Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Mini-Review Article

Blends Containing Amphiphilic Biopolymers and their Compatibility Behavior

Author(s): Cristian Castro*, Ligia Gargallo and Deodato Radić

Volume 19, Issue 3, 2022

Published on: 12 July, 2021

Page: [319 - 330] Pages: 12

DOI: 10.2174/1570193X18666210712112453

Price: $65

Abstract

Abstract: This mini-review deals with the miscibility behaviour of two biopolymers, chitosan and alginate. It is well known that the miscibility in multifunctional polymer blends is favoured due to specific interactions, which origin a negative heat of mixing. Particular interest is focused on functionalized polymers because they are the most suitable way to obtain interacting polymers, producing a single-phase material. Due to the polyfunctionality of chitosan (CS) and other biopolymers, they can be taken into account as a basis of a strongly interacting polymer. They would allow obtaining compatible polymeric materials. For this reason, blends containing CS with different vinyl polymers have been studied. The most significant polymeric blends with these natural polymers will be analyzed in this review. Chitosan is obtained from the biopolymer chitin through sequential processes of demineralization, deproteinization and deacetylation. The native chitin is obtained by direct separation from the marine crustaceans’ shell, which is abundant on the sea coasts. Some classic results that relate to the polymeric blends containing amphiphilic polymers will be discussed. Another biopolymer of the coast is Sodium Alginate (SA). Alginate also allows the formation of compatible polymer blends. Results in this regard will also be analyzed in this review.

Keywords: Amphiphilic biopolymers, compatibility behavior, biopolymers, chitosan, alginate, negative mixing heat.

Graphical Abstract
[1]
Urzúa, M.; Gargallo, L.; Radic, D. Blends containing amphiphilic polymers II. Poly (N-alkylitaconamic acids) with poly (4-Vinylpyridine) and poly(2-hydroxypropyl methacrylate). J. Macromol. Sci. Phys, 1999, B39, 143-154.
[2]
Kulich, D.M.; Kelley, P.D.; Pace, J.E. Concise Encyclopedia of Polymer Science and Engineering; John Wiley and Sons: New York, 1990, p. 27.
[3]
Paul, D.R.; Newman, S. Polymer Blends; Academic Press: New York, 1978.
[http://dx.doi.org/10.1016/B978-0-12-546802-2.50012-9]
[4]
Olabisi, O.; Robeson, L.M.; Shaw, T.H. Polymer-Polymer Miscibility; Academic Press: New York, 1978.
[5]
Paul, D.R.; Barlow, J.W.; Heskkula, H. Encyclopedia of Polymer Science and Engineering2nd ed; Mark, H.F.; Kroschwitz, J.I.; Menges, G.; Bikales, N.; Overberger, C.G., Eds.; John Wiley and Sons: New York, 1988, pp. 450;
[6]
Lau, Ch.; Zheng, S.; Zhong, Z.; Mi, Y. Miscibility, intermolecular interactions, and thermal behavior of poly(hydroxyether of bisphenol A)/poly(ethyloxazoline) blends. Macromolecules, 1998, 31, 7291.
[http://dx.doi.org/10.1021/ma980714i]
[7]
Xiang, M.; Jiang, M.; Zhang, Y.; Wu, C. Intermacromolecular complexation due to specific interactions 5. The hydrogen-bonding complex of poly(styrene-co-4-vinyl phenol) and poly(ethyl methacrylate). Macromolecules, 1997, 30, 5339.
[http://dx.doi.org/10.1021/ma970186v]
[8]
Lee, J.Ch.; Litt, M.H.; Rogers, Ch.E. Miscibility behaviors of (alkylsulfonyl)methyl-substituted poly(oxyalkylene) blends. Macromolecules, 1998, 31, 4232.
[http://dx.doi.org/10.1021/ma971813j]
[9]
Opazo, A.; Gargallo, L.; Radic, D. Blends of poly(2-hydroxyethyl methacrylate)/(styrene-co-dialkyl itaconates) and poly(N-vinyl-2-pyrrolidone)/(styrene-co-dialkyl itaconates). Polym. Bull., 1996, 36, 511.
[http://dx.doi.org/10.1007/BF00315071]
[10]
Urzua, M.; Opazo, A.; Gargallo, L.; Radic, D. Poly(N-alkylitaconamic acids)/poly(N-vinyl-2-pyrrolidone) blends. Polym. Bull., 1998, 40, 63.
[http://dx.doi.org/10.1007/s002890050224]
[11]
Coleman, M.M.; Graf, J.F.; Painter, P.C. Specific Interactions and the Miscibility of Polymer Blends; Technomic: Lancaster, PA, 1991, pp. 1-145.
[12]
Utracki, L.A. Polymer Alloys and Blends: Thermodynamics and Rheology; Hanser: Munich, 1989.
[13]
Castro, C.; Gargallo, L.; Leiva, A.; Radic´, D. Interaction in blends containing chitosan with functionalized polymers. J. Appl. Polym. Sci., 2005, 97, 1953-1960.
[http://dx.doi.org/10.1002/app.21979]
[14]
Kim, S.S.; Kim, S.H.; Lee, Y.M. Preparation, characterization and properties of β-chitin and N-acetylated β-chitin. J. Polym. Sci., B, Polym. Phys., 1996, 34, 2367-2374.
[http://dx.doi.org/10.1002/(SICI)1099-0488(199610)34:14<2367:AID-POLB6>3.0.CO;2-T]
[15]
Cowie, J.M.G.; Elexpuru, E.M.; McEwen, I.J. Miscibility of solution-chlorinated polyethylene with Poly(a-methyl styrene-co-acrylonitrile). J. Polym. Sci., B, Polym. Phys., 1991, 29, 407-412.
[http://dx.doi.org/10.1002/polb.1991.090290403]
[16]
Jaworska, M.; Sakurai, K.; Gaudon, P.; Guibal, E. Influence of chitosan characteristics on polymer properties. I: Crystallographic properties. Polym. Int., 2003, 52, 198-205.
[http://dx.doi.org/10.1002/pi.1159]
[17]
Brannock, G.R.; Barlow, J.W.; Paul, D.R. Blends of styrene/maleic anhydride copolymers with poly(methylmethacrylate)s. J. Polym. Sci., Part B: Polym. Physics, 1991, 29, 413.
[18]
Viciosa, M.T.; Dionísio, M.; Mano, J.F. Dielectric characterization of neutralized and nonneutralized chitosan upon drying. Biopolymers, 2006, 81(3), 149-159.
[http://dx.doi.org/10.1002/bip.20378] [PMID: 16187301]
[19]
Rinaudo, M.; Milas, M.; Le Dung, P. Characterization of chitosan. Influence of ionic strength and degree of acetylation on chain expansion. Int. J. Biol. Macromol., 1993, 15(5), 281-285.
[http://dx.doi.org/10.1016/0141-8130(93)90027-J] [PMID: 8251442]
[20]
Brugnerotto, J.; Desbrières, J.; Roberts, G.; Rinaudo, M. Charac-terization of chitosan by steric exclusion chromatography. Polymer, 2001, 42(25), 09921-09927.
[http://dx.doi.org/10.1016/S0032-3861(01)00557-2]
[21]
Nogales, A.; Esquerra, T.A.; Rueda, D.R.; Martinez, F.; Retuer, J. Influence of water on dielectric behaviour of chitosan films. Colloid Polym. Sci., 1997, 275, 419-425.
[http://dx.doi.org/10.1007/s003960050099]
[22]
Rao, V.; Johns, J. Thermal behaviour of chitosan/natural rubber latex blends TG and DSC analysis. J. Therm. Anal. Calorim., 2008, 92, 801-806.
[http://dx.doi.org/10.1007/s10973-007-8854-5]
[23]
Berth, G.; Datzenberg, H. The degree of acetylation of chitosan and its effect on the chain conformation in an aqueous solution. Carbohydr. Polym., 2002, 47, 39-51.
[http://dx.doi.org/10.1016/S0144-8617(00)00343-X]
[24]
Paul, D.R.; Barlow, J.W.; Keskkula, H. Mark-Bikales Overberger-Menges: Encyclopedia of Polymer Science and Engineering, 2nd ed; John Wiley: New York, 1988, Vol. 12, p. 399.
[25]
Majeti, N.V. Kumar, Ravi. A review of chitin and chitosan applications. React. Funct. Polym., 2000, 46(1), 1-27.
[http://dx.doi.org/10.1016/S1381-5148(00)00038-9]
[26]
Rinaudo, M. Chitin and chitosan: Properties and applications. Prog. Polym. Sci., 2006, 31(7), 603-632.
[http://dx.doi.org/10.1016/j.progpolymsci.2006.06.001]
[27]
Ilium, L. Chitosan and its use as a pharmaceutical excipient. Pharm. Res., 1998, 15(9), 1326-1331.
[PMID: 9755881]
[28]
Muzzarelli, R.A.; Muzzarelli, C. Chitosan chemistry: Relevance to the biomedical sciences. Adv. Polym. Sci., 2005, 186, 151-209.
[http://dx.doi.org/10.1007/b136820]
[29]
Muzzarelli, R.; Baldassarre, V.; Conti, F.; Ferrara, P.; Biagini, G.; Gazzanelli, G.; Vasi, V. Biological activity of chitosan: ultra-structural study. Biomaterials, 1988, 9(3), 247-252.
[http://dx.doi.org/10.1016/0142-9612(88)90092-0] [PMID: 3408796]
[30]
Muzzarelli, R.A. Chitin in Nature and Technology; Springer-Verlag: New York, 1986.
[31]
Ramirez, O.; Bonardd, S.; Saldías, C.; Radic´, D.; Leiva, Á. Biobased chitosan nanocomposite films containing gold nanoparticles: Obtainment, characterization, and catalytic activity assessment. ACS Appl. Mater. Interfaces, 2017, 9(19), 16561-16570.
[http://dx.doi.org/10.1021/acsami.7b04422] [PMID: 28459535]
[32]
Gordon, M.; Taylor, J. Ideal copolymers and the second‐order transitions of synthetic rubbers. I. non‐crystalline copolymers. J. Appl. Chem. (Lond.), 1952, 2, 493.
[http://dx.doi.org/10.1002/jctb.5010020901]
[33]
Couchman, P.R. The composition‐dependent glass transition: Relations between temperature pressure, and composition. Polym. Eng. Sci., 1984, 24, 135.
[http://dx.doi.org/10.1002/pen.760240211]
[34]
Kwei, T.K. The composition‐dependent glass transition: Relations between temperature pressure, and composition. J. Polym. Sci. Polym. Lett., 1984, 22, 307.
[http://dx.doi.org/10.1002/pol.1984.130220603]
[35]
Osman, Z. Infrared and conductivity studies on blends of PMMA/PEO based polymer electrolytes. Ionics, 2005, 11, 431-435.
[http://dx.doi.org/10.1007/BF02430261]
[36]
Sandoval, C.; Castro, C.; Gargallo, L.; Radic, D.; Freire, J. Specific interactions in blends containing chitosan and functionalized polymers. Molecular dynamics simulations. Polymer (Guildf.), 2005, 46, 10437-10442.
[http://dx.doi.org/10.1016/j.polymer.2005.08.059]
[37]
Castro, C.; Gargallo, L.; Radic, D.; Kortaberría, G.; Mondragón, I. blends containing chitosan and poly (sodium-4-styrene sulphonate). compatibility behavior. Carbohydr. Polym., 2011, 83, 81-87.
[http://dx.doi.org/10.1016/j.carbpol.2010.07.027]
[38]
Castro, C.; Gargallo, L.; Radic´, D.; Mondragón, I.; Kortaberría, G. Blends of chitosan and poly (sodium-4-styrene sulphonate). Compatibilization by lysine and glutamic acid. Carbohydr. Polym., 2010, 82, 795-801.
[http://dx.doi.org/10.1016/j.carbpol.2010.05.055]
[39]
Belorgey, G.; Prud’homme, R. Miscibility of polycaprolactone/chlorinated polyethylene blends. J. Polym. Sci., Polym. Phys. Ed., 1982, 20, 191-203.
[http://dx.doi.org/10.1002/pol.1982.180200203]
[40]
Gargallo, L.; Radic, D. Interaction of polyvinylpyrrolidone with small cosolutes in aqueous and non-aqueous media. Polymer (Guildf.), 1983, 24, 91-94.
[http://dx.doi.org/10.1016/0032-3861(83)90087-3]
[41]
Pérez-Dorado, A.; Fernández-Piérola, I.; Baselga, J.; Gargallo, L.; Radic´, D. Complexation of poly(monobenzylitaconate) and poly (n-vinyl-2-pyrrolidone) in dilute solution. Makromol. Chem., 1989, 190, 2975-2981.
[http://dx.doi.org/10.1002/macp.1989.021901128]
[42]
Pérez-Dorado, A.; Fernández-Piérola, I.; Baselga, J.; Gargallo, L.; Radic´, D. Complexation of poly(monobenzyl itaconate) and poly(N-vinyl-2-pyrrolidone) in dilute solution, 2. Influence of variables involved in sample preparation. Makromol. Chem., 1990, 191, 2905-2915.
[http://dx.doi.org/10.1002/macp.1990.021911207]
[43]
Radic´, D.; Opazo, A.; Guerrero, X.; Gargallo, L. Blends of poly (vinyl pyrrolidone)/poly(monoitaconates). I. Interpolymer complex formation. Int. J. Polym. Mater., 1992, 18, 19-29.
[http://dx.doi.org/10.1080/00914039208034812]
[44]
Urzua, M.; Gargallo, L.; Radic´, D. Blends containing amphiphilic polymers V. blends of N-1-alkylitaconamic acids-co-styrene co-polymers with poly(N-vinyl-2-pyrrolidone), poly (2-vinyl pyridine) poly (4-vinyl pyridine), poly (2-hydroxypropyl methacrylate) and poly (4-vinyl phenol). J. Appl. Polym. Sci., 2006, 2512-2519.
[45]
Opazo, A.; Gargallo, L.; Radic´, D. Blends of poly (vinylpyrrolidone)/Poly(monoitaconates). 2. The coefficient of linear expansion. Makromol. Chem. Macromol. Symp., 1994, pp. 289-296.
[46]
Opazo, A.; Gargallo, L.; Radic´, D. Blends of poly (2-hydroxyethyl methacrylate)/(styrene-co-dialkyl itaconates) and poly(N-vinyl-2-pyrrolidone)/(Styrene-co-dialkyl itaconates). Polym. Bull., 1996, 36, 511-516.
[http://dx.doi.org/10.1007/BF00315071]
[47]
Villar, V.; Opazo, A.; Ríos, H.; Clavijo, E.; Gargallo, L.; Radic´, D. Poly(ethylene-co-maleic acid)-poly(4-vinyl pyridine) blends. Interpolymer complex formation. Int. J. Polym. Anal. Charact., 1998, 4, 333-343.
[http://dx.doi.org/10.1080/10236669808009721]
[48]
Gargallo, L.; Gatica, N.; Radic´, D. Blends of poly (mono-alkylitaconates), poly(vinyl pyridines), and model molecules. Int. J. Polym. Mater., 1994, 27, 107-115.
[http://dx.doi.org/10.1080/00914039408038298]
[49]
Wu, Z.; Wu, J.; Zhang, R.; Yuan, S.; Lu, Q.; Yu, Y. Colloid properties of hydrophobic modified alginate: Surface tension, ζ-potential, viscosity and emulsification. Carbohydr. Polym., 2018, 181, 56-62.
[http://dx.doi.org/10.1016/j.carbpol.2017.10.052] [PMID: 29254007]
[50]
Pawar, S.N.; Edgar, K.P. Alginate derivatization: A review of chemistry, properties and applications. J. Biomaterials, 2012, 33, 3279-3305.
[http://dx.doi.org/10.1016/j.biomaterials.2012.01.007]
[51]
Wang, Y.; Peng, W.; Liu, X.; Zhu, M.; Sun, T.; Peng, Q.; Zeng, Y.; Feng, B.; Zhi, W.; Weng, J.; Wang, J. Study of bilineage differentiation of human-bone-marrow-derived mesenchymal stem cells in oxidized sodium alginate/N-succinyl chitosan hydrogels and synergistic effects of RGD modification and low-intensity pulsed ultrasound. Acta Biomater., 2014, 10(6), 2518-2528.
[http://dx.doi.org/10.1016/j.actbio.2013.12.052] [PMID: 24394634]
[52]
Lee, K.Y.; Mooney, D.J. Alginate: properties and biomedical applications. Prog. Polym. Sci., 2012, 37(1), 106-126.,
[http://dx.doi.org/10.1016/j.progpolymsci.2011.06.003] [PMID: 22125349]
[53]
Castro, C.; Gargallo, L.; Kortaberria, G.; Dibona, L.; Radic´, D.; Fuentealba, D. Study of the sodium alginate/p-cyclodextrin medium and its influence on the fluorescence of methyl tryptophanate. XII Argentine Symposium of Polymers, Córdoba-ArgentinaOctober 1-3, 2017

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy