.; Vernersson, E.; Grabbe, C.; Hallberg, B. Anaplastic lymphoma kinase: signalling in development and disease. Biochem. J., 2009, 420(3), 345-361.
[http://dx.doi.org/10.1042/BJ20090387] [PMID: 19459784]
[10]
Iwahara, T.; Fujimoto, J.; Wen, D.; Cupples, R.; Bucay, N.; Arakawa, T.; Mori, S.; Ratzkin, B.; Yamamoto, T. Molecular characterization of ALK, a receptor tyrosine kinase expressed specifically in the nervous system. Oncogene, 1997, 14(4), 439-449.
[http://dx.doi.org/10.1038/sj.onc.1200849]
[11]
Lemmon, M.A.; Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell, 2010, 141(7), 1117-1134.
[http://dx.doi.org/10.1016/j.cell.2010.06.011] [PMID: 20602996]
[12]
Mossé, Y.P.; Wood, A.; Maris, J.M. Inhibition of ALK signaling for cancer therapy. Clin. Cancer Res., 2009, 15(18), 5609-5614.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-2762] [PMID: 19737948]
[13]
Barreca, A.; Lasorsa, E.; Riera, L.; Machiorlatti, R.; Piva, R.; Ponzoni, M.; Kwee, I.; Bertoni, F.; Piccaluga, P.P.; Pileri, S.A.; Inghirami, G. European T-cell lymphoma study group. anaplastic lymphoma kinase (ALK) in human cancer. J. Mol. Endocrinol., 2011, 47, R11-R23.
[http://dx.doi.org/10.1530/JME-11-0004] [PMID: 21502284]
[14]
Chiarle, R.; Voena, C.; Ambrogio, C.; Piva, R.; Inghirami, G. The anaplastic lymphoma kinase in the pathogenesis of cancer. Nat. Rev. Cancer, 2008, 8(1), 11-23.
[http://dx.doi.org/10.1038/nrc2291] [PMID: 18097461]
[15]
Duyster, J.; Bai, R.Y.; Morris, S.W. Translocations involving anaplastic lymphoma kinase (ALK). Oncogene, 2001, 20(40), 5623-5637.
[http://dx.doi.org/10.1038/sj.onc.1204594] [PMID: 11607814]
[16]
Woo, C.G.; Seo, S.; Kim, S.W.; Jang, S.J.; Park, K.S.; Song, J.Y.; Lee, B.; Richards, M.W.; Bayliss, R.; Lee, D.H.; Choi, J. Differential protein stability and clinical responses of EML4-ALK fusion variants to various ALK inhibitors in advanced ALK-rearranged non-small cell lung cancer. Ann. Oncol., 2017, 28(4), 791-797.
[http://dx.doi.org/10.1093/annonc/mdw693] [PMID: 28039177]
[17]
Coffin, C.M.; Patel, A.; Perkins, S.; Elenitoba-Johnson, K.S.; Perlman, E.; Griffin, C.A. ALK1 and p80 expression and chromosomal rearrangements involving 2p23 in inflammatory myofibroblastic tumor. Mod. Pathol., 2001, 14(6), 569-576.
[http://dx.doi.org/10.1038/modpathol.3880352] [PMID: 11406658]
[18]
Hallberg, B.; Palmer, R.H. Mechanistic insight into ALK receptor tyrosine kinase in human cancer biology. Nat. Rev. Cancer, 2013, 13(10), 685-700.
[http://dx.doi.org/10.1038/nrc3580] [PMID: 24060861]
[19]
Spagnuolo, A.; Maione, P.; Gridelli, C. Evolution in the treatment landscape of non-small cell lung cancer with ALK gene alterations: from the first- to third-generation of ALK inhibitors. Expert Opin. Emerg. Drugs, 2018, 23(3), 231-241.
[http://dx.doi.org/10.1080/14728214.2018.1527902] [PMID: 30251885]
[20]
Choi, Y.L.; Soda, M.; Yamashita, Y.; Ueno, T.; Takashima, J.; Nakajima, T.; Yatabe, Y.; Takeuchi, K.; Hamada, T.; Haruta, H.; Ishikawa, Y.; Kimura, H.; Mitsudomi, T.; Tanio, Y.; Mano, H. EML4-ALK mutations in lung cancer that confer resistance to ALK inhibitors. N. Engl. J. Med., 2010, 363(18), 1734-1739.
[http://dx.doi.org/10.1056/NEJMoa1007478] [PMID: 20979473]
[21]
Doebele, R.C.; Pilling, A.B.; Aisner, D.L.; Kutateladze, T.G.; Le, A.T.; Weickhardt, A.J.; Kondo, K.L.; Linderman, D.J.; Heasley, L.E.; Franklin, W.A.; Varella-Garcia, M.; Camidge, D.R. Mechanisms of resistance to crizotinib in patients with ALK gene rearranged non-small cell lung cancer. Clin. Cancer Res., 2012, 18(5), 1472-1482.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-2906] [PMID: 22235099]
[22]
Karachaliou, N.; Santarpia, M.; Gonzalez Cao, M.; Teixido, C.; Sosa, A.E.; Berenguer, J.; Rodriguez Capote, A.; Altavilla, G.; Rosell, R. Anaplastic lymphoma kinase inhibitors in phase I and phase II clinical trials for non-small cell lung cancer. Expert Opin. Investig. Drugs, 2017, 26(6), 713-722.
