Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Review Article

Computational and Synthetic Biology Approaches for the Biosynthesis of Antiviral and Anticancer Terpenoids from Bacillus subtilis

Author(s): Vibha Shukla, Ashish Runthala, Vikrant Singh Rajput, Potla Durthi Chandrasai, Anurag Tripathi* and Suresh Chandra Phulara*

Volume 18, Issue 3, 2022

Published on: 12 July, 2021

Page: [307 - 322] Pages: 16

DOI: 10.2174/1573406417666210712211557

Price: $65

Abstract

Recent advancements in medicinal research have identified several antiviral and anticancer terpenoids that are usually deployed as a source of flavor, fragrances and pharmaceuticals. Under the current COVID-19 pandemic conditions, natural therapeutics with the least side effects are the need of the hour to save the patients, especially, which are pre-affected with other medical complications. Although plants are the major sources of terpenoids; however, for the environmental concerns, the global interest has shifted to the biocatalytic production of molecules from microbial sources. The gram-positive bacterium Bacillus subtilis is a suitable host in this regard due to its GRAS (generally regarded as safe) status, ease in genetic manipulations and wide industrial acceptability. The B. subtilis synthesizes its terpenoid molecules from 1-deoxy-d-xylulose-5-phosphate (DXP) pathway, a common route in almost all microbial strains. Here, we summarize the computational and synthetic biology approaches to improve the production of terpenoid-based therapeutics from B. subtilis by utilizing DXP pathway. We focus on the in-silico approaches for screening the functionally improved enzyme-variants of the two crucial enzymes namely, the DXP synthase (DXS) and Farnesyl Pyrophosphate Synthase (FPPS). The approaches for engineering the active sites are subsequently explained. It will be helpful to construct the functionally improved enzymes for the high-yield production of terpenoid-based anticancer and antiviral metabolites, which would help to reduce the cost and improve the availability of such therapeutics for the humankind.

Keywords: Terpenoids, antiviral, anticancer, B. subtilis, in-silico, enzyme engineering.

Next »
Graphical Abstract
[1]
Society, A.C. Global Cancer Facts & Figures, 4th; American Cancer Society: Atlanta, 2018.
[2]
Ferlay, J.; Colombet, M.; Soerjomataram, I.; Mathers, C.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int. J. Cancer; Wiley-Liss Inc., 2019, pp. 1941-1953.
[3]
Kim, R.; Emi, M.; Tanabe, K. Cancer immunosuppression and autoimmune disease: Beyond immunosuppressive networks for tumour immunity. Immunology, 2006, 119(2), 254-264.
[http://dx.doi.org/10.1111/j.1365-2567.2006.02430.x] [PMID: 17005005]
[4]
Freifeld, A.G.; Kaul, D.R. Infection in the patient with cancer. Abeloff’s Clinical Oncology; Niederhuber, J.E.; Armitage, J.O.; Kastan, M.B.; Doroshow, J.H.; Tepper, J.E., Eds.; Elsevier; , 2020, pp. 544-564.
[http://dx.doi.org/10.1016/B978-0-323-47674-4.00034-7]
[5]
Liang, W.; Guan, W.; Chen, R.; Wang, W.; Li, J.; Xu, K.; Li, C.; Ai, Q.; Lu, W.; Liang, H.; Li, S.; He, J. Cancer patients in sars-cov-2 infection: A nationwide analysis in China.In: The Lancet Oncology; Lancet Publishing Group, 2020, pp. 335-337.
[6]
He, W.; Chen, L.; Chen, L.; Yuan, G.; Fang, Y.; Chen, W.; Wu, D.; Liang, B.; Lu, X.; Ma, Y.; Li, L.; Wang, H.; Chen, Z.; Li, Q.; Gale, R.P. COVID-19 in persons with haematological cancers. Leukemia, 2020, 34(6), 1637-1645.
[http://dx.doi.org/10.1038/s41375-020-0836-7] [PMID: 32332856]
[7]
Tian, S.; Hu, W.; Niu, L.; Liu, H.; Xu, H.; Xiao, S.Y. Pulmonary pathology of early-phase 2019 novel coronavirus (Covid-19) pneumonia in two patients with lung cancer. J. Thorac. Oncol., 2020, 15(5), 700-704.
[http://dx.doi.org/10.1016/j.jtho.2020.02.010] [PMID: 32114094]
[8]
Sanders, J.M.; Monogue, M.L.; Jodlowski, T.Z.; Cutrell, J.B. Pharmacologic treatments for coronavirus disease 2019 (Covid-19): A review. In: JAMA, 2020, 323(18), 1824-1836.
[9]
Froggatt, H.M.; Heaton, B.E.; Heaton, N.S. Development of a fluorescence-based, high-throughput sars-cov-2 3clpro reporter assay. J. Virol., 2020, 94(22), e01265-e20.
[http://dx.doi.org/10.1128/JVI.01265-20] [PMID: 32843534]
[10]
Huang, F.; Li, Y.; Leung, E.L.H.; Liu, X.; Liu, K.; Wang, Q.; Lan, Y.; Li, X.; Yu, H.; Cui, L.; Luo, H.; Luo, L. A review of therapeutic agents and chinese herbal medicines against sars-cov-2 (covid-19). Pharmacological Research; Academic Press, 2020, p. 104929.
[11]
Wang, Y.; Zhang, D.; Du, G.; Du, R.; Zhao, J.; Jin, Y.; Fu, S.; Gao, L.; Cheng, Z.; Lu, Q.; Hu, Y.; Luo, G.; Wang, K.; Lu, Y.; Li, H.; Wang, S.; Ruan, S.; Yang, C.; Mei, C.; Wang, Y.; Ding, D.; Wu, F.; Tang, X.; Ye, X.; Ye, Y.; Liu, B.; Yang, J.; Yin, W.; Wang, A.; Fan, G.; Zhou, F.; Liu, Z.; Gu, X.; Xu, J.; Shang, L.; Zhang, Y.; Cao, L.; Guo, T.; Wan, Y.; Qin, H.; Jiang, Y.; Jaki, T.; Hayden, F.G.; Horby, P.W.; Cao, B.; Wang, C. Remdesivir in adults with severe COVID-19: A randomised, double-blind, placebo-controlled, multicentre trial. Lancet, 2020, 395(10236), 1569-1578.
[http://dx.doi.org/10.1016/S0140-6736(20)31022-9] [PMID: 32423584]
[12]
Ford, N.; Vitoria, M.; Rangaraj, A.; Norris, S.L.; Calmy, A.; Doherty, M. Systematic review of the efficacy and safety of antiretroviral drugs against SARS, MERS or COVID-19: Initial assessment. J. Int. AIDS Soc., 2020, 23(4)e25489
[http://dx.doi.org/10.1002/jia2.25489] [PMID: 32293807]
[13]
Yoo, J.H. Uncertainty about the efficacy of remdesivir on covid-19. J. Korean Med. Sci., 2020, 35(23)e221
[http://dx.doi.org/10.3346/jkms.2020.35.e221] [PMID: 32537956]
[14]
Sharma, A.N.; Mesinkovska, N.A.; Paravar, T. Characterizing the adverse dermatologic effects of hydroxychloroquine: A systematic review. J. Am. Acad. Dermatol., 2020, 83(2), 563-578.
[http://dx.doi.org/10.1016/j.jaad.2020.04.024] [PMID: 32289395]
[15]
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the nearly four decades. J. Natl. Prod., 2020, 83(3), 770-803.
[16]
Ludwiczuk, A.; Skalicka-Woźniak, K.; Georgiev, M.I. Terpenoids. Pharmacognosy; Badal, S.; Delgoda, R., Eds.; Elsevier: 32 Jamestown Road, London, U.K. , 2017, pp. 233-266.
[17]
Ghildiyal, R.; Prakash, V.; Chaudhary, V.K.; Gupta, V.; Gabrani, R. Phytochemicals as antiviral agents: Recent updates. Plant-derived bioactives; Mallappa, K.S.., Ed.; Springer Singapore; , 2020, pp. 279-295.
[http://dx.doi.org/10.1007/978-981-15-1761-7_12]
[18]
Islam, M.T.; Sarkar, C.; El-Kersh, D.M.; Jamaddar, S.; Uddin, S.J.; Shilpi, J.A.; Mubarak, M.S. Natural products and their derivatives against coronavirus: A review of the non-clinical and pre-clinical data. Phytother. Res., 2020, 34(10), 2471-2492.
[19]
Phulara, S.C.; Rajput, V.S.; Mazumdar, B.; Runthala, A. Metabolic and enzyme engineering for the microbial production of anticancerterpenoids. Essentials of cancer genomic, computational approaches and precision medicine; Masood, N.; Malik, S.S., Eds.; Springer nature singapore pte ltd.. , 2020, pp. 237-259.
[http://dx.doi.org/10.1007/978-981-15-1067-0_10]
[20]
Wen, C.C.; Kuo, Y.H.; Jan, J.T.; Liang, P.H.; Wang, S.Y.; Liu, H.G.; Lee, C.K.; Chang, S.T.; Kuo, C.J.; Lee, S.S.; Hou, C.C.; Hsiao, P.W.; Chien, S.C.; Shyur, L.F.; Yang, N.S. Specific plant terpenoids and lignoids possess potent antiviral activities against severe acute respiratory syndrome coronavirus. J. Med. Chem., 2007, 50(17), 4087-4095.
[http://dx.doi.org/10.1021/jm070295s] [PMID: 17663539]
[21]
Thomas, P.; Farjon, A. Taxus Wallichiana.The IUCN red list of threatened species,, 2011.
[22]
Phulara, S.C.; Ahmad, N.; Mazumdar, B.; Rajput, V.S. Microbiological advances in bioactives from high altitude. Microbiological advancements for higher altitude agro-ecosystems & sustainability, rhizosphere biology; Goel, R.; Soni, R.; Suyal, D. C., Eds.; Springer Nature Singapore Pte Ltd., 2020,; , 2020, pp. 327-373.
[http://dx.doi.org/10.1007/978-981-15-1902-4_17]
[23]
Managamuri, U.; Vijayalakshmi, M.; Poda, S.; Ganduri, V.S.R.K.; Rajulapati, S.B. Optimization of operating conditions for the production of enhanced antifungal metabolites from Streptomonospora arabica vsm 25 by full factorial design. J. Young Pharm., 2017, 9(1), 107-114.
[http://dx.doi.org/10.5530/jyp.2017.9.80]
[24]
Managamuri, U.; Vijayalakshmi, M.; Ganduri, V. S. R. K.; Rajulapati, S. B.; Bonigala, B.; Kalyani, B. S.; Poda, S. Isolation, identification, optimization, and metabolite profiling of streptomyces sparsus VSM-30. 3 Biotech,, 2017, 7(3), 1-19.
[25]
Nozzi, N.E.; Desai, S.H.; Case, A.E.; Atsumi, S. Metabolic engineering for higher alcohol production. Metab. Eng., 2014, 25, 174-182.
[http://dx.doi.org/10.1016/j.ymben.2014.07.007] [PMID: 25080238]
[26]
Wong, J.; Rios-solis, L.; Keasling, J.D. Microbial production of isoprenoids. Consequences of microbial interactions with hydrocarbons, oils, and lipids: Production of fuels and chemicals, handbook of hydrocarbon and lipid microbiology; Lee, S., Ed.; Springer International Publishing, 2017, pp. 1-24.
[27]
Kirby, J.; Nishimoto, M.; Chow, R.W.N.; Baidoo, E.E.K.; Wang, G.; Martin, J.; Schackwitz, W.; Chan, R.; Fortman, J.L.; Keasling, J.D. Enhancing Terpene yield from sugars via novel routes to 1-deoxy-d-xylulose 5-phosphate. Appl. Environ. Microbiol., 2015, 81(1), 130-138.
[http://dx.doi.org/10.1128/AEM.02920-14] [PMID: 25326299]
[28]
Kang, A.; George, K.W.; Wang, G.; Baidoo, E.; Keasling, J.D.; Lee, T.S. Isopentenyl diphosphate (IPP)-bypass mevalonate pathways for isopentenol production. Metab. Eng., 2016, 34, 25-35.
[http://dx.doi.org/10.1016/j.ymben.2015.12.002] [PMID: 26708516]
[29]
Schempp, F.M.; Drummond, L.; Buchhaupt, M.; Schrader, J. Microbial cell factories for the production of terpenoid flavor and fragrance compounds. J. Agric. Food Chem., 2018, 66(10), 2247-2258.
[http://dx.doi.org/10.1021/acs.jafc.7b00473] [PMID: 28418659]
[30]
Phulara, S.C.; Chaturvedi, P.; Chaurasia, D.; Diwan, B.; Gupta, P. Modulation of culture medium confers high-specificity production of isopentenol in Bacillus subtilis. J. Biosci. Bioeng., 2019, 127(4), 458-464.
[http://dx.doi.org/10.1016/j.jbiosc.2018.10.002] [PMID: 30862359]
[31]
Van Durme, J.; Delgado, J.; Stricher, F.; Serrano, L.; Schymkowitz, J.; Rousseau, F. A graphical interface for the FoldX forcefield. Bioinformatics, 2011, 27(12), 1711-1712.
[http://dx.doi.org/10.1093/bioinformatics/btr254] [PMID: 21505037]
[32]
Radzicka, A.; Wolfenden, R. A proficient enzyme. Science (80-. ). 1995, 267(5194), 90-93.,
[33]
Kelly, R.M.; Leemhuis, H.; Dijkhuizen, L. Conversion of a cyclodextrin glucanotransferase into an α-amylase: Assessment of directed evolution strategies. Biochemistry, 2007, 46(39), 11216-11222.
[http://dx.doi.org/10.1021/bi701160h] [PMID: 17824673]
[34]
Wang, Y.; Zhang, C.; An, S.; Fang, X.; Yu, D. Engineering substrate promiscuity in 2,4-dichlorophenol hydroxylase by: In silico design. RSC Adv; , 2018, 8, pp. (38)21184-21190..
[35]
Pandurangan, A.P.; Ochoa-Montaño, B.; Ascher, D.B.; Blundell, T.L. SDM: A server for predicting effects of mutations on protein stability. Nucleic Acids Res., 2017, 45(W1), W229-W235.
[http://dx.doi.org/10.1093/nar/gkx439] [PMID: 28525590]
[36]
Quan, L.; Lv, Q.; Zhang, Y. STRUM: Structure-based prediction of protein stability changes upon single-point mutation. Bioinformatics, 2016, 32(19), 2936-2946.
[http://dx.doi.org/10.1093/bioinformatics/btw361] [PMID: 27318206]
[37]
Dehouck, Y.; Kwasigroch, J.M.; Gilis, D.; Rooman, M. PoPMuSiC 2.1: A web server for the estimation of protein stability changes upon mutation and sequence optimality. BMC Bioinformatics, 2011, 12(1), 151.
[http://dx.doi.org/10.1186/1471-2105-12-151] [PMID: 21569468]
[38]
Zhang, Z.; Wang, L.; Gao, Y.; Zhang, J.; Zhenirovskyy, M.; Alexov, E. Predicting folding free energy changes upon single point mutations. Bioinformatics, 2012, 28(5), 664-671.
[http://dx.doi.org/10.1093/bioinformatics/bts005] [PMID: 22238268]
[39]
Tariq, A.; Nazir, S.; Arshad, A.W.; Nawaz, F.; Ayub, K.; Iqbal, J. DFT study of the therapeutic potential of phosphorene as a new drug-delivery system to treat cancer. RSC Advances, 2019, 9(42), 24325-24332.
[http://dx.doi.org/10.1039/C9RA02778E]
[40]
Phulara, S.C.; Chaurasia, D.; Diwan, B.; Chaturvedi, P.; Gupta, P. In-situ isopentenol production from Bacillus subtilis through genetic and culture condition modulation. Process Biochem., 2018, 72, 47-54.
[http://dx.doi.org/10.1016/j.procbio.2018.06.019]
[41]
Zhou, K.; Zou, R.; Zhang, C.; Stephanopoulos, G.; Too, H.P. Optimization of amorphadiene synthesis in Bacillus subtilisvia transcriptional, translational, and media modulation. Biotechnol. Bioeng., 2013, 110(9), 2556-2561.
[http://dx.doi.org/10.1002/bit.24900] [PMID: 23483530]
[42]
Abdallah, I.I.; Pramastya, H.; van Merkerk, R. Sukrasno; Quax, W.J. Metabolic engineering of Bacillus subtilis toward taxadiene biosynthesis as the first committed step for taxol production. Front. Microbiol., 2019, 10(FEB), 218.
[http://dx.doi.org/10.3389/fmicb.2019.00218] [PMID: 30842758]
[43]
Lange, B.M.; Rujan, T.; Martin, W.; Croteau, R. Isoprenoid biosynthesis: The evolution of two ancient and distinct pathways across genomes. Proc. Natl. Acad. Sci. USA, 2000, 97(24), 13172-13177.
[http://dx.doi.org/10.1073/pnas.240454797] [PMID: 11078528]
[44]
Hunter, W.N. The non-mevalonate pathway of isoprenoid precursor biosynthesis. J. Biol. Chem., 2007, 282(30), 21573-21577.
[http://dx.doi.org/10.1074/jbc.R700005200] [PMID: 17442674]
[45]
Tippmann, S.; Chen, Y.; Siewers, V.; Nielsen, J. From flavors and pharmaceuticals to advanced biofuels: Production of isoprenoids in Saccharomyces cerevisiae. Biotechnol. J., 2013, 8(12), 1435-1444.
[http://dx.doi.org/10.1002/biot.201300028] [PMID: 24227704]
[46]
Phulara, S.C.; Chaturvedi, P.; Gupta, P. Isoprenoid-based biofuels: Homologous expression and heterologous expression in prokaryotes. Appl. Environ. Microbiol., 2016, 82(19), 5730-5740.
[http://dx.doi.org/10.1128/AEM.01192-16] [PMID: 27422837]
[47]
Gupta, P.; Phulara, S.C. Biotechnology of terpenoid production from microbial cell factories, 1st; Elsevier Inc., 2021.
[48]
Partow, S.; Siewers, V.; Daviet, L.; Schalk, M.; Nielsen, J. Reconstruction and evaluation of the synthetic bacterial MEP pathway in Saccharomyces cerevisiae. PLoS One, 2012, 7(12)e52498
[http://dx.doi.org/10.1371/journal.pone.0052498] [PMID: 23285068]
[49]
Carlsen, S.; Ajikumar, P.K.; Formenti, L.R.; Zhou, K.; Phon, T.H.; Nielsen, M.L.; Lantz, A.E.; Kielland-Brandt, M.C.; Stephanopoulos, G. Heterologous expression and characterization of bacterial 2-C-methyl-D-erythritol-4-phosphate pathway in Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol., 2013, 97(13), 5753-5769.
[http://dx.doi.org/10.1007/s00253-013-4877-y] [PMID: 23636690]
[50]
Gupta, P.; Phulara, S.C. Metabolic engineering for isoprenoid-based biofuel production. J. Appl. Microbiol., 2015, 119(3), 605-619.
[http://dx.doi.org/10.1111/jam.12871] [PMID: 26095690]
[51]
Lo, T.M.; Teo, W.S.; Ling, H.; Chen, B.; Kang, A.; Chang, M.W. Microbial engineering strategies to improve cell viability for biochemical production. Biotechnol. Adv., 2013, 31(6), 903-914.
[http://dx.doi.org/10.1016/j.biotechadv.2013.02.001] [PMID: 23403071]
[52]
Woolston, B.M.; Edgar, S.; Stephanopoulos, G. Metabolic engineering: Past and future. Annu. Rev. Chem. Biomol. Eng., 2013, 4(1), 259-288.
[http://dx.doi.org/10.1146/annurev-chembioeng-061312-103312] [PMID: 23540289]
[53]
Daletos, G.; Stephanopoulos, G. Protein engineering strategies for microbial production of isoprenoids. In: Metabolic engineering communications; Elsevier B.V, 2020; e00129;
[54]
Liu, H.; Wang, Y.; Tang, Q.; Kong, W.; Chung, W-J.; Lu, T. MEP pathway-mediated isopentenol production in metabolically engineered Escherichia coli. Microb. Cell Fact., 2014, 13(1), 135.
[http://dx.doi.org/10.1186/s12934-014-0135-y] [PMID: 25212876]
[55]
Halfmann, C.; Gu, L.; Zhou, R. Engineering cyanobacteria for the production of a cyclic hydrocarbon fuel from CO2 and H2O. Green Chem., 2014, 16, 3175-3185.
[http://dx.doi.org/10.1039/C3GC42591F]
[56]
Ajikumar, P.K.; Xiao, W-H.; Tyo, K.E.J.; Wang, Y.; Simeon, F.; Leonard, E.; Mucha, O.; Phon, T.H.; Pfeifer, B.; Stephanopoulos, G. Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli. Science, 2010, 330(6000), 70-74.
[http://dx.doi.org/10.1126/science.1191652] [PMID: 20929806]
[57]
Farmer, W.R.; Liao, J.C. Precursor balancing for metabolic engineering of lycopene production in Escherichia coli. Biotechnol. Prog., 2001, 17(1), 57-61.
[http://dx.doi.org/10.1021/bp000137t] [PMID: 11170480]
[58]
Zhao, J.; Li, Q.; Sun, T.; Zhu, X.; Xu, H.; Tang, J.; Zhang, X.; Ma, Y. Engineering central metabolic modules of Escherichia coli for improving β-carotene production. Metab. Eng., 2013, 17(1), 42-50.
[http://dx.doi.org/10.1016/j.ymben.2013.02.002] [PMID: 23500001]
[59]
Sasaki, Y.; Eng, T.; Herbert, R.A.; Trinh, J.; Chen, Y.; Rodriguez, A.; Gladden, J.; Simmons, B.A.; Petzold, C.J.; Mukhopadhyay, A. Engineering Corynebacterium glutamicum to produce the biogasoline isopentenol from plant biomass hydrolysates. Biotechnol. Biofuels, 2019, 12(1), 41.
[http://dx.doi.org/10.1186/s13068-019-1381-3] [PMID: 30858878]
[60]
Shi, J.; George, K.W.; Sun, N.; He, W.; Li, C.; Stavila, V.; Keasling, J.D.; Simmons, B.A.; Lee, T.S.; Singh, S. Impact of pretreatment technologies on saccharification and isopentenol fermentation of mixed lignocellulosic feedstocks. BioEnergy Res., 2015, 8(3), 1004-1013.
[http://dx.doi.org/10.1007/s12155-015-9588-z]
[61]
Wang, S.; Cheng, G.; Dong, J.; Tian, T.; Lee, T.S.; Mukhopadhyay, A.; Simmons, B.A.; Yuan, Q.; Singer, S.W. NaCl enhances Escherichia coli growth and isoprenol production in the presence of imidazolium-based ionic liquids. Bioresour. Technol. Reports, 2019, 6, 1-5.
[http://dx.doi.org/10.1016/j.biteb.2019.01.021]
[62]
Henke, N.A.; Frohwitter, J.; Peters-Wendisch, P.; Wendisch, V.F. Carotenoid production by recombinant Corynebacterium glutamicum: Strain construction, cultivation, extraction, and quantification of carotenoids and terpenes. Microbial carotenoids: Methods and protocols, methods in molecular biology; Barreiro, C.; Barredo, J.-L., Eds.; Springer Science+Business Media, LLC: New York, 2018, 1852, pp. 127-141. Part of Springer Nature.
[63]
Kanamarlapudi, S.L.R.K.; Muddada, S. Application of food-grade microorganisms for addressing deterioration associated with fortification of food with trace metals. Int. J. Food Prop., 2019, 22(1), 1146-1155.
[http://dx.doi.org/10.1080/10942912.2019.1628776]
[64]
Guder, D.G.; Krishna, M.S.R. Isolation and characterization of potential cellulose degrading bacteria from sheep rumen. J. Pure Appl. Microbiol., 2019, 13(3), 1831-1839.
[http://dx.doi.org/10.22207/JPAM.13.3.60]
[65]
Deshmukh, A.N.; Nipanikar-Gokhale, P.; Jain, R. Engineering of Bacillus subtilis for the production of 2,3-butanediol from sugarcane molasses. Appl. Biochem. Biotechnol., 2016, 179(2), 321-331.
[http://dx.doi.org/10.1007/s12010-016-1996-9] [PMID: 26825987]
[66]
Guan, Z.; Xue, D.; Abdallah, I.I.; Dijkshoorn, L.; Setroikromo, R.; Lv, G.; Quax, W.J. Metabolic engineering of Bacillus subtilis for terpenoid production. Appl. Microbiol. Biotechnol., 2015, 99(22), 9395-9406.
[http://dx.doi.org/10.1007/s00253-015-6950-1] [PMID: 26373726]
[67]
Krishna Kanamarlapudi, S.L.R.; Muddada, S. Structural changes of Bacillus subtilis biomass on biosorption of iron (ii) from aqueous solutions: Isotherm and kinetic studies. Pol. J. Microbiol., 2019, 68(4), 549-558.
[http://dx.doi.org/10.33073/pjm-2019-057] [PMID: 31880898]
[68]
Kanamarlapudi, S.L.R.K.; Yamuna, G.; Divya, P.; Muddada, S. Biosorption of fluoride from aqueous solutions using Bacillus subtilis biomass. Asian J. Chem., 2018, 30(2), 427-433.
[http://dx.doi.org/10.14233/ajchem.2018.21082]
[69]
Fall, R.; Copley, S.D. Bacterial sources and sinks of isoprene, a reactive atmospheric hydrocarbon. Environ. Microbiol., 2000, 2(2), 123-130.
[http://dx.doi.org/10.1046/j.1462-2920.2000.00095.x] [PMID: 11220299]
[70]
Song, Y.; Guan, Z.; van Merkerk, R.; Pramastya, H.; Abdallah, I.I.; Setroikromo, R.; Quax, W.J. Production of squalene in Bacillus subtilis by squalene synthase screening and metabolic engineering. J. Agric. Food Chem., 2020, 68(15), 4447-4455.
[http://dx.doi.org/10.1021/acs.jafc.0c00375] [PMID: 32208656]
[71]
Withers, S.T.; Gottlieb, S.S.; Lieu, B.; Newman, J.D.; Keasling, J.D. Identification of isopentenol biosynthetic genes from Bacillus subtilis by a screening method based on isoprenoid precursor toxicity. Appl. Environ. Microbiol., 2007, 73(19), 6277-6283.
[http://dx.doi.org/10.1128/AEM.00861-07] [PMID: 17693564]
[72]
Zheng, Y.; Liu, Q.; Li, L.; Qin, W.; Yang, J.; Zhang, H.; Jiang, X.; Cheng, T.; Liu, W.; Xu, X.; Xian, M. Metabolic engineering of Escherichia coli for high-specificity production of isoprenol and prenol as next generation of biofuels. Biotechnol. Biofuels, 2013, 6(1), 57.
[http://dx.doi.org/10.1186/1754-6834-6-57] [PMID: 23618128]
[73]
Zhou, K.; Zou, R.; Stephanopoulos, G.; Too, H-P. Enhancing solubility of deoxyxylulose phosphate pathway enzymes for microbial isoprenoid production. Microb. Cell Fact., 2012, 11, 148.
[http://dx.doi.org/10.1186/1475-2859-11-148] [PMID: 23148661]
[74]
Xue, D.; Abdallah, I.I.; de Haan, I.E.M.; Sibbald, M.J.J.B.; Quax, W.J. Enhanced C30 carotenoid production in Bacillus subtilis by systematic overexpression of MEP pathway genes. Appl. Microbiol. Biotechnol., 2015, 99(14), 5907-5915.
[http://dx.doi.org/10.1007/s00253-015-6531-3] [PMID: 25851715]
[75]
Dai, L.; Liu, C.; Li, J.; Dong, C.; Yang, J.; Dai, Z.; Zhang, X.; Sun, Y. One-pot synthesis of ginsenoside rh2 and bioactive unnatural ginsenoside by coupling promiscuous glycosyltransferase from Bacillus subtilis 168 to sucrose synthase. J. Agric. Food Chem., 2018, 66(11), 2830-2837.
[http://dx.doi.org/10.1021/acs.jafc.8b00597] [PMID: 29484884]
[76]
Kante, R.K.; Somavarapu, S.; Vemula, S.; Kethineni, C.; Mallu, M.R.; Ronda, S.R. Production of recombinant human asparaginase from Escherichia coli under optimized fermentation conditions: Effect of physicochemical properties on enzyme activity. Biotechnol. Bioprocess Eng.; BBE, 2019, 24(5), 824-832.
[http://dx.doi.org/10.1007/s12257-019-0147-x]
[77]
Managamuri, U.; Vijayalakshmi, M.; Indupalli, M.D.; Ganduri, V.S.R.K.; Rajulapati, S.B.; Poda, S. Improved bioactive metabolite production by Saccharopolyspora halotolerans vsm-2 using response surface methodology and unstructured kinetic modelling. Pharmacogn. J., 2018, 10(5), 833-840.
[http://dx.doi.org/10.5530/pj.2018.5.142]
[78]
Frank, A.; Groll, M. The methylerythritol phosphate pathway to isoprenoids. Chem. Rev., 2017, 117(8), 5675-5703.
[http://dx.doi.org/10.1021/acs.chemrev.6b00537] [PMID: 27995802]
[79]
Zhao, L.; Chang, W.C.; Xiao, Y.; Liu, H.W.; Liu, P. Methylerythritol phosphate pathway of isoprenoid biosynthesis. Annu. Rev. Biochem., 2013, 82(1), 497-530.
[http://dx.doi.org/10.1146/annurev-biochem-052010-100934] [PMID: 23746261]
[80]
Banerjee, A.; Wu, Y.; Banerjee, R.; Li, Y.; Yan, H.; Sharkey, T.D. Feedback inhibition of deoxy-D-xylulose-5-phosphate synthase regulates the methylerythritol 4-phosphate pathway. J. Biol. Chem., 2013, 288(23), 16926-16936.
[http://dx.doi.org/10.1074/jbc.M113.464636] [PMID: 23612965]
[81]
Xue, J.; Ahring, B.K. Enhancing isoprene production by genetic modification of the 1-deoxy-d-xylulose-5-phosphate pathway in Bacillus subtilis. Appl. Environ. Microbiol., 2011, 77(7), 2399-2405.
[http://dx.doi.org/10.1128/AEM.02341-10] [PMID: 21296950]
[82]
Phulara, S.C. Production of isopentenol from engineered B. subtilis and in-vivo study of their antiaging potential; National Institute of Techology Raipur: Chhattisgarh, India, 2019.
[83]
Kudoh, K.; Kubota, G.; Fujii, R.; Kawano, Y.; Ihara, M. Exploration of the 1-deoxy-d-xylulose 5-phosphate synthases suitable for the creation of a robust isoprenoid biosynthesis system. J. Biosci. Bioeng., 2017, 123(3), 300-307.
[http://dx.doi.org/10.1016/j.jbiosc.2016.10.005] [PMID: 27856234]
[84]
Boghigian, B.A.; Armando, J.; Salas, D.; Pfeifer, B.A. Computational identification of gene over-expression targets for metabolic engineering of taxadiene production. Appl. Microbiol. Biotechnol., 2012, 93(5), 2063-2073.
[http://dx.doi.org/10.1007/s00253-011-3725-1] [PMID: 22124721]
[85]
Fujisaki, S.; Hara, H.; Nishimura, Y.; Horiuchi, K.; Nishino, T. Cloning and nucleotide sequence of the ispA gene responsible for farnesyl diphosphate synthase activity in Escherichia coli. J. Biochem., 1990, 108(6), 995-1000.
[http://dx.doi.org/10.1093/oxfordjournals.jbchem.a123327] [PMID: 2089044]
[86]
Han, X.; Ning, W.; Ma, X.; Wang, X.; Zhou, K. Improving protein solubility and activity by introducing small peptide tags designed with machine learning models. Metab. Eng. Commun., 2020, 11e00138
[http://dx.doi.org/10.1016/j.mec.2020.e00138] [PMID: 32642423]
[87]
Nguyen, T.K.M.; Ki, M.R.; Son, R.G.; Pack, S.P. The NT11, a novel fusion tag for enhancing protein expression in Escherichia coli. Appl. Microbiol. Biotechnol., 2019, 103(5), 2205-2216.
[http://dx.doi.org/10.1007/s00253-018-09595-w] [PMID: 30610290]
[88]
Han, X.; Wang, X.; Zhou, K.; Valencia, A. Develop machine learning-based regression predictive models for engineering protein solubility. Bioinformatics, 2019, 35(22), 4640-4646.
[http://dx.doi.org/10.1093/bioinformatics/btz294] [PMID: 31038685]
[89]
Thulasiram, H.V.; Erickson, H.K.; Poulter, C.D. Chimeras of two isoprenoid synthases catalyze all four coupling reactions in isoprenoid biosynthesis. Science, 2007, 316(5821), 73-76.
[http://dx.doi.org/10.1126/science.1137786] [PMID: 17412950]
[90]
Wang, C.; Zhou, J.; Jang, H.J.; Yoon, S.H.; Kim, J.Y.; Lee, S.G.; Choi, E.S.; Kim, S.W. Engineered heterologous FPP synthases-mediated Z,E-FPP synthesis in E. coli. Metab. Eng., 2013, 18, 53-59.
[http://dx.doi.org/10.1016/j.ymben.2013.04.002] [PMID: 23608473]
[91]
Wang, C.; Yoon, S.H.; Jang, H.J.; Chung, Y.R.; Kim, J.Y.; Choi, E.S.; Kim, S.W. Metabolic engineering of Escherichia coli for α-farnesene production. Metab. Eng., 2011, 13(6), 648-655.
[http://dx.doi.org/10.1016/j.ymben.2011.08.001] [PMID: 21907299]
[92]
Garg, S.; Runthala, A.; Kakkar, S. Improved protein model ranking through topological assessment.Computational biology and bioinformatics; CRC Press, 2016, pp. 410-428.
[http://dx.doi.org/10.1201/b20026-24]
[93]
Runthala, A.; Chowdhury, S. Refined template selection and combination algorithm significantly improves template-based modeling accuracy. J. Bioinform. Comput. Biol., 2019, 17(2)1950006
[http://dx.doi.org/10.1142/S0219720019500069] [PMID: 31057073]
[94]
Straathof, A.J.J.; Panke, S.; Schmid, A. The production of fine chemicals by biotransformations.In: Current opinion in biotechnology; Elsevier Ltd, 2002, pp. 548-556.
[95]
Dalby, P.A. Optimising enzyme function by directed evolution.Current opinion in structural biology; Elsevier Ltd, 2003, pp. 500-505.
[96]
Cadwell, R.C.; Joyce, G.F. Randomization of genes by PCR mutagenesis. PCR Methods Appl., 1992, 2(1), 28-33.
[http://dx.doi.org/10.1101/gr.2.1.28] [PMID: 1490172]
[97]
Stemmer, W.P.C. DNA shuffling by random fragmentation and reassembly: In vitro recombination for molecular evolution. Proc. Natl. Acad. Sci. USA, 1994, 91(22), 10747-10751.
[http://dx.doi.org/10.1073/pnas.91.22.10747] [PMID: 7938023]
[98]
Wong, T.S.; Tee, K.L.; Hauer, B.; Schwaneberg, U. Sequence saturation mutagenesis (SeSaM): A novel method for directed evolution. Nucleic Acids Res., 2004, 32(3), e26-e26.
[http://dx.doi.org/10.1093/nar/gnh028] [PMID: 14872057]
[99]
Jiang, X.; Kowalski, J.; Kelly, J.W. Increasing protein stability using a rational approach combining sequence homology and structural alignment: Stabilizing the WW domain. Protein Sci., 2001, 10(7), 1454-1465.
[http://dx.doi.org/10.1110/ps.640101] [PMID: 11420447]
[100]
Chaloupková, R.; Sýkorová, J.; Prokop, Z.; Jesenská, A.; Monincová, M.; Pavlová, M.; Tsuda, M.; Nagata, Y.; Damborský, J. Modification of activity and specificity of haloalkane dehalogenase from Sphingomonas paucimobilis UT26 by engineering of its entrance tunnel. J. Biol. Chem., 2003, 278(52), 52622-52628.
[http://dx.doi.org/10.1074/jbc.M306762200] [PMID: 14525993]
[101]
Morley, K.L.; Kazlauskas, R.J. Improving enzyme properties: When are closer mutations better? Trends Biotechnol., 2005, 23(5), 231-237.
[http://dx.doi.org/10.1016/j.tibtech.2005.03.005] [PMID: 15866000]
[102]
Compiani, M.; Capriotti, E. Computational and theoretical methods for protein folding. Biochemistry, 2013, 52(48), 8601-8624.
[http://dx.doi.org/10.1021/bi4001529] [PMID: 24187909]
[103]
Zamocky, M.; Herzog, C.; Nykyri, L.M.; Koller, F. Site-directed mutagenesis of the lower parts of the major substrate channel of yeast catalase A leads to highly increased peroxidatic activity. FEBS Lett., 1995, 367(3), 241-245.
[http://dx.doi.org/10.1016/0014-5793(95)00568-T] [PMID: 7607315]
[104]
Gerton, J.L.; Ohgi, S.; Olsen, M.; DeRisi, J.; Brown, P.O. Effects of mutations in residues near the active site of human immunodeficiency virus type 1 integrase on specific enzyme-substrate interactions. J. Virol., 1998, 72(6), 5046-5055.
[http://dx.doi.org/10.1128/JVI.72.6.5046-5055.1998] [PMID: 9573274]
[105]
Rosenfeld, L.; Heyne, M.; Shifman, J.M.; Papo, N. Protein engineering by combined computational and in vitro evolution approaches.Trends in biochemical sciences; Elsevier Ltd, 2016, pp. 421-433.
[106]
Lakshmisahitya, S.R.; Peddakasim, U.; Suneetha, P.; Krishna, M.S.R. Morphological, pathological and molecular diversity of colletotrichum capsici inciting fruit rot in chilli (Capsicum annuum L.). Res. J. Biotechnol., 2017, 12(4), 14-21.
[107]
Altschul, S.F.; Madden, T.L.; Schäffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped blast and psi-blast: A new generation of protein database search programs. Nucleic acids research; Oxford University Press, 1997, pp. 3389-3402.
[108]
Finn, R.D.; Clements, J.; Eddy, S.R. HMMER web server: Interactive sequence similarity searching. Nucleic Acids Res., 2011, 39(Web Server issue)(Suppl. 2), W29-37.,
[http://dx.doi.org/10.1093/nar/gkr367] [PMID: 21593126]
[109]
Hayes, R.J.; Bentzien, J.; Ary, M.L.; Hwang, M.Y.; Jacinto, J.M.; Vielmetter, J.; Kundu, A.; Dahiyat, B.I. Combining computational and experimental screening for rapid optimization of protein properties. Proc. Natl. Acad. Sci. USA, 2002, 99(25), 15926-15931.
[http://dx.doi.org/10.1073/pnas.212627499] [PMID: 12446841]
[110]
Satyanarayana, S.D.V.; Krishna, M.S.R.; Pavan, K.P. Exploring natural combination for identification of upregulated nitrogen fixing bacteria specific to chickpea in targeted geography: A physical, biochemical, and in silico approach., Plant Cell Biotechnol. Mol. Biol., 2018, 155-169.,
[111]
Fox, R.J.; Davis, S.C.; Mundorff, E.C.; Newman, L.M.; Gavrilovic, V.; Ma, S.K.; Chung, L.M.; Ching, C.; Tam, S.; Muley, S.; Grate, J.; Gruber, J.; Whitman, J.C.; Sheldon, R.A.; Huisman, G.W. Improving catalytic function by ProSAR-driven enzyme evolution. Nat. Biotechnol., 2007, 25(3), 338-344.
[http://dx.doi.org/10.1038/nbt1286] [PMID: 17322872]
[112]
Yang, K.K.; Wu, Z.; Arnold, F.H. Machine-learning-guided directed evolution for protein engineering.Nature Methods; Nature Publishing Group, 2019, pp. 687-694.
[113]
Amin, N.; Liu, A.D.; Ramer, S.; Aehle, W.; Meijer, D.; Metin, M.; Wong, S.; Gualfetti, P.; Schellenberger, V. Construction of stabilized proteins by combinatorial consensus mutagenesis. Protein Eng. Des. Sel., 2004, 17(11), 787-793.
[http://dx.doi.org/10.1093/protein/gzh091] [PMID: 15574484]
[114]
Lassila, J.K.; Keeffe, J.R.; Oelschlaeger, P.; Mayo, S.L. Computationally designed variants of Escherichia coli chorismate mutase show altered catalytic activity. Protein Eng. Des. Sel., 2005, 18(4), 161-163.
[http://dx.doi.org/10.1093/protein/gzi015] [PMID: 15820980]
[115]
Park, S.; Morley, K.L.; Horsman, G.P.; Holmquist, M.; Hult, K.; Kazlauskas, R.J. Focusing mutations into the P. fluorescens esterase binding site increases enantioselectivity more effectively than distant mutations. Chem. Biol., 2005, 12(1), 45-54.
[http://dx.doi.org/10.1016/j.chembiol.2004.10.012] [PMID: 15664514]
[116]
Borgo, B.; Havranek, J.J. Automated selection of stabilizing mutations in designed and natural proteins. Proc. Natl. Acad. Sci. USA, 2012, 109(5), 1494-1499.
[http://dx.doi.org/10.1073/pnas.1115172109] [PMID: 22307603]
[117]
Wijma, H.J.; Fürst, M.J.L.J.; Janssen, D.B. A computational library design protocol for rapid improvement of protein stability: FRESCO. Methods in molecular biology; Humana Press Inc., 2018, 1685, pp. 69-85..
[118]
Reetz, M.T.; Carballeira, J.D.; Vogel, A. Iterative saturation mutagenesis on the basis of B factors as a strategy for increasing protein thermostability. Angew. Chem. Int. Ed. Engl., 2006, 45(46), 7745-7751.
[http://dx.doi.org/10.1002/anie.200602795] [PMID: 17075931]
[119]
Childers, M.C.; Daggett, V. Insights from molecular dynamics simulations for computational protein design.Molecular systems design and engineering; Royal Society of Chemistry, 2017, pp. 9-33.
[120]
Tizei, P.A.G.; Csibra, E.; Torres, L.; Pinheiro, V.B. Selection platforms for directed evolution in synthetic biology. Biochem. Soc. Trans., 2016, 44(4), 1165-1175.
[http://dx.doi.org/10.1042/BST20160076] [PMID: 27528765]
[121]
Wijma, H.J.; Floor, R.J.; Bjelic, S.; Marrink, S.J.; Baker, D.; Janssen, D.B. Enantioselective enzymes by computational design and in silico screening. Angew. Chem. Int. Ed. Engl., 2015, 54(12), 3726-3730.
[http://dx.doi.org/10.1002/anie.201411415] [PMID: 25651000]
[122]
Allec, S.I.; Sun, Y.; Sun, J.; Chang, C.A.; Wong, B.M. Heterogeneous cpu+gpu-enabled simulations for dftb molecular dynamics of large chemical and biological systems. J. Chem. Theory Comput., 2019, 15(5), 2807-2815.
[http://dx.doi.org/10.1021/acs.jctc.8b01239] [PMID: 30916958]
[123]
Wijma, H.J.; Marrink, S.J.; Janssen, D.B. Computationally efficient and accurate enantioselectivity modeling by clusters of molecular dynamics simulations. J. Chem. Inf. Model., 2014, 54(7), 2079-2092.
[http://dx.doi.org/10.1021/ci500126x] [PMID: 24916632]
[124]
Sun, Z.; Wu, L.; Bocola, M.; Chan, H.C.S.; Lonsdale, R.; Kong, X.D.; Yuan, S.; Zhou, J.; Reetz, M.T. Structural and computational insight into the catalytic mechanism of limonene epoxide hydrolase mutants in stereoselective transformations. J. Am. Chem. Soc., 2018, 140(1), 310-318.
[http://dx.doi.org/10.1021/jacs.7b10278] [PMID: 29232125]
[125]
Yang, B.; Wang, H.; Song, W.; Chen, X.; Liu, J.; Luo, Q.; Liu, L. Engineering of the conformational dynamics of lipase to increase enantioselectivity. ACS Catal., 2017, 7(11), 7593-7599.
[http://dx.doi.org/10.1021/acscatal.7b02404]
[126]
Flores, H.; Ellington, A.D. A modified consensus approach to mutagenesis inverts the cofactor specificity of Bacillus stearothermophilus lactate dehydrogenase. Protein Eng. Des. Sel., 2005, 18(8), 369-377.
[http://dx.doi.org/10.1093/protein/gzi043] [PMID: 16012175]
[127]
Ge, Y.D.; Song, P.; Cao, Z.Y.; Wang, P.; Zhu, G.P. Alteration of coenzyme specificity of malate dehydrogenase from Streptomyces coelicolor A3(2) by site-directed mutagenesis. Genet. Mol. Res., 2014, 13(3), 5758-5766.
[http://dx.doi.org/10.4238/2014.July.29.3] [PMID: 25117334]
[128]
Huang, M.; Lu, J-J.; Huang, M-Q.; Bao, J-L.; Chen, X-P.; Wang, Y-T. Terpenoids: Natural products for cancer therapy. Expert Opin. Investig. Drugs, 2012, 21(12), 1801-1818.
[http://dx.doi.org/10.1517/13543784.2012.727395] [PMID: 23092199]
[129]
Chen, Y.N.; Chen, J.C.; Yin, S.C.; Wang, G.S.; Tsauer, W.; Hsu, S.F.; Hsu, S.L. Effector mechanisms of norcantharidin-induced mitotic arrest and apoptosis in human hepatoma cells. Int. J. Cancer, 2002, 100(2), 158-165.
[http://dx.doi.org/10.1002/ijc.10479] [PMID: 12115564]
[130]
Rasheed, S.A.K.; Efferth, T.; Asangani, I.A.; Allgayer, H. First evidence that the antimalarial drug artesunate inhibits invasion and in vivo metastasis in lung cancer by targeting essential extracellular proteases. Int. J. Cancer, 2010, 127(6), 1475-1485.
[http://dx.doi.org/10.1002/ijc.25315] [PMID: 20232396]
[131]
Ziaei, S.; Halaby, R. Immunosuppressive, anti-inflammatory and anti-cancer properties of triptolide: A mini review. Avicenna J. Phytomed., 2016, 6(2), 149-164.
[http://dx.doi.org/10.22038/ajp.2016.6329] [PMID: 27222828]
[132]
Khan, I.; Khan, F.; Farooqui, A.; Ansari, I.A. Andrographolide exhibits anticancer potential against human colon cancer cells by inducing cell cycle arrest and programmed cell death via augmentation of intracellular reactive oxygen species level. Nutr. Cancer, 2018, 70(5), 787-803.
[http://dx.doi.org/10.1080/01635581.2018.1470649] [PMID: 29781715]
[133]
Jada, S.R.; Subur, G.S.; Matthews, C.; Hamzah, A.S.; Lajis, N.H.; Saad, M.S.; Stevens, M.F.G.; Stanslas, J. Semisynthesis and in vitro anticancer activities of andrographolide analogues. Phytochemistry, 2007, 68(6), 904-912.
[http://dx.doi.org/10.1016/j.phytochem.2006.11.031] [PMID: 17234223]
[134]
Liu, G.; Chu, H. Andrographolide inhibits proliferation and induces cell cycle arrest and apoptosis in human melanoma cells. Oncol. Lett., 2018, 15(4), 5301-5305.
[http://dx.doi.org/10.3892/ol.2018.7941] [PMID: 29552170]
[135]
Allegra, A.; Tonacci, A.; Pioggia, G.; Musolino, C.; Gangemi, S. Anticancer activity of Rosmarinus officinalis L.: Mechanisms of action and therapeutic potentials. Nutrients, 2020, 12(6), 1739.
[http://dx.doi.org/10.3390/nu12061739] [PMID: 32532056]
[136]
Ullah, A.; Munir, S.; Mabkhot, Y.; Badshah, S.L. Bioactivity profile of the diterpene isosteviol and its derivatives. Molecules, 2019, 24(4), 678.
[http://dx.doi.org/10.3390/molecules24040678] [PMID: 30769819]
[137]
Xu, L-N.; Zhao, N.; Chen, J-Y.; Ye, P-P.; Nan, X-W.; Zhou, H-H.; Jiang, Q-W.; Yang, Y.; Huang, J-R.; Yuan, M-L.; Xing, Z-H.; Wei, M-N.; Li, Y.; Shi, Z.; Yan, X.J. Celastrol inhibits the growth of ovarian cancer cells in vitro and in vivo. Front. Oncol., 2019, 9(JAN), 2.
[http://dx.doi.org/10.3389/fonc.2019.00002] [PMID: 30746340]
[138]
Henderson, S.; Magu, B.; Rasmussen, C.; Lancaster, S.; Kerksick, C.; Smith, P.; Melton, C.; Cowan, P.; Greenwood, M.; Earnest, C.; Almada, A.; Milnor, P.; Magrans, T.; Bowden, R.; Ounpraseuth, S.; Thomas, A.; Kreider, R.B. Effects of coleus forskohlii supplementation on body composition and hematological profiles in mildly overweight women. J. Int. Soc. Sports Nutr., 2005, 2(2), 54-62.
[http://dx.doi.org/10.1186/1550-2783-2-2-54] [PMID: 18500958]
[139]
Park, J.Y.; Kim, J.H.; Kim, Y.M.; Jeong, H.J.; Kim, D.W.; Park, K.H.; Kwon, H.J.; Park, S.J.; Lee, W.S.; Ryu, Y.B. Tanshinones as selective and slow-binding inhibitors for SARS-CoV cysteine proteases. Bioorg. Med. Chem., 2012, 20(19), 5928-5935.
[http://dx.doi.org/10.1016/j.bmc.2012.07.038] [PMID: 22884354]
[140]
Orhan, I.E.; Senol Deniz, F.S. Natural products as potential leads against coronaviruses: Could they be encouraging structural models against sars-cov-2?Natural products and bioprospecting; Springer, 2020, pp. 171-186.
[141]
Koehn, F.E.; Sarath, G.P.; Neil, D.N.; Cross, S.S. Halitunal, an unusual diterpene aldehyde from the marine alga Halimeda tuna. Tetrahedron Lett., 1991, 32(2), 169-172.
[http://dx.doi.org/10.1016/0040-4039(91)80845-W] [PMID: 32287435]
[142]
Ryu, Y.B.; Jeong, H.J.; Kim, J.H.; Kim, Y.M.; Park, J.Y.; Kim, D.; Nguyen, T.T.; Park, S.J.; Chang, J.S.; Park, K.H.; Rho, M.C.; Lee, W.S. Biflavonoids from Torreya nucifera displaying SARS-CoV 3CL(pro) inhibition. Bioorg. Med. Chem., 2010, 18(22), 7940-7947.
[http://dx.doi.org/10.1016/j.bmc.2010.09.035] [PMID: 20934345]
[143]
Cheng, P-W.; Ng, L-T.; Chiang, L-C.; Lin, C-C. Antiviral effects of saikosaponins on human coronavirus 229E in vitro. Clin. Exp. Pharmacol. Physiol., 2006, 33(7), 612-616.
[http://dx.doi.org/10.1111/j.1440-1681.2006.04415.x] [PMID: 16789928]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy