Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Mini-Review Article

The Importance of Flavonoids and Phytochemicals of Medicinal Plants with Antiviral Activities

Author(s): Mohamad Hesam Shahrajabian*, Wenli Sun and Qi Cheng

Volume 19, Issue 3, 2022

Published on: 07 July, 2021

Page: [293 - 318] Pages: 26

DOI: 10.2174/1570178618666210707161025

Abstract

Abstract: In this mini-review article, we have mentioned the key roles of some of the most important herbal plants medicine containing flavonoids and phytochemicals with antiviral activities. All relevant information was searched by using the terms, influenza, phytochemicals, SARS, SARSCov- 2, flavonoids, and traditional medicinal plants uses, from reliable databases, such as PubMed, Science Direct, and Google Scholar. The most important medicinal herbs which contain flavonoids with antiviral activities are Limonium densiflorum, Oroxylum indicum, Tribulus terrestris L., Paulownia tomentosa Steud., Allophylus africanus, Houttuynia cordata, Moslea Herba, Mosla scabra, Scutellaria baicalensis, Berries, Genus Psoralea, Sophora tonkinensis, Trollius chinensis, Tilia cordata, Hippophae rhamnoides L. (Seabuckthorn), Paulownia tomentosa steud, and C. swietenia. Phytochemicals are chemicals of plant origin produced by plants through primary or secondary metabolism. The most important medicinal plants, which contain phytochemicals with antiviral activities are Blue honeysuckle (Lonicera caerulea L.), Forsythia suspense, Ligustrum lucidum, Radix Paeoniae Alba (Bai Shao), Banlangen (Radix Isatidis), Lysiphyllum strychnifolium, Phellinus baumii, Mesona chinensis, Sanguinaria Canadensis, Dodonaea viscosa, Isatis indigotica, Pelargonium sidoides, Entada Africana Guill., Pomegranate (Punica granatum), Goldenseal (Hydrastis canadensis), Lychee fruit extract, Lycoris radiate, Cistus incanus, Chaenomeles sinensis Koehne (Chinese quince), Geranium sanguineum L., and Tea polyphenols. Natural products from traditional herbal medicines, especially traditional Chinese and Persian medicines, have been found to exert antiviral impacts against influenza and human coronaviruses. The natural plant-derived compounds that have been used for treating various diseases are flavonoids and phytochemicals.

Keywords: Influenza, phytochemicals, SARS, SARS-CoV-2, flavonoids, traditional medicinal plants.

Graphical Abstract
[1]
Soleymani, A.; Shahrajabian, M.H. Response of different cultivars of fennel (Foeniculum vulgare) to irrigation and planting dates in Isfahan, Iran. Res. Crops, 2012, 13(2), 656-660.
[2]
Soleymani, A.; Shahrajabian, M.H. Changes in germination and seedling growth of different cultivars of cumin to drought stress. Cercet. Agron. Mold., 2018, 1(173), 91-100.
[http://dx.doi.org/10.2478/cerce-2018-0008]
[3]
Shahrajabian, M.H.; Sun, W.; Cheng, Q. A review of astragalus species as foodstuffs, dietary supplements, a traditional Chinese medicine and a part of modern pharmaceutical science. Appl. Ecol. Environ. Res., 2019, 17(6), 13371-13382.
[http://dx.doi.org/10.15666/aeer/1706_1337113382]
[4]
Shahrajabian, M.H.; Sun, W.; Zandi, P.; Cheng, Q. A review of Chrysanthemum, the Eastern queen in traditional Chinese medicine with healing power in modern pharmaceutical sciences. Appl. Ecol. Environ. Res., 2019, 17(6), 13355-13369.
[http://dx.doi.org/10.15666/aeer/1706_1335513369]
[5]
Sun, W.; Shahrajabian, M.H.; Cheng, Q. The insight and survey on medicinal properties and nutritive components of shallot. J. Med. Plants Res., 2019, 13(18), 452-457.
[http://dx.doi.org/10.5897/JMPR2019.6836]
[6]
Sun, W.; Shahrajabian, M.H.; Cheng, Q. Anise (Pimpinella anisum l.), a dominant spice and traditional medicinal herb for both food and medicinal purposes. Cogent Biol., 2019, 5(1673688), 1-25.
[http://dx.doi.org/10.1080/23312025.2019.1673688]
[7]
Khoshkharam, M.; Shahrajabian, M.H.; Sun, W.; Cheng, Q. Survey the allelopathic effects of tobacco (Nicotiana tabacum L.) on corn (Zea mays L.) growth and germination. Cercet. Agron. Mold., 2019, 4(180), 332-340.
[8]
Khoshkharam, M.; Shahrajabian, M.H.; Sun, W.; Cheng, Q. Sumac (Rhus coriaria L.) a spice and medicinal plant- a mini review. Amaz J Plant Res, 2020, 4(2), 517-523.
[http://dx.doi.org/10.26545/ajpr.2020.b00061x]
[9]
Shahrajabian, M.H.; Sun, W.; Cheng, Q. Chinese star anise (Illicum verum) and pyrethrum (Chrysanthemum cinerariifolium) as natural alternatives for organic farming and health care- A review. Aust. J. Crop Sci., 2020, 14(03), 517-523.
[http://dx.doi.org/10.21475/ajcs.20.14.03.p2209]
[10]
Shahrajabian, M.H.; Sun, W.; Cheng, Q. Chinese onion (Allium Chinense), an evergreen vegetable: A brief review. Polish J Agron, 2020, 42, 40-45.
[11]
Shahrajabian, M.H.; Sun, W.; Cheng, Q. Traditional herbal medicine for the prevention and treatment of cold and flu in the autumn of 2020, overlapped with COVID-19. Nat. Prod. Commun., 2020, 15(8), 1-10.
[http://dx.doi.org/10.1177/1934578X20951431]
[12]
Sun, W.; Shahrajabian, M.H.; Khoshkharam, M.; Cheng, Q. Adaptation of acupuncture and traditional Chinese herbal medicines models because of climate change. J. Stress Physiol. Biochem., 2020, 16(1), 85-90.
[13]
Seleem, D.; Pardi, V.; Murata, R.M. Review of flavonoids: A diverse group of natural compounds with anti-Candida albicans activity in vitro. Arch. Oral Biol., 2017, 76, 76-83.
[http://dx.doi.org/10.1016/j.archoralbio.2016.08.030] [PMID: 27659902]
[14]
Alseekh, S.; Perez de Souza, L.; Benina, M.; Fernie, A.R. The style and substance of plant flavonoid decoration; towards defining both structure and function. Phytochemistry, 2020, 174112347
[http://dx.doi.org/10.1016/j.phytochem.2020.112347] [PMID: 32203741]
[15]
Lee, N-K.; Lee, J-H.; Lim, S-M.; Lee, K.A.; Kim, Y.B.; Chang, P-S.; Paik, H-D. Short communication: Antiviral activity of subcritical water extract of Brassica juncea against influenza virus A/H1N1 in nonfat milk. J. Dairy Sci., 2014, 97(9), 5383-5386.
[http://dx.doi.org/10.3168/jds.2014-8016] [PMID: 25022686]
[16]
Pantev, A.; Ivancheva, S.; Staneva, L.; Serkedjieva, J. Biologically active constituents of a polyphenol extract from Geranium sanguineum L. with anti-influenza activity. Z. Natforsch. C J. Biosci., 2006, 61(7-8), 508-516.
[http://dx.doi.org/10.1515/znc-2006-7-807] [PMID: 16989309]
[17]
Serkedjieva, J.; Gegova, G.; Mladenov, K. Protective efficacy of an aerosol preparation, obtained from Geranium sanguineum L., in experimental influenza infection. Pharmazie, 2008, 63(2), 160-163.
[18]
Zakay-Rones, Z.; Thom, E.; Wollan, T.; Wadstein, J. Randomized study of the efficacy and safety of oral elderberry extract in the treatment of influenza A and B virus infections. J. Int. Med. Res., 2004, 32(2), 132-140.
[http://dx.doi.org/10.1177/147323000403200205] [PMID: 15080016]
[19]
Li, S.Y.; Chen, C.; Zhang, H.Q.; Guo, H.Y.; Wang, H.; Wang, L.; Zhang, X.; Hua, S.N.; Yu, J.; Xiao, P.G.; Li, R.S.; Tan, X. Identification of natural compounds with antiviral activities against SARS-associated coronavirus. Antiviral Res., 2005, 67(1), 18-23.
[http://dx.doi.org/10.1016/j.antiviral.2005.02.007] [PMID: 15885816]
[20]
Peralta, M.A.; da Silva, M.A.; Ortega, M.G.; Cabrera, J.L.; Paraje, M.G. Antifungal activity of a prenylated flavonoid from Dalea elegans against Candida albicans biofilms. Phytomedicine, 2015, 22(11), 975-980.
[http://dx.doi.org/10.1016/j.phymed.2015.07.003] [PMID: 26407939]
[21]
Jin, Y-S. Recent advances in natural antifungal flavonoids and their derivatives. Bioorg. Med. Chem. Lett., 2019, 29(19)126589
[http://dx.doi.org/10.1016/j.bmcl.2019.07.048] [PMID: 31427220]
[22]
Shahrajabian, M.H.; Sun, W.; Cheng, Q. Clinical aspects and health benefits of ginger (Zingiber officinale) in both traditional Chinese medicine and modern industry. Acta Agr. Scand. Sect. B, 2019, 69(6), 546-556.
[http://dx.doi.org/10.1080/09064710.2019.1606930]
[23]
Shahrajabian, M.H.; Sun, W.; Shen, H.; Cheng, Q. Chinese herbal medicine for SARS and SARS-CoV-2 treatment and prevention, encouraging using herbal medicine for COVID-19 outbreak. Acta Agr. Scand. Sect. B, 2020, 70(5), 437-443.
[http://dx.doi.org/10.1080/09064710.2020.1763448]
[24]
Tarahovsky, Y.S.; Kim, Y.A.; Yagolnik, E.A.; Muzafarov, E.N. Flavonoid-membrane interactions: Involvement of flavonoid-metal complexes in raft signaling. Biochim. Biophys. Acta, 2014, 1838(5), 1235-1246.
[http://dx.doi.org/10.1016/j.bbamem.2014.01.021] [PMID: 24472512]
[25]
Moulishankar, A.; Lakshmanan, K. Data on molecular docking of naturally occurring flavonoids with biologically important targets. Data Brief, 2020, 29105243
[http://dx.doi.org/10.1016/j.dib.2020.105243] [PMID: 32072001]
[26]
Kim, H.P.; Son, K.H.; Chang, H.W.; Kang, S.S. Anti-inflammatory plant flavonoids and cellular action mechanisms. J. Pharmacol. Sci., 2004, 96(3), 229-245.
[http://dx.doi.org/10.1254/jphs.CRJ04003X] [PMID: 15539763]
[27]
Yuan, Y.; Qi, L.; Yang, J. A Scutellaria baicalensis R2R3-MYB gene, SbMYB8, regulates flavonoid biosynthesis and improves drought stress tolerance in transgenic tobacco. Plant Cell Tissue Org, 2015, 120, 961-972.
[http://dx.doi.org/10.1007/s11240-014-0650-x]
[28]
Wen, W.; Alseekh, S.; Fernie, A.R. Conservation and diversification of flavonoid metabolism in the plant kingdom. Curr. Opin. Plant Biol., 2020, 55, 100-108.
[http://dx.doi.org/10.1016/j.pbi.2020.04.004] [PMID: 32422532]
[29]
Gil, E.S.; Couto, R.O. Flavonoid electrochemistry: A review on the electroanalytical applications. Bras. J. Pharmacogn., 2013, 23(3), 542-558.
[http://dx.doi.org/10.1590/S0102-695X2013005000031]
[30]
Yener, I.; Kocakaya, S.O.; Ertas, A.; Erhan, B.; Kaplaner, E.; Oral, E.V.; Yilmaz-Ozden, T.; Yilmaz, M.A.; Ozturk, M.; Kolak, U. Selective in vitro and in silico enzymes inhibitory activities of phenolic acids and flavonoids of food plants: Relations with oxidative stress. Food Chem., 2020, 327127045
[http://dx.doi.org/10.1016/j.foodchem.2020.127045] [PMID: 32464460]
[31]
Khalid, M.; Rahman, S.U.; Bilal, M.; Huang, D-F. Role of flavonoids in plant interactions with the environment and against human pathogens- A review. J. Integr. Agric., 2019, 18(1), 211-230.
[http://dx.doi.org/10.1016/S2095-3119(19)62555-4]
[32]
Yan, W.; Wu, T.H.Y.; Leung, S.S.Y.; To, K.K.W. Flavonoids potentiated anticancer activity of cisplatin in non-small cell lung cancer cells in vitro by inhibiting histone deacetylases. Life Sci., 2020, 258118211
[http://dx.doi.org/10.1016/j.lfs.2020.118211] [PMID: 32768576]
[33]
Yang, J.; Zhou, T.; Jiang, Y.; Yang, B. Substrate specificity change of a flavonoid prenyltransferase AhPT1 induced by metal ion. Int. J. Biol. Macromol., 2020, 153, 264-275.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.03.005] [PMID: 32142844]
[34]
Wang, T-Y.; Li, Q.; Bi, K-S. Bioactive flavonoids in medicinal plants: Structure, activity and biological fate. Asian J. Pharm. Sci., 2018, 13(1), 12-23.
[http://dx.doi.org/10.1016/j.ajps.2017.08.004] [PMID: 32104374]
[35]
Day, A.J.; DuPont, M.S.; Ridley, S.; Rhodes, M.; Rhodes, M.J.C.; Morgan, M.R.A.; Williamson, G. Deglycosylation of flavonoid and isoflavonoid glycosides by human small intestine and liver β-glucosidase activity. FEBS Lett., 1998, 436(1), 71-75.
[http://dx.doi.org/10.1016/S0014-5793(98)01101-6] [PMID: 9771896]
[36]
Hoensch, H.P.; Oertel, R. The value of flavonoids for the human nutrition: Short review and perspectives. Clin Nutr Exp, 2015, 3, 8-14.
[http://dx.doi.org/10.1016/j.yclnex.2015.09.001]
[37]
Ramos, S. Effects of dietary flavonoids on apoptotic pathways related to cancer chemoprevention. J. Nutr. Biochem., 2007, 18(7), 427-442.
[http://dx.doi.org/10.1016/j.jnutbio.2006.11.004] [PMID: 17321735]
[38]
Isoda, H.; Motojima, H.; Onaga, S.; Samet, I.; Villareal, M.O.; Han, J. Analysis of the erythroid differentiation effect of flavonoid apigenin on K562 human chronic leukemia cells. Chem. Biol. Interact., 2014, 220, 269-277.
[http://dx.doi.org/10.1016/j.cbi.2014.07.006] [PMID: 25058688]
[39]
Yang, L-L.; Yang, L.; Yang, X.; Zhang, T.; Lan, Y-M.; Zhao, Y.; Han, M.; Yang, L-M. Drought stress induces biosynthesis of flavonoids in leaves and saikosaponins in roots of Bupleurum chinense DC. Phytochemistry, 2020, 177112434
[http://dx.doi.org/10.1016/j.phytochem.2020.112434] [PMID: 32544729]
[40]
Olagaray, K.E.; Bradford, B.J. Plant flavonoids to improve productivity of ruminants- A review. Anim. Feed Sci. Technol., 2019, 251, 21-36.
[http://dx.doi.org/10.1016/j.anifeedsci.2019.02.004]
[41]
Khan, H.; Jawad, M.; Kamal, M.A.; Baldi, A.; Xiao, J.; Nabavi, S.M.; Daglia, M. Evidence and prospective of plant derived flavonoids as antiplatelet agents: Strong candidates to be drugs of future. Food Chem. Toxicol., 2018, 119, 355-367.
[http://dx.doi.org/10.1016/j.fct.2018.02.014] [PMID: 29448091]
[42]
Wan, L.; Jiang, J-G. Protective effects of plant-derived flavonoids on hepatic injury. J. Funct. Foods, 2018, 44, 283-291.
[http://dx.doi.org/10.1016/j.jff.2018.03.015]
[43]
Agati, G.; Azzarello, E.; Pollastri, S.; Tattini, M. Flavonoids as antioxidants in plants: location and functional significance. Plant Sci., 2012, 196, 67-76.
[http://dx.doi.org/10.1016/j.plantsci.2012.07.014] [PMID: 23017900]
[44]
Hernández, I.; Alegre, L.; Van Breusegem, F.; Munné-Bosch, S. How relevant are flavonoids as antioxidants in plants? Trends Plant Sci., 2009, 14(3), 125-132.
[http://dx.doi.org/10.1016/j.tplants.2008.12.003] [PMID: 19230744]
[45]
Owona, B.A.; Abia, W.A.; Moundipa, P.F. Natural compounds flavonoids as modulators of inflammasomes in chronic diseases. Int. Immunopharmacol., 2020, 84106498
[http://dx.doi.org/10.1016/j.intimp.2020.106498] [PMID: 32304996]
[46]
Slimestad, R.; Fossen, T.; Brede, C. Flavonoids and other phenolics in herbs commonly used in Norwegian commercial kitchens. Food Chem., 2020, 309125678
[http://dx.doi.org/10.1016/j.foodchem.2019.125678] [PMID: 31670125]
[47]
Biharee, A.; Sharma, A.; Kumar, A.; Jaitak, V. Antimicrobial flavonoids as a potential substitute for overcoming antimicrobial resistance. Fitoterapia, 2020, 146104720
[http://dx.doi.org/10.1016/j.fitote.2020.104720] [PMID: 32910994]
[48]
Bafor, E.E.; Kupittayanant, S. Medicinal plants and their agents that affect uterine contractility. Curr Opin Physiol, 2020, 13, 20-26.
[http://dx.doi.org/10.1016/j.cophys.2019.09.004]
[49]
Babu, P.V.A.; Liu, D.; Gilbert, E.R. Recent advances in understanding the anti-diabetic actions of dietary flavonoids. J. Nutr. Biochem., 2013, 24(11), 1777-1789.
[http://dx.doi.org/10.1016/j.jnutbio.2013.06.003] [PMID: 24029069]
[50]
Ghorbani, A.; Rashidi, R.; Shafiee-Nick, R. Flavonoids for preserving pancreatic beta cell survival and function: A mechanistic review. Biomed. Pharmacother., 2019, 111, 947-957.
[http://dx.doi.org/10.1016/j.biopha.2018.12.127] [PMID: 30841474]
[51]
Tavsan, Z.; Kayali, H.A. Flavonoids showed anticancer effects on the ovarian cancer cells: Involvement of reactive oxygen species, apoptosis, cell cycle and invasion. Biomed. Pharmacother., 2019, 116109004
[http://dx.doi.org/10.1016/j.biopha.2019.109004] [PMID: 31128404]
[52]
Stankovic, M.S.; Petrovic, M.; Godjevac, D.; Stevanovic, Z.D. Screening inland halophytes from the central Balkan for their antioxidant activity in relation to total phenolic compounds and flavonoids: Are there any prospective medicinal plants? J. Arid Environ., 2015, 120, 26-32.
[http://dx.doi.org/10.1016/j.jaridenv.2015.04.008]
[53]
He, J.; Ning, C.; Wang, Y.; Ma, T.; Huang, H.; Ge, Y.; Liu, J.; Jiang, Y. Natural plant flavonoid apigenin directly disrupts Hsp90/Cdc37 complex and inhibits pancreatic cancer cell growth and migration. J. Funct. Foods, 2015, 18, 10-21.
[http://dx.doi.org/10.1016/j.jff.2015.06.052]
[54]
Hayamizu, K.; Nonaka, M.; Noma, T.; Sasaguri, T.; Morimoto, S. Direct cardiotonic action of quercetin, a plant flavonoid, through mechanism independent of its anti-oxidative action. Biophys. J., 2015, 108(2), 292a.
[http://dx.doi.org/10.1016/j.bpj.2014.11.1591]
[55]
Imran, M.; Rauf, A.; Abu-Izneid, T.; Nadeem, M.; Shariati, M.A.; Khan, I.A.; Imran, A.; Orhan, I.E.; Rizwan, M.; Atif, M.; Gondal, T.A.; Mubarak, M.S. Luteolin, a flavonoid, as an anticancer agent: A review. Biomed. Pharmacother., 2019, 112108612
[http://dx.doi.org/10.1016/j.biopha.2019.108612] [PMID: 30798142]
[56]
Panat, N.A.; Maurya, D.K.; Ghaskadbi, S.S.; Sandur, S.K. Troxerutin, a plant flavonoid, protects cells against oxidative stress-induced cell death through radical scavenging mechanism. Food Chem., 2016, 194, 32-45.
[http://dx.doi.org/10.1016/j.foodchem.2015.07.078] [PMID: 26471524]
[57]
Araújo, J.R.; Gonçalves, P.; Martel, F. Chemopreventive effect of dietary polyphenols in colorectal cancer cell lines. Nutr. Res., 2011, 31(2), 77-87.
[http://dx.doi.org/10.1016/j.nutres.2011.01.006] [PMID: 21419311]
[58]
Rodrigues, A.M.G. Marcilio, Fdos.S.; Frazão Muzitano, M.; Giraldi-Guimarães, A. Therapeutic potential of treatment with the flavonoid rutin after cortical focal ischemia in rats. Brain Res., 2013, 1503, 53-61.
[http://dx.doi.org/10.1016/j.brainres.2013.01.039] [PMID: 23370003]
[59]
Pei, R.; Liu, X.; Bolling, B. Flavonoids and gut health. Curr. Opin. Biotechnol., 2020, 61, 153-159.
[http://dx.doi.org/10.1016/j.copbio.2019.12.018] [PMID: 31954357]
[60]
Żyżyńska-Granica, B.; Gierlikowska, B.; Parzonko, A.; Kiss, A.K.; Granica, S. The bioactivity of flavonoid glucuronides and free aglycones in the context of their absorption, II phase metabolism and deconjugation at the inflammation site. Food Chem. Toxicol., 2020, 135110929
[http://dx.doi.org/10.1016/j.fct.2019.110929] [PMID: 31678262]
[61]
Neri-Numa, I.A.; Cazarin, C.B.B.; Ruiz, A.L.T.G.; Paulino, B.N.; Molina, G.; Pastore, G.M. Targeting flavonoids on modulation of metabolic syndrome. J. Funct. Foods, 2020, 73104132
[http://dx.doi.org/10.1016/j.jff.2020.104132]
[62]
Tan, A.; Morton, K.R.; Lee, J.W.; Hartman, R.; Lee, G. Adverse childhood experiences and depressive symptoms: Protective effects of dietary flavonoids. J. Psychosom. Res., 2020, 131109957
[http://dx.doi.org/10.1016/j.jpsychores.2020.109957] [PMID: 32088426]
[63]
Gutiérrez-Venegas, G.; Gómez-Mora, J.A.; Meraz-Rodríguez, M.A.; Flores-Sánchez, M.A.; Ortiz-Miranda, L.F. Effect of flavonoids on antimicrobial activity of microorganisms present in dental plaque. Heliyon, 2019, 5(12)e03013
[http://dx.doi.org/10.1016/j.heliyon.2019.e03013] [PMID: 31886429]
[64]
Maaliki, D.; Shaito, A.A.; Pintus, G.; El-Yazbi, A.; Eid, A.H. Flavonoids in hypertension: A brief review of the underlying mechanisms. Curr. Opin. Pharmacol., 2019, 45, 57-65.
[http://dx.doi.org/10.1016/j.coph.2019.04.014] [PMID: 31102958]
[65]
Li, Z.; Ngojeh, G.; DeWitt, P.; Zheng, Z.; Chen, M.; Lainhart, B.; Li, V.; Felpo, P. Synthesis of a library of glycosylated flavonols. Tetrahedron Lett., 2008, 49(51), 7243-7245.
[http://dx.doi.org/10.1016/j.tetlet.2008.10.032] [PMID: 32287439]
[66]
Zhang, T.; Chen, D. Anticomplementary principles of a Chinese multiherb remedy for the treatment and prevention of SARS. J. Ethnopharmacol., 2008, 117(2), 351-361.
[http://dx.doi.org/10.1016/j.jep.2008.02.012] [PMID: 18400428]
[67]
Sithisarn, P.; Michaelis, M.; Schubert-Zsilavecz, M.; Cinatl, J. Jr Differential antiviral and anti-inflammatory mechanisms of the flavonoids biochanin A and baicalein in H5N1 influenza A virus-infected cells. Antiviral Res., 2013, 97(1), 41-48.
[http://dx.doi.org/10.1016/j.antiviral.2012.10.004] [PMID: 23098745]
[68]
Sun, Z.Z.; Dou, J.; Xu, Z.P.; Guo, Q.L.; Zhou, A. A novel inhibitory mechanism of baicalein on influenza A/FM1/1/47 (H1N1) virus: Interference with mid-late mRNA synthesis in cell culture. Chin. J. Nat. Med., 2012, 10(6), 415-420.
[69]
Ding, Y.; Dou, J.; Teng, Z.; Yu, J.; Wang, T.; Lu, N.; Wang, H.; Zhou, C. Antiviral activity of baicalin against influenza A (H1N1/H3N2) virus in cell culture and in mice and its inhibition of neuraminidase. Arch. Virol., 2014, 159(12), 3269-3278.
[http://dx.doi.org/10.1007/s00705-014-2192-2] [PMID: 25078390]
[70]
Yu, M-S.; Lee, J.; Lee, J.M.; Kim, Y.; Chin, Y-W.; Jee, J.G.; Keum, Y-S.; Jeong, Y-J. Identification of myricetin and scutellarein as novel chemical inhibitors of the SARS coronavirus helicase, nsP13. Bioorg. Med. Chem. Lett., 2012, 22(12), 4049-4054.
[http://dx.doi.org/10.1016/j.bmcl.2012.04.081] [PMID: 22578462]
[71]
Russo, M.; Moccia, S.; Spagnuolo, C.; Tedesco, I.; Russo, G.L. Roles of flavonoids against coronavirus infection. Chem. Biol. Interact., 2020, 328109211
[http://dx.doi.org/10.1016/j.cbi.2020.109211] [PMID: 32735799]
[72]
Akher, F.B.; Farrokhzadeh, A.; Ramharack, P.; Shunmugam, L.; Van Heerden, F.R.; Soliman, M.E.S. Discovery of novel natural flavonoids as potent antiviral candidates against hepatitis C virus NS5B polymerase. Med. Hypotheses, 2019, 132109359
[http://dx.doi.org/10.1016/j.mehy.2019.109359] [PMID: 31466018]
[73]
Lani, R.; Hassandarvish, P.; Shu, M.H.; Phoon, W.H.; Chu, J.J.H.; Higgs, S.; Vanlandingham, D.; Abu Bakar, S.; Zandi, K. Antiviral activity of selected flavonoids against Chikungunya virus. Antiviral Res., 2016, 133, 50-61.
[http://dx.doi.org/10.1016/j.antiviral.2016.07.009] [PMID: 27460167]
[74]
Seo, D.J.; Jeon, S.B.; Oh, H.; Lee, B-H.; Lee, S-Y.; Oh, S.H.; Jung, J.Y.; Choi, C. Comparison of the antiviral activity of flavonoids against murine norovirus and feline calicivirus. Food Control, 2016, 60, 25-30.
[http://dx.doi.org/10.1016/j.foodcont.2015.07.023]
[75]
Carvalho, O.V.; Botelho, C.V.; Ferreira, C.G.; Ferreira, H.C.; Santos, M.R.; Diaz, M.A.; Oliveira, T.T.; Soares-Martins, J.A.; Almeida, M.R.; Silva, A., Jr In vitro inhibition of canine distemper virus by flavonoids and phenolic acids: Implications of structural differences for antiviral design. Res. Vet. Sci., 2013, 95(2), 717-724.
[http://dx.doi.org/10.1016/j.rvsc.2013.04.013] [PMID: 23664014]
[76]
Mohan, S.; Nandhakumar, L. Role of various flavonoids: Hypotheses on novel approach to treat diabetes. J. Med. Hypotheses Idea, 2015, 8, 1-6.
[77]
Burkard, M.; Leischner, C.; Lauer, U.M.; Busch, C.; Venturelli, S.; Frank, J. Dietary flavonoids and modulation of natural killer cells: Implications in malignant and viral diseases. J. Nutr. Biochem., 2017, 46, 1-12.
[http://dx.doi.org/10.1016/j.jnutbio.2017.01.006] [PMID: 28182964]
[78]
Janbaz, K.H.; Saeed, S.A.; Gilani, A.H. Studies on the protective effects of caffeic acid and quercetin on chemical-induced hepatotoxicity in rodents. Phytomedicine, 2004, 11(5), 424-430.
[http://dx.doi.org/10.1016/j.phymed.2003.05.002] [PMID: 15330498]
[79]
Gupta, A.; Sheth, N.R.; Pandey, S.; Yadav, J.S.; Joshi, S.V. Screening of flavonoids rich fractions of three Indian medicinal plants used for the management of liver diseases. Rev. Bras. Farmacogn., 2015, 25, 485-490.
[http://dx.doi.org/10.1016/j.bjp.2015.06.010]
[80]
Farhadi, N.; Babaei, K.; Farsaraei, S.; Moghaddam, M.; Pirbalouti, A.G. Changes in essential oil compositions, total phenol, flavonoids and antioxidant capacity of Achillea millefolium at different growth stages. Ind. Crops Prod., 2020, 152112570
[http://dx.doi.org/10.1016/j.indcrop.2020.112570]
[81]
Mariswamy, Y.; Gnaraj, W.E.; Antonisamy, J.M. Chromatographic fingerprint analysis on flavonoids constituents of the medicinally important plant Aerva lanata L. by HPTLC technique. Asian Pac. J. Trop. Biomed., 2011, 1(1), S8-S12.
[http://dx.doi.org/10.1016/S2221-1691(11)60112-3]
[82]
Vasconcelos, J.N.C.; Brito, A.L.; Pinheiro, A.L.; Pinto, D.I.J.C.E.C.; Almeida, J.R.G.D.S.; Soares, T.L.; Santana, J.R.F.D. Stimulation of 6-benzylaminopurine and meta-topolin-induced in vitro shoot organogenesis and production of flavonoids of Amburana cearensis (Allemao A.C. Smith). Biocatal. Agric. Biotechnol., 2019, 22101408
[http://dx.doi.org/10.1016/j.bcab.2019.101408]
[83]
Hernandez-Bolio, G.I.; Torres-Tapia, L.W.; Moo-Puc, R.; Peraza-Sanchez, S.R. Antigiardial activity of flavonoids from leaves of Aphelandra scabra. Rev. Vras. Farmacogn., 2015, 25, 233-237.
[http://dx.doi.org/10.1016/j.bjp.2015.04.004]
[84]
Baraldi, R.; Isacchi, B.; Predieri, S.; Marconi, G.; Vincieri, F.F.; Bilia, A.R. Distribution of artemisinin and bioactive flavonoids from Artemisia annua L. during plant growth. Biochem. Syst. Ecol., 2008, 36(5-6), 340-348.
[http://dx.doi.org/10.1016/j.bse.2007.11.002]
[85]
Apaza Ticona, L.; Bermejo, P.; Guerra, J.A.; Abad, M.J.; Beltrán, M.; Martín Lázaro, R.; Alcamí, J.; Bedoya, L.M. Ethanolic extract of Artemisia campestris subsp. glutinosa (Besser) Batt. inhibits HIV-1 replication in vitro through the activity of terpenes and flavonoids on viral entry and NF-κB pathway. J. Ethnopharmacol., 2020, 263113163
[http://dx.doi.org/10.1016/j.jep.2020.113163] [PMID: 32758575]
[86]
Taulavuori, K.; Pyysalo, A.; Taulavuori, E.; Julkunen-Tiitto, R. Responses of phenolic acid and flavonoid synthesis to blue and blue-violet light depends on plant species. Environ. Exp. Bot., 2018, 150, 183-187.
[http://dx.doi.org/10.1016/j.envexpbot.2018.03.016]
[87]
Lan, M-Y.; Li, H-M.; Tao, G.; Lin, J.; Lu, M-W.; Yan, R-A.; Huang, J-Q. Effects of four bamboo derived flavonoids on advanced glycation end products formation in vitro. J. Funct. Foods, 2020, 71103976
[http://dx.doi.org/10.1016/j.jff.2020.103976]
[88]
Al Amri, F.S.; Hossain, M.A. Comparison of total phenols, flavonoids and antioxidant potential of local and imported ripe bananas. Egyptian J. Basic Appl. Sci., 2018, 5, 245-251.
[http://dx.doi.org/10.1016/j.ejbas.2018.09.002]
[89]
Zeid, A.H.A.; Farag, M.A.; Hamed, M.A.A.; Kandil, Z.A.Z.; El-Akad, R.H.; El-Rafie, H.M. Flavonoid chemical composition and antidiabetic potential of Brachychiton acerifolius leaves extract. Asian Pac. J. Trop. Biomed., 2017, 7(5), 389-396.
[http://dx.doi.org/10.1016/j.apjtb.2017.01.009]
[90]
Julianti, T.; De Mieri, M.; Zimmermann, S.; Ebrahimi, S.N.; Kaiser, M.; Neuburger, M.; Raith, M.; Brun, R.; Hamburger, M. HPLC-based activity profiling for antiplasmodial compounds in the traditional Indonesian medicinal plant Carica papaya L. J. Ethnopharmacol., 2014, 155(1), 426-434.
[http://dx.doi.org/10.1016/j.jep.2014.05.050] [PMID: 24892830]
[91]
Nugroho, A.; Heryani, H.; Choi, J.S.; Park, H-J. Identification and quantification of flavonoids in Carica papaya leaf and peroxynitrite-scavenging activity. Asian Pac. J. Trop. Biomed., 2017, 7(3), 208-213.
[http://dx.doi.org/10.1016/j.apjtb.2016.12.009]
[92]
Vijayalakshmi, A.; Geetha, M. Anti-psoriatic activity of flavonoids from Cassia tora leaves using the rat ultraviolet B ray photodermatitis model. Rev. Bras. Farmacogn., 2014, 24, 322-329.
[http://dx.doi.org/10.1016/j.bjp.2014.07.010]
[93]
Jarial, R.; Shard, A.; Thakur, S.; Sakinah, M.; Zularisam, A.W.; Rezania, S.; Kanwar, S.S.; Singh, L. Characterization of flavonoids from fern Cheilanthes tenuifolia and evaluation of antioxidant, antimicrobial and anticancer activities. J King Saud Univ Sci, 2018, 30, 425-432.
[http://dx.doi.org/10.1016/j.jksus.2017.04.007]
[94]
Hao, Q.; Saito, Y.; Matsuo, Y.; Li, H-Z.; Tanaka, T. Chalcane-stilbene conjugates and oligomeric flavonoids from Chinese Dragon’s Blood produced from Dracaena cochinchinensis. Phytochemistry, 2015, 119, 76-82.
[http://dx.doi.org/10.1016/j.phytochem.2015.09.009] [PMID: 26452504]
[95]
Lang, G-Z.; Li, C-J.; Gaohu, T-Y.; Li, C.; Ma, J.; Yang, J-Z.; Zhou, T-T.; Yuan, Y-H.; Ye, F.; Wei, J-H.; Zhang, D-M. Bioactive flavonoid dimers from Chinese dragon’s blood, the red resin of Dracaena cochinchinensis. Bioorg. Chem., 2020, 97103659
[http://dx.doi.org/10.1016/j.bioorg.2020.103659] [PMID: 32078940]
[96]
Yadavalli, R.; Peasari, J.R.; Mamindla, P. Praveenkumar, Mounika S, Ganugapati J. Phytochemical screening and in silico studies of flavonoids from Chlorella pyrenoidosa. Inform. Med. Unlocked, 2018, 10, 89-99.
[http://dx.doi.org/10.1016/j.imu.2017.12.009]
[97]
Kumkarnjana, S.; Suttisri, R.; Nimmannit, U.; Koobkokkruad, T.; Pattamadilok, C.; Vardhanabhuti, N. Anti-adipogenic effect of flavonoids from Chromolaena odorata leaves in 3T3-L1 adipocytes. J. Integr. Med., 2018, 16(6), 427-434.
[http://dx.doi.org/10.1016/j.joim.2018.10.002] [PMID: 30352773]
[98]
Ma, Q.; Jiang, J-G.; Yuan, X.; Qiu, K.; Zhu, W. Comparative antitumor and anti-inflammatory effects of flavonoids, saponins, polysaccharides, essential oil, coumarin and alkaloids from Cirsium japonicum DC. Food Chem. Toxicol., 2019, 125, 422-429.
[http://dx.doi.org/10.1016/j.fct.2019.01.020] [PMID: 30703393]
[99]
Kim, D-S.; Lim, S-B. Kinetic study of subcritical water extraction of flavonoids from Citrus unshiu peel. Separ. Purif. Tech., 2020, 250117259
[http://dx.doi.org/10.1016/j.seppur.2020.117259]
[100]
Uddin, M.J.; Cicek, S.S.; Willer, J.; Shulha, O.; Abdalla, M.A.; Sonnichsen, F.; Girreser, U.; Zidorn, C. Phenylpropanoid and flavonoid glycosides from the leaves of Clerodendrum infortunatum (Lamiaceae). Biochem. Syst. Ecol., 2020, 92104131
[http://dx.doi.org/10.1016/j.bse.2020.104131]
[101]
Makoi, J.H.J.R.; Belane, A.K.; Chimphango, S.B.M.; Dakora, F.D. Seed flavonoids and anthocyanins as markers of enhanced plant defence in nodulated cowpea (Vigna unguiculata L. Walp.). Field Crops Res., 2010, 118(1), 21-27.
[http://dx.doi.org/10.1016/j.fcr.2010.03.012]
[102]
Gan, L.; Ji, J.; Wang, L.; Li, Q-Y.; Zhang, C-F.; Wang, C-Z.; Yuan, C-S. Identification of the metabolites in normal and AA rat plasma, urine and feces after oral administration of Daphne genkwa flavonoids by LC-Q-TOF-MS spectrometry. J. Pharm. Biomed. Anal., 2020, 177112856
[http://dx.doi.org/10.1016/j.jpba.2019.112856] [PMID: 31521020]
[103]
Sun, Y-W.; Bao, Y.; Yu, H.; Chen, Q-J.; Lu, F.; Zhai, S.; Zhang, C-F.; Li, F.; Wang, C-Z.; Yuan, C-S. Anti-rheumatoid arthritis effects of flavonoids from Daphne genkwa. Int. Immunopharmacol., 2020, 83106384
[http://dx.doi.org/10.1016/j.intimp.2020.106384] [PMID: 32199350]
[104]
Mohotti, S.; Rajendran, S.; Muhammad, T.; Strömstedt, A.A.; Adhikari, A.; Burman, R.; de Silva, E.D.; Göransson, U.; Hettiarachchi, C.M.; Gunasekera, S. Screening for bioactive secondary metabolites in Sri Lankan medicinal plants by microfractionation and targeted isolation of antimicrobial flavonoids from Derris scandens. J. Ethnopharmacol., 2020, 246112158
[http://dx.doi.org/10.1016/j.jep.2019.112158] [PMID: 31421182]
[105]
Patle, T.K.; Shrivas, K.; Kurrey, R.; Upadhyay, S.; Jangde, R.; Chauhan, R. Phytochemical screening and determination of phenolics and flavonoids in Dillenia pentagyna using UV-vis and FTIR spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 242118717
[http://dx.doi.org/10.1016/j.saa.2020.118717] [PMID: 32745936]
[106]
Simpson, B.S.; Claudie, D.J.; Smith, N.M.; Gerber, J.P.; McKinnon, R.A.; Semple, S.J. Flavonoids from the leaves and stems of Dodonaea polyandra: A Northern Kaanju medicinal plant. Phytochemistry, 2011, 72(14-15), 1883-1888.
[http://dx.doi.org/10.1016/j.phytochem.2011.05.006] [PMID: 21641623]
[107]
Dufall, K.G.; Ngadjui, B.T.; Simeon, K.F.; Abegaz, B.M.; Croft, K.D. Antioxidant activity of prenylated flavonoids from the West African medicinal plant Dorstenia mannii. J. Ethnopharmacol., 2003, 87(1), 67-72.
[http://dx.doi.org/10.1016/S0378-8741(03)00108-9 PMID: 12787956]
[108]
Fahmy, N.M.; Al-Sayed, E.; El-Shazly, M.; Singab, A.N. Comprehensive review on flavonoids biological activities of Erythrina plant species. Ind. Crops Prod., 2018, 123, 500-538.
[http://dx.doi.org/10.1016/j.indcrop.2018.06.028]
[109]
Raman, V.; Budel, J.M.; Zhao, J.; Bae, J-Y.; Avula, B.; Osman, A.G.; Ali, Z.; Khan, I.A. Microscopic characterization and HPTLC of the leaves, stems and roots of Fadogia agrestis – an African fold medicinal plant. Rev. Bras. Farmacogn., 2018, 28, 631-639.
[http://dx.doi.org/10.1016/j.bjp.2018.07.006]
[110]
Sandabe, U.K.; Onyeyili, P.A.; Chibuzo, G.A. Phytochemical screening and effect of aqueous extract of Ficus sycomorus L. (Moraceae) stembark on muscular activity in laboratory animals. J. Ethnopharmacol., 2006, 103(3), 481-483.
[http://dx.doi.org/10.1016/j.jep.2005.08.025] [PMID: 16243463]
[111]
Al Matani, S.K.; Al Wahaibi, R.N.S.; Hossain, M.A. Total flavonoids content and antimicrobial activity of crude extract from leaves of Ficus sycomorus native to Sultanate of Oman. Karbala Int. J. Modern Sci., 2015, 1, 166-171.
[http://dx.doi.org/10.1016/j.kijoms.2015.11.007]
[112]
Li, N.; Zhang, P.; Wu, H.; Wang, J.; Liu, F.; Wang, W. Natural flavonoids function as chemopreventive agents from Gancao (Glycyrrhiza inflata Batal). J. Funct. Foods, 2015, 19, 563-574.
[http://dx.doi.org/10.1016/j.jff.2015.09.045]
[113]
Cushnie, T.P.; Lamb, A.J. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents, 2005, 26(5), 343-356.
[http://dx.doi.org/10.1016/j.ijantimicag.2005.09.002] [PMID: 16323269]
[114]
van Beek, T.A.; Montoro, P. Chemical analysis and quality control of Ginkgo biloba leaves, extracts, and phytopharmaceuticals. J. Chromatogr. A, 2009, 1216(11), 2002-2032.
[http://dx.doi.org/10.1016/j.chroma.2009.01.013] [PMID: 19195661]
[115]
Sati, P.; Dhyani, P.; Bhatt, I.D.; Pandey, A. Ginkgo biloba flavonoid glycosides in antimicrobial perspective with reference to extraction method. J. Tradit. Complement. Med., 2018, 9(1), 15-23.
[http://dx.doi.org/10.1016/j.jtcme.2017.10.003] [PMID: 30671362]
[116]
Ye, J.; Cheng, S.; Zhou, X.; Chen, Z.; Kim, S.U.; Tan, J.; Zheng, J.; Xu, F.; Zhang, W.; Liao, Y.; Zhu, Y. A global survey of full-length transcriptome of Ginkgo biloba reveals transcript variants involved in flavonoid biosynthesis. Ind. Crops Prod., 2019, 139111547
[http://dx.doi.org/10.1016/j.indcrop.2019.111547]
[117]
Guo, J.; Zhou, X.; Wang, T.; Wang, G.; Cao, F. Regulation of flavonoid metabolism in ginkgo leaves in response to different day-night temperature combinations. Plant Physiol. Biochem., 2020, 147, 133-140.
[http://dx.doi.org/10.1016/j.plaphy.2019.12.009] [PMID: 31862579]
[118]
Wu, D.; Feng, J.; Lai, M.; Ouyang, J.; Liao, D.; Yu, W.; Wang, G.; Cao, F.; Jacobs, D.F.; Zeng, S. Combined application of bud and leaf growth fertilizer improves leaf flavonoids yield of Ginkgo biloba. Ind. Crops Prod., 2020, 150112379
[http://dx.doi.org/10.1016/j.indcrop.2020.112379]
[119]
Jiang, B.; Song, J.; Jin, Y. A flavonoid monomer tricin in Gramineous plants: Metabolism, bio/chemosynthesis, biological properties, and toxicology. Food Chem., 2020, 320126617
[http://dx.doi.org/10.1016/j.foodchem.2020.126617] [PMID: 32247167]
[120]
Adebiyi, O.E.; Olayemi, F.O.; Ning-Hua, T.; Guang-Zhi, Z. In vitro antioxidant activity, total phenolic and flavonoids contents of ethanol extract of stem and leaf of Grewia carpinifolia. Beni-Seuf Univ. J. Appl. Sci. (Faisalabad), 2017, 6, 10-14.
[http://dx.doi.org/10.1016/j.bjbas.2016.12.003]
[121]
Zhu, X.; Ouyang, W.; Lan, Y.; Xiao, H.; Tang, L.; Liu, G.; Feng, K.; Zhang, L.; Song, M.; Cao, Y. Anti-hyperglycemic and liver protective effects of flavonoids from Psidium guajava L. (guava) leaf in diabetic mice. Food Biosci., 2020, 35100574
[http://dx.doi.org/10.1016/j.fbio.2020.100574]
[122]
Rengarajan, S.; Melanathuru, V.; Govindasamy, C.; Chinnadurai, V.; Elsadek, M.F. Antioxidant activity of flavonoid compounds isolated from the petals of Hibiscus rosa sinensis. J. King Saud Univ. Sci., 2020, 32(3), 2236-2242.
[http://dx.doi.org/10.1016/j.jksus.2020.02.028]
[123]
Li, R.; Wang, Q.; Zhao, M.; Yang, P.; Hu, X.; Ouyang, D. Flavonoid glycosides from seeds of Hippophae rhamnoides subsp. Sinensis with α-glucosidase inhibition activity. Fitoterapia, 2019, 137104248
[http://dx.doi.org/10.1016/j.fitote.2019.104248] [PMID: 31247218]
[124]
Yang, L.; He, J. Traditional uses, phytochemistry, pharmacology and toxicological aspects of the genus Hosta (Liliaceae): A comprehensive review. J. Ethnopharmacol., 2021, 265113323
[http://dx.doi.org/10.1016/j.jep.2020.113323] [PMID: 32871235]
[125]
Ibrahim, S.; Al-Ahdal, A.; Khedr, A.; Mohamed, G. Antioxidant α-amylase inhibitors flavonoids from Iris germanica rhizomes. Rev. Bras. Farmacogn., 2017, 27, 170-174.
[http://dx.doi.org/10.1016/j.bjp.2016.10.001]
[126]
Sekkoum, K.; Belboukhari, N.; Cheriti, A. New flavonoids from bioactive extract of Algerian medicinal plant Launeae arborescens. Asian Pac. J. Trop. Biomed., 2014, 4(4), 267-271.
[http://dx.doi.org/10.12980/APJTB.4.2014C708] [PMID: 25182549]
[127]
Liu, J.; Peng, C.; Zhou, Q-M.; Guo, L.; Liu, Z-H.; Xiong, L. Alkaloids and flavonoid glycosides from the aerial parts of Leonurus japonicus and their opposite effects on uterine smooth muscle. Phytochemistry, 2018, 145, 128-136.
[http://dx.doi.org/10.1016/j.phytochem.2017.11.003] [PMID: 29127939]
[128]
Arias, J.; Mejia, J.; Cordoba, Y.; Martinez, J.R.; Stashenko, E.; dell Vale, J.M. Optimization of flavonoids extraction from Lippia graveolens and Lippia origanoides chemotypes with ethanol-modified supercritical CO2 after steam distillation. Ind. Crops Prod., 2020, 146112170
[http://dx.doi.org/10.1016/j.indcrop.2020.112170]
[129]
Ge, L.; Li, J.; Wan, H.; Zhang, K.; Wu, W.; Zou, X.; Wu, S.; Zhou, B.; Tian, J.; Zeng, X. Novel flavonoids from Lonicera japonica flower buds and validation of their anti-hepatoma and hepatoprotective activity in vitro studies. Ind. Crops Prod., 2018, 125, 114-122.
[http://dx.doi.org/10.1016/j.indcrop.2018.08.073]
[130]
Hu, Z.; He, J.; Chen, K.; Wang, Z.; Liu, J.; Qiao, X.; Ye, M. Molecular cloning and biochemical characterization of a new flavonoid glycosyltransferase from the aquatic plant lotus. Biochem. Biophys. Res. Commun., 2019, 510(2), 315-321.
[http://dx.doi.org/10.1016/j.bbrc.2019.01.099] [PMID: 30709586]
[131]
Chen, Y.; Chen, Q.; Wang, X.; Sun, F.; Fan, Y.; Liu, X.; Li, H.; Deng, Z. Hemostatic action of lotus leaf charcoal is probably due to transformation of flavonol aglycons from flavonol glycosides in traditional Chinses medicine. J. Ethnopharmacol., 2020, 249112364
[http://dx.doi.org/10.1016/j.jep.2019.112364] [PMID: 31678413]
[132]
Babiaka, S.B.; Nia, R.; Abuga, K.O.; Mbah, J.A.; Nziko, V.D.P.N.; Paper, D.H.; Ntie-Kang, F. Antioxidant potential of flavonoid glycosides from Manniophyton fulvum Mull. (Euphorbiaceae): Identification and molecular modeling. Sci. Am., 2020, 8e00423
[133]
Souza, P.O.; Bianchi, S.E.; Figueiró, F.; Heimfarth, L.; Moresco, K.S.; Gonçalves, R.M.; Hoppe, J.B.; Klein, C.P.; Salbego, C.G.; Gelain, D.P.; Bassani, V.L.; Zanotto Filho, A.; Moreira, J.C.F. Anticancer activity of flavonoids isolated from Achyrocline satureioides in gliomas cell lines. Toxicol. In Vitro, 2018, 51, 23-33.
[http://dx.doi.org/10.1016/j.tiv.2018.04.013] [PMID: 29730415]
[134]
Lodhi, S.; Singhai, A.K. Wound healing effect of flavonoid rich fraction and luteolin isolated from Martynia annua Linn. on streptozotocin induced diabetic rats. Asian Pac. J. Trop. Med., 2013, 6(4), 253-259.
[http://dx.doi.org/10.1016/S1995-7645(13)60053-X] [PMID: 23608325]
[135]
Sen, S.; De, B.; Devanna, N.; Chakraborty, R. Total phenolic, total flavonoid content, and antioxidant capacity of the leaves of Meyna spinosa Roxb., an Indian medicinal plant. Chin. J. Nat. Med., 2013, 11(2), 149-157.
[http://dx.doi.org/10.1016/S1875-5364(13)60042-4] [PMID: 23787182]
[136]
Liu, C.; Yu, Q.; Li, Z.; Jin, X.; Xing, W. Metabolic and transcriptomic analysis related to flavonoid biosynthesis during the color formation of Michelia crassipes tepal. Plant Physiol. Biochem., 2020, 155, 938-951.
[http://dx.doi.org/10.1016/j.plaphy.2020.06.050] [PMID: 32961471]
[137]
Lin, M.; Zhang, J.; Chen, X. Bioactive flavonoids in Moringa oleifera and their health-promoting properties. J. Funct. Foods, 2018, 47, 469-479.
[http://dx.doi.org/10.1016/j.jff.2018.06.011]
[138]
Makita, C.; Madala, N.E.; Cukrowska, E.; Abdelgadir, H.; Chimuka, L.; Steenkamp, P.; Ndhlala, A.R. Variation in pharmacologically potent rutinoside-bearing flavonoids amongst twelve Moringa oleifera Lam. cultivars. S. Afr. J. Bot., 2017, 112, 270-274.
[http://dx.doi.org/10.1016/j.sajb.2017.06.001]
[139]
Guo, N.; Zhu, Y-W.; Jiang, Y-W.; Li, H-K.; Liu, Z-M.; Wang, W.; Shan, C-H.; Fu, Y-J. Improvement of flavonoid aglycone and biological activity of mulberry leaves by solid-state fermentation. Ind. Crops Prod., 2020, 148112287
[http://dx.doi.org/10.1016/j.indcrop.2020.112287]
[140]
Meng, Q.; Qi, X.; Fu, Y.; Chen, Q.; Cheng, P.; Yu, X.; Sun, X.; Wu, J.; Li, W.; Zhang, Q.; Li, Y.; Wang, A.; Bian, H. Flavonoids extracted from mulberry (Morus alba L.) leaf improve skeletal muscle mitochondrial function by activating AMPK in type 2 diabetes. J. Ethnopharmacol., 2020, 248112326
[http://dx.doi.org/10.1016/j.jep.2019.112326] [PMID: 31639486]
[141]
Ren, F.; Nian, Y.; Perussello, C.A. Effect of storage, food processing and novel extraction technologies on onions flavonoid content: A review. Food Res. Int., 2020, 132108953
[http://dx.doi.org/10.1016/j.foodres.2019.108953] [PMID: 32331665]
[142]
Deshmukh, A.B.; Datir, S.S.; Bhonde, Y.; Kelkar, N.; Samdani, P.; Tamhane, V.A. De novo root transcriptome of a medicinally important rare tree Oroxylum indicum for characterization of the flavonoid biosynthesis pathway. Phytochemistry, 2018, 156, 201-213.
[http://dx.doi.org/10.1016/j.phytochem.2018.09.013] [PMID: 30317159]
[143]
Yin, X-S.; Zhong, Z-F.; Bian, G-L.; Cheng, X-J.; Li, D-Q. Ultra-rapid, enhanced and eco-friendly extraction of four main flavonoids from the seeds of Oroxylum indicum by deep eutectic solvents combined with tissue-smashing extraction. Food Chem., 2020, 319126555
[http://dx.doi.org/10.1016/j.foodchem.2020.126555] [PMID: 32163840]
[144]
Kotwal, S.; Kaul, S.; Dhar, M.K. Comparative expression analysis of flavonoid biosynthesis genes in vegetative and reproductive parts of medicinally important plant, Plantago ovate Forssk. Ind. Crops Prod., 2019, 128, 248-255.
[http://dx.doi.org/10.1016/j.indcrop.2018.11.016]
[145]
Zheng, J.; Tian, W.; Yang, C.; Shi, W.; Cao, P.; Long, J.; Xiao, L.; Wu, Y.; Liang, J.; Li, X.; Zhao, S.; Zhang, K.; Zhi, H.; Sun, P. Identification of flavonoids in Plumula nelumbinis and evaluation of their antioxidant properties from different habitats. Ind. Crops Prod., 2019, 127, 36-45.
[http://dx.doi.org/10.1016/j.indcrop.2018.08.020]
[146]
Sait, S.; Hamri-Zeghichi, S.; Boulekbache-Makhlouf, L.; Madani, K.; Rigou, P.; Brighenti, V.; Pio Prencipe, F.; Benvenuti, S.; Pellati, F. HPLC-UV/DAD and ESI-MS(n) analysis of flavonoids and antioxidant activity of an Algerian medicinal plant: Paronychia argentea Lam. J. Pharm. Biomed. Anal., 2015, 111, 231-240.
[http://dx.doi.org/10.1016/j.jpba.2015.03.027] [PMID: 25910047]
[147]
Chen, X.; He, Z.; Wu, X.; Mao, D.; Feng, C.; Zhang, J.; Chen, G. Comprehensive study of the interaction between Puerariae Radix flavonoids and DNA: From theoretical simulation to structural analysis to functional analysis. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 231118109
[http://dx.doi.org/10.1016/j.saa.2020.118109] [PMID: 32062512]
[148]
Echeverry, S.M.; Medina, H.I.; Costa, G.M.; Aragon, D.M. Optimization of flavonoid extraction from Passiflora quadrangularis leaves with sedative activity and evaluation of its stability under stress conditions. Rev. Bras. Farmacogn., 2018, 28, 610-617.
[http://dx.doi.org/10.1016/j.bjp.2018.06.005]
[149]
Fico, G.; Bilia, A.R.; Morelli, I.; Tomè, F.; Tome, F. Flavonoid distribution in Pyracantha coccinea plants at different growth phases. Biochem. Syst. Ecol., 2000, 28(7), 673-678.
[http://dx.doi.org/10.1016/S0305-1978(99)00109-X] [PMID: 10854742]
[150]
Li, Y.; Feng, X.; Yu, X.; Wang, Y.; Liu, Y.; Ye, X.; Jia, R.; Chen, W.; Yu, T.; Zheng, X.; Chu, Q. Radix tetrastigma flavonoids inhibit the migration and promote the apoptosis of A549 cells both in vitro and in vivo. J. Funct. Foods, 2020, 72104076
[http://dx.doi.org/10.1016/j.jff.2020.104076]
[151]
Guo, H.; Wan, X.; Niu, F.; Sun, J.; Shi, C.; Ye, J.M.; Zhou, C. Evaluation of antiviral effect and toxicity of total flavonoids extracted from Robinia pseudoacacia cv. idaho. Biomed. Pharmacother., 2019, 118109335
[http://dx.doi.org/10.1016/j.biopha.2019.109335] [PMID: 31452513]
[152]
Sheng, J.Y.; Wang, S-Q.; Liu, K-H.; Zhu, B.; Zhang, Q-Y.; Qin, L-P.; Wu, J-J. Rubus chingii Hu: An overview of botany, traditional uses, phytochemistry, and pharmacology. Chin. J. Nat. Med., 2020, 18(6), 401-416.
[http://dx.doi.org/10.1016/S1875-5364(20)30048-0] [PMID: 32503732]
[153]
Szopa, A.; Klimek-Szczykutowicz, M.; Kokotkiewicz, A.; Dziurka, M.; Luczkiewicz, M.; Ekiert, H. Phenolic acid and flavonoid production in agar, agitated and bioreactor-grown microshoot cultures of Schisandra chinensis cv. Sadova No. 1 - a valuable medicinal plant. J. Biotechnol., 2019, 305, 61-70.
[http://dx.doi.org/10.1016/j.jbiotec.2019.08.021] [PMID: 31494211]
[154]
Han, J.; Ye, M.; Xu, M.; Sun, J.; Wang, B.; Guo, D. Characterization of flavonoids in the traditional Chinese herbal medicine-Huangqin by liquid chromatography coupled with electrospray ionization mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2007, 848(2), 355-362.
[http://dx.doi.org/10.1016/j.jchromb.2006.10.061] [PMID: 17118721]
[155]
Ni, H.; Wu, Z.; Muhammad, I.; Lu, Z.; Li, J. Optimization of baicalin water extraction process from Scutellaria baicalensis (a traditional Chinese medicine) by uding orthogonal test and HPLC. Rev. Bras. Farmacogn., 2018, 28, 151-155.
[http://dx.doi.org/10.1016/j.bjp.2018.02.001]
[156]
Zhi, H.; Jin, X.; Zhu, H.; Li, H.; Zhang, Y.; Lu, Y.; Chen, D. Exploring the effective materials of flavonoids-enriched extract from Scutellaria baicalensis roots based on the metabolic activation in influenza A virus induced acute lung injury. J. Pharm. Biomed. Anal., 2020, 177112876
[http://dx.doi.org/10.1016/j.jpba.2019.112876] [PMID: 31525575]
[157]
Del Valle, J.C.; Buide, M.L.; Whittall, J.B.; Narbona, E. Phenotypic plasticity in light-induced flavonoids varies among tissues in Silene littorea (Caryophyllaceae). Environ. Exp. Bot., 2018, 153, 100-107.
[http://dx.doi.org/10.1016/j.envexpbot.2018.05.014]
[158]
Song, L.; Tian, L.; Ma, Y.; Xie, Y.; Feng, H.; Qin, F.; Mo, L.; Lin, S.; Hou, L.; Wang, C. Protection of flavonoids from Smilax china L. rhizome on phenol mucilage-induced pelvic inflammation in rats by attenuating inflammation and fibrosis. J. Funct. Foods, 2017, 28, 194-204.
[http://dx.doi.org/10.1016/j.jff.2016.11.015]
[159]
Feng, H.; He, Y.; La, L.; Hou, C.; Song, L.; Yang, Q.; Wu, F.; Liu, W.; Hou, L.; Li, Y.; Wang, C.; Li, Y. The flavonoid-enriched extract from the root of Smilax china L. inhibits inflammatory responses via the TLR-4-mediated signaling pathway. J. Ethnopharmacol., 2020, 256112785
[http://dx.doi.org/10.1016/j.jep.2020.112785] [PMID: 32222576]
[160]
Tu, J.; Deng, L.; Ling, Y.; Zhu, K.; Cai, Y.; Wang, D.; Cai, Z. Transcriptome profiling reveals multiple pathways responsible for the beneficial metabolic effects of Smilax glabra flavonoids in mouse 3T3-L1 adipocytes. Biomed. Pharmacother., 2020, 125110011
[http://dx.doi.org/10.1016/j.biopha.2020.110011] [PMID: 32106371]
[161]
Li, X.; Zhang, L.; Ahmmed, G.J.; Li, Y-T.; Wei, J-P.; Yan, P.; Zhang, L-P.; Han, X.; Han, W-Y. Salicylic acid acts upstream of nitric oxide in elevated carbon dioxide-induced flavonoid biosynthesis in tea plant (Camellia sinensis L.). Environ. Exp. Bot., 2019, 161, 367-374.
[http://dx.doi.org/10.1016/j.envexpbot.2018.11.012]
[162]
Maiti, S.; Nazmeen, A.; Medda, N.; Patra, R.; Ghosh, T.K. Flavonoids green tea against oxidant stress and inflammation with related human diseases. Clin Nutr Exp, 2019, 24, 1-14.
[http://dx.doi.org/10.1016/j.yclnex.2018.12.004]
[163]
Chen, F-C.; Shen, K-P.; Ke, L-Y.; Lin, H-L.; Wu, C-C.; Shaw, S-Y. Flavonoids from Camellia sinensis (L.) O. Kuntze seed ameliorates TNF-α induced insulin resistance in HepG2 cells. Saudi Pharm. J., 2019, 27(4), 507-516.
[http://dx.doi.org/10.1016/j.jsps.2019.01.014] [PMID: 31061619]
[164]
Chen, G.; Liang, H.; Zhao, Q.; Wu, A-M.; Wang, B. Exploiting MATE efflux proteins to improve flavonoid accumulation in Camellia sinensis in silico. Int. J. Biol. Macromol., 2020, 143, 732-743.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.10.028] [PMID: 31622702]
[165]
Hao, X.; Zhang, W.; Liu, Y.; Zhang, H.; Ren, H.; Chen, Y.; Wang, L.; Zeng, J.; Yang, Y.; Wang, X. Pale green mutant analyses reveal the importance of CsGLKs in chloroplast developmental regulation and their effects on flavonoid biosynthesis in tea plant. Plant Physiol. Biochem., 2020, 146, 392-402.
[http://dx.doi.org/10.1016/j.plaphy.2019.11.036] [PMID: 31794899]
[166]
Zhu, J.; Xu, Q.; Zhao, S.; Xia, X.; Yan, X.; An, Y.; Mi, X.; Guo, L.; Samarina, L.; Wei, C. Comprehensive co-expression analysis provides novel insights into temporal variation of flavonoids in fresh leaves of the tea plant (Camellia sinensis). Plant Sci., 2020, 290110306
[http://dx.doi.org/10.1016/j.plantsci.2019.110306] [PMID: 31779914]
[167]
Srivastav, A.; Chandra, A.; Singh, M.; Jamal, F.; Rastogi, P.; Rajendran, S.M.; Bansode, F.W.; Lakshmi, V. Inhibition of hyaluronidase activity of human and rat spermatozoa in vitro and antispermatogenic activity in rats in vivo by Terminalia chebula, a flavonoid rich plant. Reprod. Toxicol., 2010, 29(2), 214-224.
[http://dx.doi.org/10.1016/j.reprotox.2009.11.001] [PMID: 19903524]
[168]
Hossain, M.A.; Shah, M.D.; Gnanaraj, C.; Iqbal, M. In vitro total phenolics, flavonoids contents and antioxidant activity of essential oil, various organic extracts from the leaves of tropical medicinal plant Tetrastigma from Sabah. Asian Pac. J. Trop. Med., 2011, 4(9), 717-721.
[http://dx.doi.org/10.1016/S1995-7645(11)60180-6] [PMID: 21967695]
[169]
Rodrigues, F.R.; Bispo, D.A.A.S.; Brandao, H.N.; Soares, T.L.; de Almeida, W.A.B.; de Santana, J.R.F. The impact of medium composition and photosynthetically active radiation level on the initial in vitro growth and production of flavonoids of Vernonia condensate Baker. Biocatal. Agric. Biotechnol., 2019, 18101063
[http://dx.doi.org/10.1016/j.bcab.2019.101063]
[170]
Wu, Y.; Wang, Y.; Liu, X.; Jiang, L.; Guli, A.; Sailike, J.; Sun, X.; Abuduwaili, N.; Tuoliuhan, H.; Maney, K.; Nabi, X. Ziziphora clinopodioides flavonoids based on network pharmacology attenuates atherosclerosis in rats induced by high-fat emulsion combined with vitamin D3 by down-regulating VEGF/AKT/NF-κB signaling pathway. Biomed. Pharmacother., 2020, 129110399
[http://dx.doi.org/10.1016/j.biopha.2020.110399] [PMID: 32768933]
[171]
Medini, F.; Legault, J.; Pichette, A.; Abdelly, C.; Ksouri, R. Antiviral efficacy of Limonium densiflorum against HSV-1 and influenza viruses. S. Afr. J. Bot., 2014, 92, 65-72.
[http://dx.doi.org/10.1016/j.sajb.2014.02.003]
[172]
Kim, N.; Park, S.; Nhiem, N.X.; Song, J-H.; Ko, H-J.; Kim, S.H. Cycloartane-type triterpenoid derivatives and a flavonoid glycoside from the burs of Castanea crenata. Phytochemistry, 2019, 158, 135-141.
[http://dx.doi.org/10.1016/j.phytochem.2018.11.001] [PMID: 30529974]
[173]
Amaral, A.C.F.; Kuster, R.M.; Goncalves, J.L.S.; Wigg, M.D. Antiviral investigation of the flavonoids of Chamaesyce thymifolia. Fitoterapia, 1999, 70(3), 293-295.
[http://dx.doi.org/10.1016/S0367-326X(99)00008-8]
[174]
Maryam, M.; Te, K.K.; Wong, F.C.; Chai, T.T.; Low, G.K.K.; Gan, S.C.; Chee, H.Y. Antiviral activity of traditional Chinese medicinal plants Dryopteris crassirhizoma and Morus alba against dengue virus. J. Integr. Agric., 2020, 19(4), 1085-1096.
[http://dx.doi.org/10.1016/S2095-3119(19)62820-0]
[175]
Du, J.; He, Z-D.; Jiang, R-W.; Ye, W-C.; Xu, H-X.; But, P.P-H. Antiviral flavonoids from the root bark of Morus alba L. Phytochemistry, 2003, 62(8), 1235-1238.
[http://dx.doi.org/10.1016/S0031-9422(02)00753-7] [PMID: 12648543]
[176]
Zafar, M.S.; Muhammad, F.; Javed, I.; Akhtar, M.; Khaliq, T.; Aslam, B.; Waheed, A.; Yasmin, R.; Zafar, H. White mulberry (Morus alba): A brief phytochemical and pharmacological evaluations account. Int. J. Agric. Biol., 2013, 15, 3-15.
[177]
Wu, Q.; Yu, C.; Yan, Y.; Chen, J.; Zhang, C.; Wen, X. Antiviral flavonoids from Mosla scabra. Fitoterapia, 2010, 81(5), 429-433.
[http://dx.doi.org/10.1016/j.fitote.2009.12.005] [PMID: 20006976]
[178]
Yu, C-H.; Yu, W-Y.; Fang, J.; Zhang, H-H.; Ma, Y.; Yu, B.; Wu, F.; Wu, X-N. Mosla scabra flavonoids ameliorate the influenza A virus-induced lung injury and water transport abnormality via the inhibition of PRR and AQP signaling pathways in mice. J. Ethnopharmacol., 2016, 179, 146-155.
[http://dx.doi.org/10.1016/j.jep.2015.12.034] [PMID: 26719287]
[179]
Gonçalves, J.L.S.; Leitão, S.G.; Monache, F.D.; Miranda, M.M.F.S.; Santos, M.G.M.; Romanos, M.T.V.; Wigg, M.D. In vitro antiviral effect of flavonoid-rich extracts of Vitex polygama (Verbenaceae) against acyclovir-resistant herpes simplex virus type 1. Phytomedicine, 2001, 8(6), 477-480.
[http://dx.doi.org/10.1078/S0944-7113(04)70069-0] [PMID: 11824525]
[180]
Andleeb, R.; Ashraf, A.; Muzammil, S.; Naz, S.; Asad, F.; Ali, T.; Rafi, R.; Al-Ghanim, K.A.; Al-Misned, F.; Ahmed, Z.; Mahboob, S. Analysis of bioactive composites and antiviral activity of Iresine herbstii extracts against Newcastle disease virus in ovo. Saudi J. Biol. Sci., 2020, 27(1), 335-340.
[http://dx.doi.org/10.1016/j.sjbs.2019.10.002] [PMID: 31889855]
[181]
Seo, D.J.; Choi, C. Inhibitory mechanism of five natural flavonoids against murine norovirus. Phytomedicine, 2017, 30, 59-66.
[http://dx.doi.org/10.1016/j.phymed.2017.04.011] [PMID: 28545670]
[182]
Mhatre, S.; Srivastava, T.; Naik, S.; Patravale, V. Antiviral activity of green tea and black tea polyphenols in prophylaxis and treatment of COVID-19: A review. Phytomedicine, 2020, 85153286
[http://dx.doi.org/10.1016/j.phymed.2020.153286] [PMID: 32741697]
[183]
Abdelkebir, R.; Alcantara, C.; Falco, I.; Sanchez, G.; Garcia-Perez, J.V.; Neffati, M.; Lorenzo, J.M.; Barba, F.J.; Collado, M.C. Effect of ultrasound technology combined with binary mixtures of ethanol and water on antibacterial and antiviral activities of Erodium glaucophyllum extracts. Innov. Food Sci. Emerg. Technol., 2019, 52, 189-196.
[http://dx.doi.org/10.1016/j.ifset.2018.12.009]
[184]
Iranshahi, M.; Rezaee, R.; Parhiz, H.; Roohbakhsh, A.; Soltani, F. Protective effects of flavonoids against microbes and toxins: The cases of hesperidin and hesperetin. Life Sci., 2015, 137, 125-132.
[http://dx.doi.org/10.1016/j.lfs.2015.07.014] [PMID: 26188593]
[185]
Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: An overview. ScientificWorldJournal, 2013, 2013162750
[http://dx.doi.org/10.1155/2013/162750] [PMID: 24470791]
[186]
Lin, Y.J.; Chang, Y.C.; Hsiao, N.W.; Hsieh, J.L.; Wang, C.Y.; Kung, S.H.; Tsai, F.J.; Lan, Y.C.; Lin, C.W. Fisetin and rutin as 3C protease inhibitors of enterovirus A71. J. Virol. Methods, 2012, 182(1-2), 93-98.
[http://dx.doi.org/10.1016/j.jviromet.2012.03.020] [PMID: 22465253]
[187]
Li, Y.L.; Ma, S.C.; Yang, Y.T.; Ye, S.M.; But, P.P.H. Antiviral activities of flavonoids and organic acid from Trollius chinensis Bunge. J. Ethnopharmacol., 2002, 79(3), 365-368.
[http://dx.doi.org/10.1016/S0378-8741(01)00410-X] [PMID: 11849843]
[188]
Pang, S.; Ge, Y.; Wang, L.S.; Liu, X.; Lin, C.W.; Yang, H. Isolation and purification of orientin and isovitexin from Thlaspi arvense Linn. Adv. Mat. Res., 2013, 781, 615-618.
[http://dx.doi.org/10.4028/www.scientific.net/AMR.781-784.615]
[189]
Weng, J-R.; Lin, C-S.; Lai, H-C.; Lin, Y-P.; Wang, C-Y.; Tsai, Y-C.; Wu, K-C.; Huang, S-H.; Lin, C-W. Antiviral activity of Sambucus Formosana Nakai ethanol extract and related phenolic acid constituents against human coronavirus NL63. Virus Res., 2019, 273197767
[http://dx.doi.org/10.1016/j.virusres.2019.197767] [PMID: 31560964]
[190]
Zhou, B.; Yang, Z.; Feng, Q.; Liang, X.; Li, J.; Zanin, M.; Jiang, Z.; Zhong, N. Aurantiamide acetate from Baphicacanthus cusia root exhibits anti-inflammatory and anti-viral effects via inhibition of the NF-κB signaling pathway in Influenza A virus-infected cells. J. Ethnopharmacol., 2017, 199, 60-67.
[http://dx.doi.org/10.1016/j.jep.2017.01.038] [PMID: 28119097]
[191]
Zahmanov, G.; Alipieva, K.; Denev, P.; Todorov, D.; Hinkov, A.; Shishkov, S.; Simova, S.; Georgiev, M.I. Flavonoid glycosides profiling in dwarf elder fruits (Sambucus ebulus L.) and evaluation of their antioxidant and anti-herpes simplex activities. Ind. Crops Prod., 2015, 63, 58-64.
[http://dx.doi.org/10.1016/j.indcrop.2014.10.053]
[192]
Jo, S.; Kim, H.; Kim, S.; Shin, D.H.; Kim, M.S. Characteristics of flavonoids as potent MERS-CoV 3C-like protease inhibitors. Chem. Biol. Drug Des., 2019, 94(6), 2023-2030.
[http://dx.doi.org/10.1111/cbdd.13604] [PMID: 31436895]
[193]
Jin, J.; Chen, S.; Wang, D.; Chen, Y.; Wang, Y.; Guo, M.; Zhou, C.; Dou, J. Oroxylin A suppresses influenza A virus replication correlating with neuraminidase inhibition and induction of IFNs. Biomed. Pharmacother., 2018, 97, 385-394.
[http://dx.doi.org/10.1016/j.biopha.2017.10.140] [PMID: 29091888]
[194]
Tian, C.; Chang, Y.; Zhang, Z.; Wang, H.; Xiao, S.; Cui, C.; Liu, M. Extraction technology, component analysis, antioxidant, antibacterial, analgesic and anti-inflammatory activities of flavonoids fraction from Tribulus terrestris L. leaves. Heliyon, 2019, 5(8)e02234
[http://dx.doi.org/10.1016/j.heliyon.2019.e02234] [PMID: 31485505]
[195]
Dai, B.; Hu, Z.; Li, H.; Yan, C.; Zhang, L. Simultaneous determination of six flavonoids from Paulownia tomentosa flower extract in rat plasma by LC-MS/MS and its application to a pharmacokinetic study. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2015, 978-979, 54-61.
[http://dx.doi.org/10.1016/j.jchromb.2014.11.021] [PMID: 25531870]
[196]
Ferreres, F.; Gomes, N.G.M.; Valentão, P.; Pereira, D.M.; Gil-Izquierdo, A.; Araújo, L.; Silva, T.C.; Andrade, P.B. Leaves and stem bark from Allophylus africanus P. Beauv.: An approach to anti-inflammatory properties and characterization of their flavonoid profile. Food Chem. Toxicol., 2018, 118, 430-438.
[http://dx.doi.org/10.1016/j.fct.2018.05.045] [PMID: 29787847]
[197]
Chiow, K.H.; Phoon, M.C.; Putti, T.; Tan, B.K.H.; Chow, V.T. Evaluation of antiviral activities of Houttuynia cordata Thunb. extract, quercetin, quercetrin and cinanserin on murine coronavirus and dengue virus infection. Asian Pac. J. Trop. Med., 2016, 9(1), 1-7.
[http://dx.doi.org/10.1016/j.apjtm.2015.12.002] [PMID: 26851778]
[198]
Li, T.; Liu, L.; Wu, H.; Chen, S.; Zhu, Q.; Gao, H.; Yu, X.; Wang, Y.; Su, W.; Yao, X.; Peng, T. Anti-herpes simplex virus type 1 activity of Houttuynoid A, a flavonoid from Houttuynia cordata Thunb. Antiviral Res., 2017, 144, 273-280.
[http://dx.doi.org/10.1016/j.antiviral.2017.06.010] [PMID: 28629987]
[199]
Ling, L-J.; Lu, Y.; Zhang, Y-Y.; Zhu, H-Y.; Tu, P.; Li, H.; Chen, D-F. Flavonoids from Houttuynia cordata attenuate H1N1-induced acute lung injury in mice via inhibition of influenza virus and Toll-like receptor signalling. Phytomedicine, 2020, 67153150
[http://dx.doi.org/10.1016/j.phymed.2019.153150] [PMID: 31958713]
[200]
Zhi, H-J.; Zhu, H-Y.; Zhang, Y-Y.; Lu, Y.; Li, H.; Chen, D-F. In vivo effect of quantified flavonoids-enriched extract of Scutellaria baicalensis root on acute lung injury induced by influenza A virus. Phytomedicine, 2019, 57, 105-116.
[http://dx.doi.org/10.1016/j.phymed.2018.12.009] [PMID: 30668313]
[201]
Yu, W-Y.; Li, L.; Wu, F.; Zhang, H-H.; Fang, J.; Zhong, Y-S.; Yu, C-H. Moslea Herba flavonoids alleviated influenza A virus-induced pulmonary endothelial barrier disruption via suppressing NOX4/NF-κB/MLCK pathway. J. Ethnopharmacol., 2020, 253112641
[http://dx.doi.org/10.1016/j.jep.2020.112641] [PMID: 32017949]
[202]
Nagai, T.; Moriguchi, R.; Suzuki, Y.; Tomimori, T.; Yamada, H. Mode of action of the anti-influenza virus activity of plant flavonoids, 5,7,4/-trihydroxy-8-methoxyflavone, from the roots of Scutellaria baicalensis. Antiviral Res., 1995, 26(1), 11-25.
[http://dx.doi.org/10.1016/0166-3542(94)00062-D] [PMID: 7741518]
[203]
Gramza-Michalowska, A.; Sidor, A.; Kulczynski, B. Berries as a potential anti-influenza factor- A review. J. Funct. Foods, 2017, 37, 116-137.
[http://dx.doi.org/10.1016/j.jff.2017.07.050]
[204]
Koul, B.; Taak, P.; Kumar, A.; Kumar, A.; Sanyal, I. Genus Psoralea: A review of the traditional and modern uses, phytochemistry and pharmacology. J. Ethnopharmacol., 2019, 232, 201-226.
[http://dx.doi.org/10.1016/j.jep.2018.11.036] [PMID: 30521980]
[205]
Deng, Y.H.; Xu, K.P.; Zhou, Y.J.; Li, F.S.; Zeng, G.Y.; Tan, G.S. A new flavonol from Sophora tonkinensis. J. Asian Nat. Prod. Res., 2007, 9(1), 45-48.
[http://dx.doi.org/10.1080/10286020500289634] [PMID: 17365189]
[206]
Luo, G.; Yang, Y.; Zhou, M.; Ye, Q.; Liu, Y.; Gu, J.; Zhang, G.; Luo, Y. Novel 2-arylbenzofuran dimers and polyisoprenylated flavanones from Sophora tonkinensis. Fitoterapia, 2014, 99, 21-27.
[http://dx.doi.org/10.1016/j.fitote.2014.08.019] [PMID: 25173460]
[207]
Enkhtaivan, G.; Maria John, K.M.; Pandurangan, M.; Hur, J.H.; Leutou, A.S.; Kim, D.H. Extreme effects of Seabuckthorn extracts on influenza viruses and human cancer cells and correlation between flavonol glycosides and biological activities of extracts. Saudi J. Biol. Sci., 2017, 24(7), 1646-1656.
[http://dx.doi.org/10.1016/j.sjbs.2016.01.004] [PMID: 30294231]
[208]
Cho, J.K.; Curtis-Long, M.J.; Lee, K.H.; Kim, D.W.; Ryu, H.W.; Yuk, H.J.; Park, K.H. Geranylated flavonoids displaying SARS-CoV papain-like protease inhibition from the fruits of Paulownia tomentosa. Bioorg. Med. Chem., 2013, 21(11), 3051-3057.
[http://dx.doi.org/10.1016/j.bmc.2013.03.027] [PMID: 23623680]
[209]
Ratnam, K.V.; Raju, R.R.V. Folk remedies for insect bites from Gundla Brahmeswaram Wild Life Sanctuary, Andhra Pradesh. Indian J. Tradit. Knowl., 2008, 7, 436-437.
[210]
Enkhtaivan, G.; Maria John, K.M.; Ayyanar, M.; Sekar, T.; Jin, K-J.; Kim, D.H. Anti-influenza (H1N1) potential of leaf and stem bark extracts of selected medicinal plants of South India. Saudi J. Biol. Sci., 2015, 22(5), 532-538.
[http://dx.doi.org/10.1016/j.sjbs.2015.01.011] [PMID: 26288555]
[211]
Wei, B.; Cha, S-Y.; Kang, M.; Kim, Y.J.; Cho, C-Q.; Rhee, Y.K.; Hong, H-D.; Jang, H-K. Antiviral activity of Chongkukjang extracts against influenza A virus in vitro and in vivo. J Ethn Foods, 2015, 2, 47-51.
[http://dx.doi.org/10.1016/j.jef.2015.04.001]
[212]
Khandelwal, N.; Chander, Y.; Kumar, R.; Riyesh, T.; Dedar, R.K.; Kumar, M.; Gulati, B.R.; Sharma, S.; Tripathi, B.N.; Barua, S.; Kumar, N. Antiviral activity of Apigenin against buffalopox: Novel mechanistic insights and drug-resistance considerations. Antiviral Res., 2020, 181104870
[http://dx.doi.org/10.1016/j.antiviral.2020.104870] [PMID: 32707051]
[213]
Lee, J.L.; Loe, M.W.C.; Lee, R.C.H.; Chu, J.J.H. Antiviral activity of pinocembrin against Zika virus replication. Antiviral Res., 2019, 167, 13-24.
[http://dx.doi.org/10.1016/j.antiviral.2019.04.003] [PMID: 30959074]
[214]
Vijayakumar, B.G.; Ramesh, D.; Joji, A.; Jayachandra Prakasan, J.; Kannan, T. In silico pharmacokinetic and molecular docking studies of natural flavonoids and synthetic indole chalcones against essential proteins of SARS-CoV-2. Eur. J. Pharmacol., 2020, 886173448
[http://dx.doi.org/10.1016/j.ejphar.2020.173448] [PMID: 32768503]
[215]
Yousaf, T.; Rafique, S.; Wahid, F.; Rehman, S.; Nazir, A.; Rafique, J.; Aslam, K.; Shabir, G.; Shah, S.M. Phytochemical profiling and antiviral activity of Ajuga bracteosa, Ajuga parviflora, Berberis lycium and Citrus lemon against hepatitis C virus. Microb. Pathog., 2018, 118, 154-158.
[http://dx.doi.org/10.1016/j.micpath.2018.03.030] [PMID: 29571723]
[216]
Gravina, H.D.; Tafuri, N.F.; Silva Júnior, A.; Fietto, J.L.R.; Oliveira, T.T.; Diaz, M.A.N.; Almeida, M.R. In vitro assessment of the antiviral potential of trans-cinnamic acid, quercetin and morin against equid herpesvirus 1. Res. Vet. Sci., 2011, 91(3), e158-e162.
[http://dx.doi.org/10.1016/j.rvsc.2010.11.010] [PMID: 21159355]
[217]
Gansukh, E.; Nile, A.; Kim, D.H.; Oh, J.W.; Nile, S.H. New insights into antiviral and cytotoxic potential of quercetin and its derivatives - A biochemical perspective. Food Chem., 2021, 334127508
[http://dx.doi.org/10.1016/j.foodchem.2020.127508] [PMID: 32711265]
[218]
Liu, A-L.; Wang, H-D.; Lee, S.M-Y.; Wang, Y-T.; Du, G-H. Structure-activity relationship of flavonoids as influenza virus neuraminidase inhibitors and their in vitro anti-viral activities. Bioorg. Med. Chem., 2008, 16(15), 7141-7147.
[http://dx.doi.org/10.1016/j.bmc.2008.06.049] [PMID: 18640042]
[219]
Li, W.; Xu, C.; Hao, C.; Zhang, Y.; Wang, Z.; Wang, S.; Wang, W. Inhibition of herpes simplex virus by myricetin through targeting viral gD protein and cellular EGFR/PI3K/Akt pathway. Antiviral Res., 2020, 177104714
[http://dx.doi.org/10.1016/j.antiviral.2020.104714] [PMID: 32165083]
[220]
Kwon, S.; Lee, J.; Kim, G.W.; Kim, D.E.; Jin, Y.H.; Kim, S.; Kim, H.R. Natural compounds potentially suppressible corona virus infection disease. J. Acupunct. Meridian Stud., 2018, 11(4), 268.
[http://dx.doi.org/10.1016/j.jams.2018.08.208]
[221]
Nguyen, T.T.H.; Woo, H-J.; Kang, H-K.; Nguyen, V.D.; Kim, Y-M.; Kim, D-W.; Ahn, S-A.; Xia, Y.; Kim, D. Flavonoid-mediated inhibition of SARS coronavirus 3C-like protease expressed in Pichia pastoris. Biotechnol. Lett., 2012, 34(5), 831-838.
[http://dx.doi.org/10.1007/s10529-011-0845-8] [PMID: 22350287]
[222]
Kim, D.W.; Seo, K.H.; Curtis-Long, M.J.; Oh, K.Y.; Oh, J-W.; Cho, J.K.; Lee, K.H.; Park, K.H. Phenolic phytochemical displaying SARS-CoV papain-like protease inhibition from the seeds of Psoralea corylifolia. J. Enzyme Inhib. Med. Chem., 2014, 29(1), 59-63.
[http://dx.doi.org/10.3109/14756366.2012.753591] [PMID: 23323951]
[223]
Ryu, Y.B.; Jeong, H.J.; Kim, J.H.; Kim, Y.M.; Park, J-Y.; Kim, D.; Nguyen, T.T.H.; Park, S-J.; Chang, J.S.; Park, K.H.; Rho, M-C.; Lee, W.S. Biflavonoids from Torreya nucifera displaying SARS-CoV 3CL(pro) inhibition. Bioorg. Med. Chem., 2010, 18(22), 7940-7947.
[http://dx.doi.org/10.1016/j.bmc.2010.09.035] [PMID: 20934345]
[224]
Shahrajabian, M.H.; Sun, W.; Cheng, Q. A review of ginseng species in different regions as a multipurpose herb in traditional Chinese medicine, modern herbology and pharmacological science. J. Med. Plants Res., 2019, 13(10), 213-226.
[225]
Mirzaee, F.; Hosseini, A.; Jouybari, H.B.; Davoodi, A.; Azadbakht, M. Medicinal, biological and phytochemical properties of Gentiana species. J. Tradit. Complement. Med., 2017, 7(4), 400-408.
[http://dx.doi.org/10.1016/j.jtcme.2016.12.013] [PMID: 29034186]
[226]
Sheng, S.; Li, T.; Liu, R-H. Corn phytochemicals and their health benefits. Food Sci. Hum. Wellness, 2018, 7, 185-195.
[http://dx.doi.org/10.1016/j.fshw.2018.09.003]
[227]
Barbieri, R.; Coppo, E.; Marchese, A.; Daglia, M.; Sobarzo-Sánchez, E.; Nabavi, S.F.; Nabavi, S.M. Phytochemicals for human disease: An update on plant-derived compounds antibacterial activity. Microbiol. Res., 2017, 196, 44-68.
[http://dx.doi.org/10.1016/j.micres.2016.12.003] [PMID: 28164790]
[228]
Guldiken, B.; Ozkan, G.; Catalkaya, G.; Ceylan, F.D.; Ekin Yalcinkaya, I.; Capanoglu, E. Phytochemicals of herbs and spices: Health versus toxicological effects. Food Chem. Toxicol., 2018, 119, 37-49.
[http://dx.doi.org/10.1016/j.fct.2018.05.050] [PMID: 29802945]
[229]
Poletto, P.; Alvarez-Rivera, G.; Torres, T.M.S.; Mendiola, J.A.; Ibañez, E.; Cifuentes, A. Compressed fluids and phytochemical profiling tools to obtain and characterize antiviral and anti-inflammatory compounds from natural sources. Trends Analyt. Chem., 2020, 129115942
[http://dx.doi.org/10.1016/j.trac.2020.115942] [PMID: 32834241]
[230]
Kapoor, R.; Sharma, B.; Kanwar, S.S. Antiviral phytochemicals: An overview. Biochem. Physiol., 2017, 6, 220.
[http://dx.doi.org/10.4172/2168-9652.1000220]
[231]
Chojnacka, K.; Witek-Krowiak, A.; Skrzypczak, D.; Mikula, K.; Młynarz, P. Phytochemicals containing biologically active polyphenols as an effective agent against Covid-19-inducing coronavirus. J. Funct. Foods, 2020, 73104146
[http://dx.doi.org/10.1016/j.jff.2020.104146] [PMID: 32834835]
[232]
Fioravanti, R.; Celestino, I.; Costi, R.; Cuzzucoli Crucitti, G.; Pescatori, L.; Mattiello, L.; Novellino, E.; Checconi, P.; Palamara, A.T.; Nencioni, L.; Di Santo, R. Effects of polyphenol compounds on influenza A virus replication and definition of their mechanism of action. Bioorg. Med. Chem., 2012, 20(16), 5046-5052.
[http://dx.doi.org/10.1016/j.bmc.2012.05.062] [PMID: 22743086]
[233]
Byler, K.G.; Ogungbe, I.V.; Setzer, W.N. In silico screening for anti-Zika virus phytochemicals. J. Mol. Graph. Model., 2016, 69, 78-91.
[http://dx.doi.org/10.1016/j.jmgm.2016.08.011] [PMID: 27588363]
[234]
Manandhar, S.; Kabekkodu, S.P.; Pai, K.S.R. Aberrant canonical Wnt signaling: Phytochemical based modulation. Phytomedicine, 2020, 76153243
[http://dx.doi.org/10.1016/j.phymed.2020.153243] [PMID: 32535482]
[235]
Apaya, M.K.; Kuo, T-F.; Yang, M-T.; Yang, G.; Hsiao, C-L.; Chang, S-B.; Lin, Y.; Yang, W.C. Phytochemicals as modulators of β-cells and immunity for the therapy of type 1 diabetes: Recent discoveries in pharmacological mechanisms and clinical potential. Pharmacol. Res., 2020, 156104754
[http://dx.doi.org/10.1016/j.phrs.2020.104754] [PMID: 32173584]
[236]
Kehinde, I.; Ramharack, P.; Nlooto, M.; Gordon, M. The pharmacokinetic properties of HIV-1 protease inhibitors: A computational perspective on herbal phytochemicals. Heliyon, 2019, 5(10)e02565
[http://dx.doi.org/10.1016/j.heliyon.2019.e02565] [PMID: 31720444]
[237]
Banerjee, A.; Czinn, S.J.; Reiter, R.J.; Blanchard, T.G. Crosstalk between endoplasmic reticulum stress and anti-viral activities: A novel therapeutic target for COVID-19. Life Sci., 2020, 255117842
[http://dx.doi.org/10.1016/j.lfs.2020.117842] [PMID: 32454157]
[238]
Becker, R.; Szakiel, A. Phytochemical characteristics and potential therapeutic properties of blue honeysuckle Lonicera caerulea L. (Caprifoliaceae). J. Herb. Med., 2019, 16100237
[http://dx.doi.org/10.1016/j.hermed.2018.10.002]
[239]
Loizzo, M.R.; Saab, A.; Tundis, R.; Statti, G.A.; Lampronti, I.; Menichini, F.; Gambari, R.; Cinatl, J.; Doerr, H.W. Phytochemical analysis and in vitro evaluation of the biological activity against herpes simplex virus type 1 (HSV-1) of Cedrus libani A. Rich. Phytomedicine, 2008, 15(1-2), 79-83.
[http://dx.doi.org/10.1016/j.phymed.2007.03.013] [PMID: 17482448]
[240]
Xiang, K-L.; Liu, R-X.; Zhao, L.; Xie, Z-P.; Zhang, S-M.; Dai, S-J. Labdane diterpenoids from Forsythia suspensa with anti-inflammatory and anti-viral activities. Phytochemistry, 2020, 173112298
[http://dx.doi.org/10.1016/j.phytochem.2020.112298] [PMID: 32070801]
[241]
Zhao, L.; Xiang, K-L.; Liu, R-X.; Xie, Z-P.; Zhang, S-M.; Dai, S-J. Anti-inflammatory and anti-viral labdane diterpenoids from the fruits of Forsythia suspensa. Bioorg. Chem., 2020, 96103651
[http://dx.doi.org/10.1016/j.bioorg.2020.103651] [PMID: 32050134]
[242]
Pang, X.; Zhao, J-Y.; Yu, H-Y.; Yu, L-Y.; Wang, T.; Zhang, Y.; Gao, X-M.; Han, L-F. Secoiridoid analogues from the fruits of Ligustrum lucidum and their inhibitory activities against influenza A virus. Bioorg. Med. Chem. Lett., 2018, 28(9), 1516-1519.
[http://dx.doi.org/10.1016/j.bmcl.2018.03.080] [PMID: 29625823]
[243]
Zhang, T.; Lo, C-Y.; Xiao, M.; Cheng, L.; Pun Mok, C.K.; Shaw, P-C. Anti-influenza virus phytochemicals from Radix paeoniae Alba and characterization of their neuraminidase inhibitory activities. J. Ethnopharmacol., 2020, 253112671
[http://dx.doi.org/10.1016/j.jep.2020.112671] [PMID: 32081739]
[244]
Xiao, P.; Ye, W.; Chen, J.; Li, X. Antiviral activities against influenza virus (FM1) of bioactive fractions and representative compounds extracted from Banlangen (Radix isatidis). J. Tradit. Chin. Med., 2016, 36(3), 369-376.
[http://dx.doi.org/10.1016/S0254-6272(16)30051-6] [PMID: 27468553]
[245]
Manvar, D.; Mishra, M.; Kumar, S.; Pandey, V.N. Identification and evaluation of anti-hepatitis C virus phytochemicals from Eclipta alba. J. Ethnopharmacol., 2012, 144(3), 545-554.
[http://dx.doi.org/10.1016/j.jep.2012.09.036] [PMID: 23026306]
[246]
Chang, S.Y.; Park, J.H.; Kim, Y.H.; Kang, J.S.; Min, J-Y. A natural component from Euphorbia humifusa Willd displays novel, broad-spectrum anti-influenza activity by blocking nuclear export of viral ribonucleoprotein. Biochem. Biophys. Res. Commun., 2016, 471(2), 282-289.
[http://dx.doi.org/10.1016/j.bbrc.2016.01.123] [PMID: 26850850]
[247]
Sukprasert, S.; Pansuksan, K.; Sriyakul, K. Lysiphyllum strychnifolium (Craib) A. Schmitz extract, a novel neuraminidase inhibitor of avian influenza virus subtype H5N1. J. Herb. Med., 2020, 20100330
[http://dx.doi.org/10.1016/j.hermed.2020.100330]
[248]
Hwang, B.S.; Lee, I-K.; Choi, H.J.; Yun, B-S. Anti-influenza activities of polyphenols from the medicinal mushroom Phellinus baumii. Bioorg. Med. Chem. Lett., 2015, 25(16), 3256-3260.
[http://dx.doi.org/10.1016/j.bmcl.2015.05.081] [PMID: 26077494]
[249]
Zhang, X.; He, J.; Huang, W.; Huang, H.; Zhang, Z.; Wang, J.; Yang, L.; Wang, G.; Wang, Y.; Li, Y. Antiviral activity of the sesquiterpene lactones from Centipeda minima against influenza A virus in vitro. Nat. Prod. Commun., 2018, 13, 115-119.
[http://dx.doi.org/10.1177/1934578X1801300201]
[250]
Santoyo, S.; Plaza, M.; Jaime, L.; Ibañez, E.; Reglero, G.; Señorans, F.J. Pressurized liquid extraction as an alternative process to obtain antiviral agents from the edible microalga Chlorella vulgaris. J. Agric. Food Chem., 2010, 58(15), 8522-8527.
[http://dx.doi.org/10.1021/jf100369h] [PMID: 20617828]
[251]
Santoyo, S.; Jaime, L.; Garcia-Risco, M.R.; Lopez-Hazas, M.; Reglero, G. Super-critical fluid extraction as an alternative process to obtain antiviral agents from thyme species. Ind. Crops Prod., 2014, 52, 475-480.
[http://dx.doi.org/10.1016/j.indcrop.2013.10.028]
[252]
Parsania, M.; Rezaee, M-B.; Monavari, S.H.; Jaimand, K.; Mousavi-Jazayeri, S.M.; Razazian, M.; Nadjarha, M.H. Antiviral screening of four plant extracts against acyclovir resistant herpes simplex virus type-1. Pak. J. Pharm. Sci., 2017, 30(4)(Suppl.), 1407-1411.
[253]
Wang, Z-Q.; Song, Q-Y.; Su, J-C.; Tang, W.; Song, J-G.; Huang, X-J.; An, J.; Li, Y-L.; Ye, W.C.; Wang, Y. Caffeic acid oligomers from Mesona chinensis and their in vitro antiviral activities. Fitoterapia, 2020, 144104603
[http://dx.doi.org/10.1016/j.fitote.2020.104603] [PMID: 32360288]
[254]
Biswas, D.; Nandy, S.; Mukherjee, A.; Pandey, D.K.; Dey, A. Moringa oleifera Lam. and derived phytochemicals as promising antiviral agents: A review. S. Afr. J. Bot., 2020, 129, 272-282.
[http://dx.doi.org/10.1016/j.sajb.2019.07.049]
[255]
Zainab, B.; Ayaz, Z.; Alwahibi, M.S.; Khan, S.; Rizwana, H.; Soliman, D.W.; Alawaad, A.; Mehmood Abbasi, A. In silico elucidation of Moringa oleifera phytochemicals against diabetes mellitus. Saudi J. Biol. Sci., 2020, 27(9), 2299-2307.
[http://dx.doi.org/10.1016/j.sjbs.2020.04.002] [PMID: 32884411]
[256]
Sydiskis, R.J.; Owen, D.G.; Lohr, J.L.; Rosler, K.H.; Blomster, R.N. Inactivation of enveloped viruses by anthraquinones extracted from plants. Antimicrob. Agents Chemother., 1991, 35(12), 2463-2466.
[http://dx.doi.org/10.1128/AAC.35.12.2463] [PMID: 1810179]
[257]
Perera, C.; Efferth, T. Antiviral medicinal herbs and phyto-chemicals. J. Pharmacogn., 2012, 3(1), 45-48.
[258]
Beuria, T.K.; Santra, M.K.; Panda, D. Sanguinarine blocks cytokinesis in bacteria by inhibiting FtsZ assembly and bundling. Biochemistry, 2005, 44(50), 16584-16593.
[http://dx.doi.org/10.1021/bi050767+] [PMID: 16342949]
[259]
Kelley, C.; Zhang, Y.; Parhi, A.; Kaul, M.; Pilch, D.S.; LaVoie, E.J. 3-Phenyl substituted 6,7-dimethoxyisoquinoline derivatives as FtsZ-targeting antibacterial agents. Bioorg. Med. Chem., 2012, 20(24), 7012-7029.
[http://dx.doi.org/10.1016/j.bmc.2012.10.009] [PMID: 23127490]
[260]
Hossain, M.A. Biological and phytochemicals review of Omani medicinal plant Dodonaea viscosa. J King Saud Univ Sci, 2019, 31, 1089-1094.
[http://dx.doi.org/10.1016/j.jksus.2018.09.012]
[261]
Guo, Q.; Xu, C.; Chen, M.; Lin, S.; Li, Y.; Zhu, C.; Jiang, J.; Yang, Y.; Shi, J. Sulfur-enriched alkaloids from the root of Isatis indigotica. Acta Pharm. Sin. B, 2018, 8(6), 933-943.
[http://dx.doi.org/10.1016/j.apsb.2018.08.005] [PMID: 30505662]
[262]
Edziri, H.; Marzouk, B.; Mabrouk, H.; Garreb, M.; Douki, W.; Mahjoub, A.; Verschaeve, L.; Najjar, F.; Mastouri, M. Phyto-chemical screening, butyrylcholinesterase inhibitory activity and anti-inflammatory effect of some Tunisian medicinal plants. S. Afr. J. Bot., 2018, 114, 84-88.
[http://dx.doi.org/10.1016/j.sajb.2017.10.019]
[263]
Moradi, M-T.; Karimi, A.; Rafieian-Kopaei, M.; Fotouhi, F. In vitro antiviral effects of Peganum harmala seed extract and its total alkaloids against Influenza virus. Microb. Pathog., 2017, 110, 42-49.
[http://dx.doi.org/10.1016/j.micpath.2017.06.014] [PMID: 28629724]
[264]
Moyo, M.; Van Staden, J. Medicinal properties and conservation of Pelargonium sidoides DC. J. Ethnopharmacol., 2014, 152(2), 243-255.
[http://dx.doi.org/10.1016/j.jep.2014.01.009] [PMID: 24463034]
[265]
Yusuf, A.J.; Abdullahi, M.I. The phytochemical and pharmacological actions of Entada africana Guill. & Perr. Heliyon, 2019, 5(9)e02332
[http://dx.doi.org/10.1016/j.heliyon.2019.e02332] [PMID: 31517111]
[266]
Haidari, M.; Ali, M.; Ward Casscells, S., III; Madjid, M. Pomegranate (Punica granatum) purified polyphenol extract inhibits influenza virus and has a synergistic effect with oseltamivir. Phytomedicine, 2009, 16(12), 1127-1136.
[http://dx.doi.org/10.1016/j.phymed.2009.06.002] [PMID: 19586764]
[267]
Cecil, C.E.; Davis, J.M.; Cech, N.B.; Laster, S.M. Inhibition of H1n1 influenza A virus growth and induction of inflammatory mediators by the isoquinoline alkaloids mediators by the isoquinoline alkaloid berberine and extracts of goldenseal (Hydrastis canadensis). Int. Immunopharmacol., 2011, 11(11), 1706-1714.
[http://dx.doi.org/10.1016/j.intimp.2011.06.002] [PMID: 21683808]
[268]
Gangehei, L.; Ali, M.; Zhang, W.; Chen, Z.; Wakame, K.; Haidari, M. Oligonol a low molecular weight polyphenol of lychee fruit extract inhibits proliferation of influenza virus by blocking reactive oxygen species-dependent ERK phosphorylation. Phytomedicine, 2010, 17(13), 1047-1056.
[http://dx.doi.org/10.1016/j.phymed.2010.03.016] [PMID: 20554190]
[269]
Huang, S.-D; Zhang, Y.; He, H.-P; Li, S.-F; Tang, G.-H; Chen, D-Z.; Cao, M.-M; Di, Y.-T; Hao, X.-J A new Amaryllidaceae alkaloid from the bulbs of Lycoris radiata., 2013.
[270]
Droebner, K.; Ehrhardt, C.; Poetter, A.; Ludwig, S.; Planz, O. CYSTUS052, a polyphenol-rich plant extract, exerts anti-influenza virus activity in mice. Antiviral Res., 2007, 76(1), 1-10.
[http://dx.doi.org/10.1016/j.antiviral.2007.04.001] [PMID: 17573133]
[271]
Ehrhardt, C.; Hrincius, E.R.; Korte, V.; Mazur, I.; Droebner, K.; Poetter, A.; Dreschers, S.; Schmolke, M.; Planz, O.; Ludwig, S. A polyphenol rich plant extract, CYSTUS052, exerts anti influenza virus activity in cell culture without toxic side effects or the tendency to induce viral resistance. Antiviral Res., 2007, 76(1), 38-47.
[http://dx.doi.org/10.1016/j.antiviral.2007.05.002] [PMID: 17572513]
[272]
Sawai-Kuroda, R.; Kikuchi, S.; Shimizu, Y.K.; Sasaki, Y.; Kuroda, K.; Tanaka, T.; Yamamoto, T.; Sakurai, K.; Shimizu, K. A polyphenol-rich extract from Chaenomeles sinensis (Chinese quince) inhibits influenza A virus infection by preventing primary transcription in vitro. J. Ethnopharmacol., 2013, 146(3), 866-872.
[http://dx.doi.org/10.1016/j.jep.2013.02.020] [PMID: 23439031]
[273]
Ivanova, E.; Toshkova, R.; Serkedjieva, J. A plant polyphenol-rich extract restores the suppressed functions of phagocytes in influenza virus-infected mice. Microbes Infect., 2005, 7(3), 391-398.
[http://dx.doi.org/10.1016/j.micinf.2004.11.013] [PMID: 15780977]
[274]
Yang, Z-F.; Bai, L-P.; Huang, W-B.; Li, X-Z.; Zhao, S-S.; Zhong, N.S.; Jiang, Z-H. Comparison of in vitro antiviral activity of tea polyphenols against influenza A and B viruses and structure-activity relationship analysis. Fitoterapia, 2014, 93, 47-53.
[http://dx.doi.org/10.1016/j.fitote.2013.12.011] [PMID: 24370660]
[275]
Efferth, T.; Romero, M.R.; Wolf, D.G.; Stamminger, T.; Marin, J.J.G.; Marschall, M. The antiviral activities of artemisinin and artesunate. Clin. Infect. Dis., 2008, 47(6), 804-811.
[http://dx.doi.org/10.1086/591195] [PMID: 18699744]
[276]
Vardhan, S.; Sahoo, S.K. In silico ADMET and molecular docking study on searching potential inhibitors from limonoids and triter-penoids for COVID-19. Comput. Biol. Med., 2020, 124103936
[http://dx.doi.org/10.1016/j.compbiomed.2020.103936] [PMID: 32738628]
[277]
Li, Y.; Ooi, L.S.; Wang, H.; But, P.P.; Ooi, V.E. Antiviral activities of medicinal herbs traditionally used in southern mainland China. Phytother. Res., 2004, 18(9), 718-722.
[http://dx.doi.org/10.1002/ptr.1518] [PMID: 15478204]
[278]
Kumar, S.; Kashyap, P.; Chowdhury, S.; Kumar, S.; Panwar, A.; Kumar, A. Identification of phytochemicals as potential therapeutic agents that binds to Nsp15 protein target of coronavirus (SARS-CoV-2) that are capable of inhibiting virus replication. Phytomedicine, 2021, 85153317
[http://dx.doi.org/10.1016/j.phymed.2020.153317] [PMID: 32943302]

© 2024 Bentham Science Publishers | Privacy Policy