[http://dx.doi.org/10.1080/13543784.2017.1324572] [PMID: 28463570]
[23]
Katayama, R.; Friboulet, L.; Koike, S.; Lockerman, E.L.; Khan, T.M.; Gainor, J.F.; Iafrate, A.J.; Takeuchi, K.; Taiji, M.; Okuno, Y.; Fujita, N.; Engelman, J.A.; Shaw, A.T. Two novel ALK mutations mediate acquired resistance to the next-generation ALK inhibitor alectinib. Clin. Cancer Res., 2014, 20(22), 5686-5696.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-1511] [PMID: 25228534]
[24]
Lin, J.J.; Choudhury, N.J.; Yoda, S.; Zhu, V.W.; Johnson, T.W.; Sakhtemani, R.; Dagogo-Jack, I.; Digumarthy, S.R.; Lee, C.; Do, A.; Peterson, J.; Prutisto-Chang, K.; Malik, W.; Hubbeling, H.G.; Langenbucher, A.; Schoenfeld, A.J.; Falcon, C.J.; Temel, J.S.; Sequist, L.V.; Yeap, B.Y.; Lennerz, J.K.; Shaw, A.T.; Lawrence, M.S.; Ou, S.I.; Hata, A.N.; Drilon, A.; Gainor, J.F. Spectrum of mechanisms of resistance to crizotinib and lorlatinib in ROS1 fusion-positive lung cancer. Clin. Cancer Res., 2021, 27(10), 2899-2909. Epub ahead of print
[http://dx.doi.org/10.1158/1078-0432.CCR-21-0032] [PMID: 33685866]
[25]
Heuckmann, J.M.; Hölzel, M.; Sos, M.L.; Heynck, S.; Balke-Want, H.; Koker, M.; Peifer, M.; Weiss, J.; Lovly, C.M.; Grütter, C.; Rauh, D.; Pao, W.; Thomas, R.K. ALK mutations conferring differential resistance to structurally diverse ALK inhibitors. Clin. Cancer Res., 2011, 17(23), 7394-7401.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-1648] [PMID: 21948233]
[26]
Toyokawa, G.; Seto, T. Updated evidence on the mechanisms of resistance to ALK inhibitors and strategies to overcome such resistance: clinical and preclinical data. Oncol. Res. Treat., 2015, 38(6), 291-298.
[http://dx.doi.org/10.1159/000430852] [PMID: 26045026]
[27]
Katayama, R.; Khan, T.M.; Benes, C.; Lifshits, E.; Ebi, H.; Rivera, V.M.; Shakespeare, W.C.; Iafrate, A.J.; Engelman, J.A.; Shaw, A.T. Therapeutic strategies to overcome crizotinib resistance in non-small cell lung cancers harboring the fusion oncogene EML4-ALK. Proc. Natl. Acad. Sci. USA, 2011, 108(18), 7535-7540.
[http://dx.doi.org/10.1073/pnas.1019559108] [PMID: 21502504]
[28]
Katayama, R.; Shaw, A.T.; Khan, T.M.; Mino-Kenudson, M.; Solomon, B.J.; Halmos, B.; Jessop, N.A.; Wain, J.C.; Yeo, A.T.; Benes, C.; Drew, L.; Saeh, J.C.; Crosby, K.; Sequist, L.V.; Iafrate, A.J.; Engelman, J.A. Mechanisms of acquired crizotinib resistance in ALK-rearranged lung Cancers. Sci. Transl. Med., 2012, 4(120) ,120ra17.
[http://dx.doi.org/10.1126/scitranslmed.3003316] [PMID: 22277784]
[29]
Ferlay, J.; Steliarova-Foucher, E.; Lortet-Tieulent, J.; Rosso, S.; Coebergh, J.W.; Comber, H.; Forman, D.; Bray, F. Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012. Eur. J. Cancer, 2013, 49(6), 1374-1403.
[http://dx.doi.org/10.1016/j.ejca.2012.12.027] [PMID: 23485231]
[30]
Tabchi, S.; Kourie, H.R.; Klastersky, J. Concurrent driver mutations/rearrangements in non-small-cell lung cancer. Curr. Opin. Oncol., 2017, 29(2), 118-122.
[http://dx.doi.org/10.1097/CCO.0000000000000353] [PMID: 28027105]
[31]
da Cunha Santos, G.; Shepherd, F.A.; Tsao, M.S. EGFR mutations and lung cancer. Annu. Rev. Pathol., 2011, 6(1), 49-69.
[http://dx.doi.org/10.1146/annurev-pathol-011110-130206] [PMID: 20887192]
[32]
Ignatius Ou, S.H.; Azada, M.; Hsiang, D.J.; Herman, J.M.; Kain, T.S.; Siwak-Tapp, C.; Casey, C.; He, J.; Ali, S.M.; Klempner, S.J.; Miller, V.A. Next-generation sequencing reveals a Novel NSCLC ALK F1174V mutation and confirms ALK G1202R mutation confers high-level resistance to alectinib (CH5424802/RO5424802) in ALK-rearranged NSCLC patients who progressed on crizotinib. J. Thorac. Oncol., 2014, 9(4), 549-553.
[http://dx.doi.org/10.1097/JTO.0000000000000094] [PMID: 24736079]
[33]
Dehghanian, F.; Kay, M.; Vallian, S. F1174V mutation alters the ALK active conformation in response to Crizotinib in NSCLC: Insight from molecular simulations. J. Mol. Graph. Model., 2017, 75, 287-293.
[http://dx.doi.org/10.1016/j.jmgm.2017.06.010] [PMID: 28622610]
[34]
Toyokawa, G.; Hirai, F.; Inamasu, E.; Yoshida, T.; Nosaki, K.; Takenaka, T.; Yamaguchi, M.; Seto, T.; Takenoyama, M.; Ichinose, Y. Secondary mutations at I1171 in the ALK gene confer resistance to both Crizotinib and Alectinib. J. Thorac. Oncol., 2014, 9(12), e86-e87.
[http://dx.doi.org/10.1097/JTO.0000000000000358] [PMID: 25393798]
[35]
Sakamoto, H.; Tsukaguchi, T.; Hiroshima, S.; Kodama, T.; Kobayashi, T.; Fukami, T.A.; Oikawa, N.; Tsukuda, T.; Ishii, N.; Aoki, Y. CH5424802, a selective ALK inhibitor capable of blocking the resistant gatekeeper mutant. Cancer Cell, 2011, 19(5), 679-690.
[http://dx.doi.org/10.1016/j.ccr.2011.04.004] [PMID: 21575866]
[36]
Morcos, P.N.; Yu, L.; Bogman, K.; Sato, M.; Katsuki, H.; Kawashima, K.; Moore, D.J.; Whayman, M.; Nieforth, K.; Heinig, K.; Guerini, E.; Muri, D.; Martin-Facklam, M.; Phipps, A. Absorption, distribution, metabolism and excretion (ADME) of the ALK inhibitor alectinib: results from an absolute bioavailability and mass balance study in healthy subjects. Xenobiotica, 2017, 47(3), 217-229.
[http://dx.doi.org/10.1080/00498254.2016.1179821] [PMID: 27180975]
[38]
Friboulet, L.; Li, N.; Katayama, R.; Lee, C.C.; Gainor, J.F.; Crystal, A.S.; Michellys, P.Y.; Awad, M.M.; Yanagitani, N.; Kim, S.; Pferdekamper, A.C.; Li, J.; Kasibhatla, S.; Sun, F.; Sun, X.; Hua, S.; McNamara, P.; Mahmood, S.; Lockerman, E.L.; Fujita, N.; Nishio, M.; Harris, J.L.; Shaw, A.T.; Engelman, J.A. The ALK inhibitor ceritinib overcomes crizotinib resistance in non-small cell lung cancer. Cancer Discov., 2014, 4(6), 662-673.
[http://dx.doi.org/10.1158/2159-8290.CD-13-0846] [PMID: 24675041]
[39]
Ni, Z.; Wang, X.; Zhang, T.; Jin, R.Z. Molecular dynamics simulations reveal the allosteric effect of F1174C resistance mutation to ceritinib in ALK-associated lung cancer. Comput. Biol. Chem., 2016, 65, 54-60.
[http://dx.doi.org/10.1016/j.compbiolchem.2016.10.005] [PMID: 27764703]
[40]
Zhao, D.; Chen, J.; Chu, M.; Long, X.; Wang, J. Pharmacokinetic-based drug-drug interactions with anaplastic lymphoma kinase inhibitors: a review. Drug Des. Devel. Ther., 2020, 14, 1663-1681.
[http://dx.doi.org/10.2147/DDDT.S249098] [PMID: 32431491]
[42]
Zhang, S.; Anjum, R.; Squillace, R.; Nadworny, S.; Zhou, T.; Keats, J.; Ning, Y.; Wardwell, S.D.; Miller, D.; Song, Y.; Eichinger, L.; Moran, L.; Huang, W.S.; Liu, S.; Zou, D.; Wang, Y.; Mohemmad, Q.; Jang, H.G.; Ye, E.; Narasimhan, N.; Wang, F.; Miret, J.; Zhu, X.; Clackson, T.; Dalgarno, D.; Shakespeare, W.C.; Rivera, V.M. The potent ALK inhibitor brigatinib (AP26113) overcomes mechanisms of resistance to first- and second-generation ALK inhibitors in preclinical models. Clin. Cancer Res., 2016, 22(22), 5527-5538.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-0569] [PMID: 27780853]
[43]
Camidge, D.R.; Kim, H.R.; Ahn, M.J.; Yang, J.C.H.; Han, J.Y.; Hochmair, M.J.; Lee, K.H.; Delmonte, A.; García Campelo, M.R.; Kim, D.W.; Griesinger, F.; Felip, E.; Califano, R.; Spira, A.; Gettinger, S.N.; Tiseo, M.; Lin, H.M.; Gupta, N.; Hanley, M.J.; Ni, Q.; Zhang, P.; Popat, S. Brigatinib versus crizotinib in advanced ALK inhibitor-naive ALK-positive non-small cell lung cancer: second interim analysis of the Phase III ALTA-1L Trial. J. Clin. Oncol., 2020, 38(31), 3592-3603.
[http://dx.doi.org/10.1200/JCO.20.00505] [PMID: 32780660]
[44]
Stinchcombe, T.E.; Doebele, R.C.; Wang, X.; Gerber, D.E.; Horn, L.; Camidge, D.R. Preliminary clinical and molecular analysis results from a single-arm phase 2 trial of brigatinib in patients with disease progression after next-generation ALK tyrosine kinase inhibitors in advanced ALK+ NSCLC. J. Thorac. Oncol., 2021, 16(1), 156-161.
[http://dx.doi.org/10.1016/j.jtho.2020.09.018] [PMID: 33039599]
[47]
Ou, S.H.; Greenbowe, J.; Khan, Z.U.; Azada, M.C.; Ross, J.S.; Stevens, P.J.; Ali, S.M.; Miller, V.A.; Gitlitz, B. I1171 missense mutation (particularly I1171N) is a common resistance mutation in ALK-positive NSCLC patients who have progressive disease while on alectinib and is sensitive to ceritinib. Lung Cancer, 2015, 88(2), 231-234.
[http://dx.doi.org/10.1016/j.lungcan.2015.02.005] [PMID: 25736571]
[48]
Shaw, A.T.; Felip, E.; Bauer, T.M.; Besse, B.; Navarro, A.; Postel-Vinay, S.; Gainor, J.F.; Johnson, M.; Dietrich, J.; James, L.P.; Clancy, J.S.; Chen, J.; Martini, J.F.; Abbattista, A.; Solomon, B.J. Lorlatinib in non-small-cell lung cancer with ALK or ROS1 rearrangement: an international, multicentre, open-label, single-arm first-in-man phase 1 trial. Lancet Oncol., 2017, 18(12), 1590-1599.
[http://dx.doi.org/10.1016/S1470-2045(17)30680-0] [PMID: 29074098]
[49]
Hu, J.; Zhang, B.; Yao, F.; Fu, Y.; Chen, D.; Li, D.; Du, N.; Lizaso, A.; Song, J.; Zhang, L.; Li, X. Acquired multiple mutations ALK I1171N, L1196M and G1202R mediate lorlatinib resistance in EML4-ALK-rearranged malignant pleural mesothelioma: a case report. Ther. Adv. Respir. Dis., 2020, 14 ,1753466620935770.
[http://dx.doi.org/10.1177/1753466620935770] [PMID: 32600123]
[50]
Yoda, S.; Lin, J.J.; Lawrence, M.S.; Burke, B.J.; Friboulet, L.; Langenbucher, A.; Dardaei, L.; Prutisto-Chang, K.; Dagogo-Jack, I.; Timofeevski, S.; Hubbeling, H.; Gainor, J.F.; Ferris, L.A.; Riley, A.K.; Kattermann, K.E.; Timonina, D.; Heist, R.S.; Iafrate, A.J.; Benes, C.H.; Lennerz, J.K.; Mino-Kenudson, M.; Engelman, J.A.; Johnson, T.W.; Hata, A.N.; Shaw, A.T. Sequential ALK inhibitors can select for lorlatinib-resistant compound ALK mutations in ALK-positive lung cancer. Cancer Discov., 2018, 8(6), 714-729.
[http://dx.doi.org/10.1158/2159-8290.CD-17-1256] [PMID: 29650534]
[51]
Shaw, A.T.; Solomon, B.J.; Chiari, R.; Riely, G.J.; Besse, B.; Soo, R.A.; Kao, S.; Lin, C.C.; Bauer, T.M.; Clancy, J.S.; Thurm, H.; Martini, J.F.; Peltz, G.; Abbattista, A.; Li, S.; Ou, S.I. Lorlatinib in advanced ROS1-positive non-small-cell lung cancer: a multicentre, open-label, single-arm, phase 1-2 trial. Lancet Oncol., 2019, 20(12), 1691-1701.
[http://dx.doi.org/10.1016/S1470-2045(19)30655-2] [PMID: 31669155]
[53]
Kobayashi, S.; Boggon, T.J.; Dayaram, T.; Jänne, P.A.; Kocher, O.; Meyerson, M.; Johnson, B.E.; Eck, M.J.; Tenen, D.G.; Halmos, B. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N. Engl. J. Med., 2005, 352(8), 786-792.
[http://dx.doi.org/10.1056/NEJMoa044238] [PMID: 15728811]
[54]
Sasaki, T.; Koivunen, J.; Ogino, A.; Yanagita, M.; Nikiforow, S.; Zheng, W.; Lathan, C.; Marcoux, J.P.; Du, J.; Okuda, K.; Capelletti, M.; Shimamura, T.; Ercan, D.; Stumpfova, M.; Xiao, Y.; Weremowicz, S.; Butaney, M.; Heon, S.; Wilner, K.; Christensen, J.G.; Eck, M.J.; Wong, K.K.; Lindeman, N.; Gray, N.S.; Rodig, S.J.; Jänne, P.A. A novel ALK secondary mutation and EGFR signaling cause resistance to ALK kinase inhibitors. Cancer Res., 2011, 71(18), 6051-6060.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-1340] [PMID: 21791641]
[55]
Ercan, D.; Zejnullahu, K.; Yonesaka, K.; Xiao, Y.; Capelletti, M.; Rogers, A.; Lifshits, E.; Brown, A.; Lee, C.; Christensen, J.G.; Kwiatkowski, D.J.; Engelman, J.A.; Jänne, P.A. Amplification of EGFR T790M causes resistance to an irreversible EGFR inhibitor. Oncogene, 2010, 29(16), 2346-2356.
[http://dx.doi.org/10.1038/onc.2009.526] [PMID: 20118985]
[56]
Camidge, D.R.; Pao, W.; Sequist, L.V. Acquired resistance to TKIs in solid tumours: learning from lung cancer. Nat. Rev. Clin. Oncol., 2014, 11(8), 473-481.
[http://dx.doi.org/10.1038/nrclinonc.2014.104] [PMID: 24981256]
[57]
Yun, C.H.; Mengwasser, K.E.; Toms, A.V.; Woo, M.S.; Greulich, H.; Wong, K.K.; Meyerson, M.; Eck, M.J. The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. Proc. Natl. Acad. Sci. USA, 2008, 105(6), 2070-2075.
[http://dx.doi.org/10.1073/pnas.0709662105] [PMID: 18227510]
[58]
Nukaga, S.; Yasuda, H.; Tsuchihara, K.; Hamamoto, J.; Masuzawa, K.; Kawada, I.; Naoki, K.; Matsumoto, S.; Mimaki, S.; Ikemura, S.; Goto, K.; Betsuyaku, T.; Soejima, K. Amplification of EGFR wild-type alleles in non-small cell lung cancer cells confers acquired resistance to mutation-selective EGFR tyrosine kinase inhibitors. Cancer Res., 2017, 77(8), 2078-2089.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-2359] [PMID: 28202511]
[59]
Yan, Y.; Jiang, G.; Ma, W.; Li, T.; Wang, L. Emerging EML4-ALK variant 5 as a concurrent resistance mechanism to osimertinib in a patient with EGFR E19del/T790M NSCLC. Clin. Lung Cancer, 2020, 21(6), 562-567.
[http://dx.doi.org/10.1016/j.cllc.2020.05.009] [PMID: 32622727]
[60]
Tani, T.; Yasuda, H.; Hamamoto, J.; Kuroda, A.; Arai, D.; Ishioka, K.; Ohgino, K.; Miyawaki, M.; Kawada, I.; Naoki, K.; Hayashi, Y.; Betsuyaku, T.; Soejima, K. Activation of EGFR bypass signaling by TGFα overexpression induces acquired resistance to alectinib in ALK-translocated lung cancer cells. Mol. Cancer Ther., 2016, 15(1), 162-171.
[http://dx.doi.org/10.1158/1535-7163.MCT-15-0084] [PMID: 26682573]
[61]
Huang, X. The potential role of HGF-MET signaling and autophagy in the war of Alectinib versus Crizotinib against ALK-positive NSCLC. J. Exp. Clin. Cancer Res., 2018, 37(1), 33.
[http://dx.doi.org/10.1186/s13046-018-0707-5] [PMID: 29463284]
[62]
Ji, C.; Zhang, L.; Cheng, Y.; Patel, R.; Wu, H.; Zhang, Y.; Wang, M.; Ji, S.; Belani, C.P.; Yang, J.M.; Ren, X. Induction of autophagy contributes to crizotinib resistance in ALK-positive lung cancer. Cancer Biol. Ther., 2014, 15(5), 570-577.
[http://dx.doi.org/10.4161/cbt.28162] [PMID: 24556908]
[63]
Kogita, A.; Togashi, Y.; Hayashi, H.; Sogabe, S.; Terashima, M.; De Velasco, M.A.; Sakai, K.; Fujita, Y.; Tomida, S.; Takeyama, Y.; Okuno, K.; Nakagawa, K.; Nishio, K. Hypoxia induces resistance to ALK inhibitors in the H3122 non-small cell lung cancer cell line with an ALK rearrangement via epithelial-mesenchymal transition. Int. J. Oncol., 2014, 45(4), 1430-1436.
[http://dx.doi.org/10.3892/ijo.2014.2574] [PMID: 25096400]
[64]
Harris, A.L. Hypoxia--a key regulatory factor in tumour growth. Nat. Rev. Cancer, 2002, 2(1), 38-47.
[http://dx.doi.org/10.1038/nrc704] [PMID: 11902584]
[65]
Li, Y.; Wang, K.; Song, N.; Hou, K.; Che, X.; Zhou, Y.; Liu, Y.; Zhang, J. Activation of IGF-1R pathway and NPM-ALK G1269A mutation confer resistance to crizotinib treatment in NPM-ALK positive lymphoma. Invest. New Drugs, 2020, 38(3), 599-609.
[http://dx.doi.org/10.1007/s10637-019-00802-7] [PMID: 31177400]
[66]
Wilson, C.; Nimick, M.; Nehoff, H.; Ashton, J.C. ALK and IGF-1R as independent targets in crizotinib resistant lung cancer. Sci. Rep., 2017, 7(1), 13955.
[http://dx.doi.org/10.1038/s41598-017-14289-w] [PMID: 29066738]
[67]
Shi, R.; Filho, S.N.M.; Li, M.; Fares, A.; Weiss, J.; Pham, N.A.; Ludkovski, O.; Raghavan, V.; Li, Q.; Ravi, D.; Cabanero, M.; Moghal, N.; Leighl, N.B.; Bradbury, P.; Sacher, A.; Shepherd, F.A.; Yasufuku, K.; Tsao, M.S.; Liu, G. BRAF V600E mutation and MET amplification as resistance pathways of the second-generation anaplastic lymphoma kinase (ALK) inhibitor alectinib in lung cancer. Lung Cancer, 2020, 146, 78-85.
[http://dx.doi.org/10.1016/j.lungcan.2020.05.018] [PMID: 32521388]
[68]
Chen, H.; Lin, C.; Peng, T.; Hu, C.; Lu, C.; Li, L.; Wang, Y.; Han, R.; Feng, M.; Sun, F.; He, Y. Metformin reduces HGF-induced resistance to alectinib via the inhibition of Gab1. Cell Death Dis., 2020, 11(2), 111.
[http://dx.doi.org/10.1038/s41419-020-2307-5] [PMID: 32041944]
[69]
Berberich, A.; Schmitt, L.M.; Pusch, S.; Hielscher, T.; Rübmann, P.; Hucke, N.; Latzer, P.; Heßling, B.; Lemke, D.; Kessler, T.; Platten, M.; Wick, W. cMyc and ERK activity are associated with resistance to ALK inhibitory treatment in glioblastoma. J. Neurooncol., 2020, 146(1), 9-23.
[http://dx.doi.org/10.1007/s11060-019-03348-z] [PMID: 31776900]
[70]
Rihawi, K.; Alfieri, R.; Fiorentino, M.; Fontana, F.; Capizzi, E.; Cavazzoni, A.; Terracciano, M.; La Monica, S.; Ferrarini, A.; Buson, G.; Petronini, P.G.; Ardizzoni, A. MYC amplification as a potential mechanism of primary resistance to crizotinib in ALK-rearranged non-small cell lung cancer: a brief report. Transl. Oncol., 2019, 12(1), 116-121.
[http://dx.doi.org/10.1016/j.tranon.2018.09.013] [PMID: 30290287]
[71]
Holla, V.R.; Elamin, Y.Y.; Bailey, A.M.; Johnson, A.M.; Litzenburger, B.C.; Khotskaya, Y.B.; Sanchez, N.S.; Zeng, J.; Shufean, M.A.; Shaw, K.R.; Mendelsohn, J.; Mills, G.B.; Meric-Bernstam, F.; Simon, G.R. ALK: a tyrosine kinase target for cancer therapy. Cold Spring Harb. Mol. Case Stud., 2017, 3(1) ,a001115.
[http://dx.doi.org/10.1101/mcs.a001115] [PMID: 28050598]
[72]
Huang, Q.; Johnson, T.W.; Bailey, S.; Brooun, A.; Bunker, K.D.; Burke, B.J.; Collins, M.R.; Cook, A.S.; Cui, J.J.; Dack, K.N.; Deal, J.G.; Deng, Y.L.; Dinh, D.; Engstrom, L.D.; He, M.; Hoffman, J.; Hoffman, R.L.; Johnson, P.S.; Kania, R.S.; Lam, H.; Lam, J.L.; Le, P.T.; Li, Q.; Lingardo, L.; Liu, W.; Lu, M.W.; McTigue, M.; Palmer, C.L.; Richardson, P.F.; Sach, N.W.; Shen, H.; Smeal, T.; Smith, G.L.; Stewart, A.E.; Timofeevski, S.; Tsaparikos, K.; Wang, H.; Zhu, H.; Zhu, J.; Zou, H.Y.; Edwards, M.P. Design of potent and selective inhibitors to overcome clinical anaplastic lymphoma kinase mutations resistant to crizotinib. J. Med. Chem., 2014, 57(4), 1170-1187.
[http://dx.doi.org/10.1021/jm401805h] [PMID: 24432909]
[73]
Mologni, L. Inhibitors of the anaplastic lymphoma kinase. Expert Opin. Investig. Drugs, 2012, 21(7), 985-994.
[http://dx.doi.org/10.1517/13543784.2012.690031] [PMID: 22612599]
[74]
Johnson, T.W.; Richardson, P.F.; Bailey, S.; Brooun, A.; Burke, B.J.; Collins, M.R.; Cui, J.J.; Deal, J.G.; Deng, Y.L.; Dinh, D.; Engstrom, L.D.; He, M.; Hoffman, J.; Hoffman, R.L.; Huang, Q.; Kania, R.S.; Kath, J.C.; Lam, H.; Lam, J.L.; Le, P.T.; Lingardo, L.; Liu, W.; McTigue, M.; Palmer, C.L.; Sach, N.W.; Smeal, T.; Smith, G.L.; Stewart, A.E.; Timofeevski, S.; Zhu, H.; Zhu, J.; Zou, H.Y.; Edwards, M.P. Discovery of (10R)-7-amino-12-fluoro-2,10,16-trimethyl-15-oxo-10,15,16,17-tetrahydro-2H-8,4-(metheno)pyrazolo[4,3-h] [2,5,11]benzoxadiazacyclotetradecine-3-carbonitrile (PF-06463922), a macrocyclic inhibitor of ALK/ROS1 with pre-clinical brain exposure and broad spectrum potency against ALK-resistant mutations. J. Med. Chem., 2014, 57(11), 4720-4744.
[http://dx.doi.org/10.1021/jm500261q] [PMID: 24819116]
[75]
Bryan, M.C.; Whittington, D.A.; Doherty, E.M.; Falsey, J.R.; Cheng, A.C.; Emkey, R.; Brake, R.L.; Lewis, R.T. Rapid development of piperidine carboxamides as potent and selective anaplastic lymphoma kinase inhibitors. J. Med. Chem., 2012, 55(4), 1698-1705.
[http://dx.doi.org/10.1021/jm201565s] [PMID: 22263917]
[76]
Pan, P.; Yu, H.; Liu, Q.; Kong, X.; Chen, H.; Chen, J.; Liu, Q.; Li, D.; Kang, Y.; Sun, H.; Zhou, W.; Tian, S.; Cui, S.; Zhu, F.; Li, Y.; Huang, Y.; Hou, T. Combating drug-resistant mutants of anaplastic lymphoma kinase with potent and selective type-I1/2 inhibitors by stabilizing unique DFG-shifted loop conformation. ACS Cent. Sci., 2017, 3(11), 1208-1220.
[http://dx.doi.org/10.1021/acscentsci.7b00419] [PMID: 29202023]
[77]
Liu, S.; Jiang, Y.; Yan, R.; Li, Z.; Wan, S.; Zhang, T.; Wu, X.; Hou, J.; Zhu, Z.; Tian, Y.; Zhang, J. Design, synthesis and biological evaluations of 2-amino-4-(1-piperidine) pyridine derivatives as novel anti crizotinib-resistant ALK/ROS1 dual inhibitors. Eur. J. Med. Chem., 2019, 179, 358-375.
[http://dx.doi.org/10.1016/j.ejmech.2019.06.043] [PMID: 31260890]
[78]
Tian, Y.; Zhang, T.; Long, L.; Li, Z.; Wan, S.; Wang, G.; Yu, Y.; Hou, J.; Wu, X.; Zhang, J. Design, synthesis, biological evaluation and molecular modeling of novel 2-amino-4-(1-phenylethoxy) pyridine derivatives as potential ROS1 inhibitors. Eur. J. Med. Chem., 2018, 143, 182-199.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.002] [PMID: 29174814]
[79]
El-Deeb, I.M.; Park, B.S.; Jung, S.J.; Yoo, K.H.; Oh, C.H.; Cho, S.J.; Han, D.K.; Lee, J.Y.; Lee, S.H. Design, synthesis, screening, and molecular modeling study of a new series of ROS1 receptor tyrosine kinase inhibitors. Bioorg. Med. Chem. Lett., 2009, 19(19), 5622-5626.
[http://dx.doi.org/10.1016/j.bmcl.2009.08.029] [PMID: 19700314]
[80]
Ou, S.H.; Tan, J.; Yen, Y.; Soo, R.A. ROS1 as a ‘druggable’ receptor tyrosine kinase: lessons learned from inhibiting the ALK pathway. Expert Rev. Anticancer Ther., 2012, 12(4), 447-456.
[http://dx.doi.org/10.1586/era.12.17] [PMID: 22500682]
[81]
Basit, S.; Ashraf, Z.; Lee, K.; Latif, M. First macrocyclic 3rd-generation ALK inhibitor for treatment of ALK/ROS1 cancer: Clinical and designing strategy update of lorlatinib. Eur. J. Med. Chem., 2017, 134, 348-356.
[http://dx.doi.org/10.1016/j.ejmech.2017.04.032] [PMID: 28431340]
[82]
Marsilje, T.H.; Pei, W.; Chen, B.; Lu, W.; Uno, T.; Jin, Y.; Jiang, T.; Kim, S.; Li, N.; Warmuth, M.; Sarkisova, Y.; Sun, F.; Steffy, A.; Pferdekamper, A.C.; Li, A.G.; Joseph, S.B.; Kim, Y.; Liu, B.; Tuntland, T.; Cui, X.; Gray, N.S.; Steensma, R.; Wan, Y.; Jiang, J.; Chopiuk, G.; Li, J.; Gordon, W.P.; Richmond, W.; Johnson, K.; Chang, J.; Groessl, T.; He, Y.Q.; Phimister, A.; Aycinena, A.; Lee, C.C.; Bursulaya, B.; Karanewsky, D.S.; Seidel, H.M.; Harris, J.L.; Michellys, P.Y. Synthesis, structure-activity relationships, and in vivo efficacy of the novel potent and selective anaplastic lymphoma kinase (ALK) inhibitor 5-chloro-N2-(2-isopropoxy-5-methyl-4-(piperidin-4-yl)phenyl)-N4-(2-(isopropylsulfonyl)phenyl)pyrimidine-2,4-diamine (LDK378) currently in phase 1 and phase 2 clinical trials. J. Med. Chem., 2013, 56(14), 5675-5690.
[http://dx.doi.org/10.1021/jm400402q] [PMID: 23742252]
[83]
Wang, Y.; Chen, S.; Hu, G.; Wang, J.; Gou, W.; Zuo, D.; Gu, Y.; Gong, P.; Zhai, X. Discovery of novel 2,4-diarylaminopyrimidine analogues as ALK and ROS1 dual inhibitors to overcome crizotinib-resistant mutants including G1202R. Eur. J. Med. Chem., 2018, 143, 123-136.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.008] [PMID: 29174809]
[84]
Guo, M.; Zuo, D.; Zhang, J.; Xing, L.; Gou, W.; Jiang, F.; Jiang, N.; Zhang, D.; Zhai, X. Dual potent ALK and ROS1 inhibitors combating drug-resistant mutants: Synthesis and biological evaluation of aminopyridine-containing diarylaminopyrimidine derivatives. Eur. J. Med. Chem., 2018, 158(58), 322-333.
[http://dx.doi.org/10.1016/j.ejmech.2018.09.012] [PMID: 30223120]
[85]
Jang, J.; Son, J.B.; To, C.; Bahcall, M.; Kim, S.Y.; Kang, S.Y.; Mushajiang, M.; Lee, Y.; Jänne, P.A.; Choi, H.G.; Gray, N.S. Discovery of a potent dual ALK and EGFR T790M inhibitor. Eur. J. Med. Chem., 2017, 136, 497-510.
[http://dx.doi.org/10.1016/j.ejmech.2017.04.079] [PMID: 28528303]
[86]
Chen, H.; Li, R.; Ning, X.; Zhao, X.; Jin, Y.; Yin, Y. Synthesis and anti-tumor efficacy of novel 2, 4-diarylaminopyrimidine derivatives bearing N-(3-pyridinylmethyl) urea moiety as anaplastic lymphoma kinase inhibitors. Eur. J. Med. Chem., 2019, 178, 141-153.
[http://dx.doi.org/10.1016/j.ejmech.2019.05.060] [PMID: 31177074]
[87]
Achary, R.; Yun, J.I.; Park, C.M.; Mathi, G.R.; Lee, J.Y.; Ha, J.D.; Chae, C.H.; Ahn, S.; Park, C.H.; Lee, C.O.; Hwang, J.Y.; Yun, C.S.; Jung, H.J.; Cho, S.Y.; Kim, H.R.; Kim, P. Discovery of novel tetrahydroisoquinoline-containing pyrimidines as ALK inhibitors. Bioorg. Med. Chem., 2016, 24(2), 207-219.
[http://dx.doi.org/10.1016/j.bmc.2015.12.004] [PMID: 26712094]
[88]
Kang, G.A.; Lee, M.; Song, D.; Lee, H.K.; Ahn, S.; Park, C.H.; Lee, C.O.; Yun, C.S.; Jung, H.; Kim, P.; Ha, J.D.; Cho, S.Y.; Kim, H.R.; Hwang, J.Y. Synthesis and evaluation of novel 2,4-diaminopyrimidines bearing bicyclic aminobenzazepines for anaplastic lymphoma kinase (ALK) inhibitor. Bioorg. Med. Chem. Lett., 2015, 25(18), 3992-3998.
[http://dx.doi.org/10.1016/j.bmcl.2015.07.004] [PMID: 26235945]
[89]
Song, D.; Lee, M.; Park, C.H.; Ahn, S.; Yun, C.S.; Lee, C.O.; Kim, H.R.; Hwang, J.Y. Novel 2,4-diaminopyrimidines bearing tetrahydronaphthalenyl moiety against anaplastic lymphoma kinase (ALK): Synthesis, in vitro, ex vivo, and in vivo efficacy studies. Bioorg. Med. Chem. Lett., 2016, 26(7), 1720-1725.
[http://dx.doi.org/10.1016/j.bmcl.2016.02.052] [PMID: 26923695]
[90]
Achary, R.; Mathi, G.R.; Lee, D.H.; Yun, C.S.; Lee, C.O.; Kim, H.R.; Park, C.H.; Kim, P.; Hwang, J.Y. Novel 2,4-diaminopyrimidines bearing fused tricyclic ring moiety for anaplastic lymphoma kinase (ALK) inhibitor. Bioorg. Med. Chem. Lett., 2017, 27(10), 2185-2191.
[http://dx.doi.org/10.1016/j.bmcl.2017.03.073] [PMID: 28385505]
[91]
Song, Z.; Yang, Y.; Liu, Z.; Peng, X.; Guo, J.; Yang, X.; Wu, K.; Ai, J.; Ding, J.; Geng, M.; Zhang, A. Discovery of novel 2,4-diarylaminopyrimidine analogues (DAAPalogues) showing potent inhibitory activities against both wild-type and mutant ALK kinases. J. Med. Chem., 2015, 58(1), 197-211.
[http://dx.doi.org/10.1021/jm5005144] [PMID: 24785465]
[92]
Geng, K.; Xia, Z.; Ji, Y.; Zhang, R.R.; Sun, D.; Ai, J.; Song, Z.; Geng, M.; Zhang, A. Discovery of 2,4-diarylaminopyrimidines bearing a resorcinol motif as novel ALK inhibitors to overcome the G1202R resistant mutation. Eur. J. Med. Chem., 2018, 144, 386-397.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.060] [PMID: 29288940]
[93]
Nam, Y.; Hwang, D.; Kim, N.; Seo, H.S.; Selim, K.B.; Sim, T. Identification of 1H-pyrazolo[3,4-b]pyridine derivatives as potent ALK-L1196M inhibitors. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 1426-1438.
[http://dx.doi.org/10.1080/14756366.2019.1639694] [PMID: 31401883]
[94]
Iikubo, K.; Kondoh, Y.; Shimada, I.; Matsuya, T.; Mori, K.; Ueno, Y.; Okada, M. Discovery of N-2-Methoxy-4-[4-(4-methylpiperazin-1-yl)piperidin-1-yl]phenyl-N¢-[2-(propane-2-sulfonyl)phenyl]-1,3,5-triazine-2,4-diamine (ASP3026), a Potent and Selective Anaplastic Lymphoma Kinase (ALK). Inhibitor. Chem. Pharm. Bull. (Tokyo), 2018, 66(3), 251-262.
[http://dx.doi.org/10.1248/cpb.c17-00784] [PMID: 29491259]
[95]
Iikubo, K.; Kurosawa, K.; Matsuya, T.; Kondoh, Y.; Kamikawa, A.; Moritomo, A.; Iwai, Y.; Tomiyama, H.; Shimada, I. Synthesis and structure-activity relationships of pyrazine-2-carboxamide derivatives as novel echinoderm microtubule-associated protein-like 4 (EML4)-anaplastic lymphoma kinase (ALK) inhibitors. Bioorg. Med. Chem., 2019, 27(8), 1683-1692.
[http://dx.doi.org/10.1016/j.bmc.2019.03.018] [PMID: 30878193]
[96]
Kogita, A.; Togashi, Y.; Hayashi, H.; Banno, E.; Terashima, M.; De Velasco, M.A.; Sakai, K.; Fujita, Y.; Tomida, S.; Takeyama, Y.; Okuno, K.; Nakagawa, K.; Nishio, K. Activated MET acts as a salvage signal after treatment with alectinib, a selective ALK inhibitor, in ALK-positive non-small cell lung cancer. Int. J. Oncol., 2015, 46(3), 1025-1030.
[http://dx.doi.org/10.3892/ijo.2014.2797] [PMID: 25502629]
[97]
Shaw, A.T.; Friboulet, L.; Leshchiner, I.; Gainor, J.F.; Bergqvist, S.; Brooun, A.; Burke, B.J.; Deng, Y.L.; Liu, W.; Dardaei, L.; Frias, R.L.; Schultz, K.R.; Logan, J.; James, L.P.; Smeal, T.; Timofeevski, S.; Katayama, R.; Iafrate, A.J.; Le, L.; McTigue, M.; Getz, G.; Johnson, T.W.; Engelman, J.A. Resensitization to crizotinib by the lorlatinib ALK resistance mutation L1198F. N. Engl. J. Med., 2016, 374(1), 54-61.
[http://dx.doi.org/10.1056/NEJMoa1508887] [PMID: 26698910]
[98]
Yamaguchi, N.; Lucena-Araujo, A.R.; Nakayama, S.; de Figueiredo-Pontes, L.L.; Gonzalez, D.A.; Yasuda, H.; Kobayashi, S.; Costa, D.B. Dual ALK and EGFR inhibition targets a mechanism of acquired resistance to the tyrosine kinase inhibitor crizotinib in ALK rearranged lung cancer. Lung Cancer, 2014, 83(1), 37-43.
[http://dx.doi.org/10.1016/j.lungcan.2013.09.019] [PMID: 24199682]
[99]
Lovly, C.M.; Iyengar, P.; Gainor, J.F. Managing resistance to EFGR- and ALK-targeted therapies. Am. Soc. Clin. Oncol. Educ. Book, 2017, 37, 607-618.
[http://dx.doi.org/10.1200/EDBK_176251] [PMID: 28561721]
[100]
Yun, M.R.; Choi, H.M.; Lee, Y.W.; Joo, H.S.; Park, C.W.; Choi, J.W.; Kim, D.H.; Kang, H.N.; Pyo, K.H.; Shin, E.J.; Shim, H.S.; Soo, R.A.; Yang, J.C.; Lee, S.S.; Chang, H.; Kim, M.H.; Hong, M.H.; Kim, H.R.; Cho, B.C. Targeting YAP to overcome acquired resistance to ALK inhibitors in ALK-rearranged lung cancer. EMBO Mol. Med., 2019, 11(12) ,e10581.
[http://dx.doi.org/10.15252/emmm.201910581] [PMID: 31633304]
[101]
Taipale, M.; Jarosz, D.F.; Lindquist, S. HSP90 at the hub of protein homeostasis: emerging mechanistic insights. Nat. Rev. Mol. Cell Biol., 2010, 11(7), 515-528.
[http://dx.doi.org/10.1038/nrm2918] [PMID: 20531426]
[102]
Sang, J.; Acquaviva, J.; Friedland, J.C.; Smith, D.L.; Sequeira, M.; Zhang, C.; Jiang, Q.; Xue, L.; Lovly, C.M.; Jimenez, J.P.; Shaw, A.T.; Doebele, R.C.; He, S.; Bates, R.C.; Camidge, D.R.; Morris, S.W.; El-Hariry, I.; Proia, D.A. Targeted inhibition of the molecular chaperone Hsp90 overcomes ALK inhibitor resistance in non-small cell lung cancer. Cancer Discov., 2013, 3(4), 430-443.
[http://dx.doi.org/10.1158/2159-8290.CD-12-0440] [PMID: 23533265]
[103]
Kong, X.; Pan, P.; Sun, H.; Xia, H.; Wang, X.; Li, Y.; Hou, T. Drug discovery targeting anaplastic lymphoma kinase (ALK). J. Med. Chem., 2019, 62(24), 10927-10954.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00446] [PMID: 31419130]
[104]
Singhi, E.K.; Horn, L.; Sequist, L.V.; Heymach, J.; Langer, C.J. Advanced non-small cell lung cancer: sequencing agents in the EGFR-mutated/ALK-rearranged populations. Am. Soc. Clin. Oncol. Educ. Book, 2019, 39, e187-e197.
[http://dx.doi.org/10.1200/EDBK_237821] [PMID: 31099642]
[105]
Socinski, M.A.; Jotte, R.M.; Cappuzzo, F.; Orlandi, F.; Stroyakovskiy, D.; Nogami, N.; Rodríguez-Abreu, D.; Moro-Sibilot, D.; Thomas, C.A.; Barlesi, F.; Finley, G.; Kelsch, C.; Lee, A.; Coleman, S.; Deng, Y.; Shen, Y.; Kowanetz, M.; Lopez-Chavez, A.; Sandler, A.; Reck, M. Atezolizumab for First-line treatment of metastatic nonsquamous NSCLC. N. Engl. J. Med., 2018, 378(24), 2288-2301.
[http://dx.doi.org/10.1056/NEJMoa1716948] [PMID: 29863955]
[106]
Reck, M.; Rodríguez-Abreu, D.; Robinson, A.G.; Hui, R.; Csőszi, T.; Fülöp, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; Cuffe, S.; O’Brien, M.; Rao, S.; Hotta, K.; Leiby, M.A.; Lubiniecki, G.M.; Shentu, Y.; Rangwala, R.; Brahmer, J.R. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N. Engl. J. Med., 2016, 375(19), 1823-1833.
[http://dx.doi.org/10.1056/NEJMoa1606774] [PMID: 27718847]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy