Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Theranostic Applications of Nanomaterials in the Field of Cardiovascular Diseases

Author(s): Rakesh K. Sahoo, Himani Singh, Kamlesh Thakur, Umesh Gupta and Amit K . Goyal*

Volume 28, Issue 2, 2022

Published on: 01 July, 2021

Page: [91 - 103] Pages: 13

DOI: 10.2174/1381612827666210701154305

Price: $65

Open Access Journals Promotions 2
Abstract

A large percentage of people are being exposed to mortality due to cardiovascular diseases. Convention approaches have not provided satisfactory outcomes in the management of these diseases. To overcome the limitations of conventional approaches, nanomaterials like nanoparticles, nanotubes, micelles, lipid-based nanocarriers, dendrimers, and carbon-based nanoformulations represent the new aspect of diagnosis and treatment of cardiovascular diseases. The unique inherent properties of the nanomaterials are the major reasons for their rapidly growing demand in the field of medicine. Profound knowledge in the field of nanotechnology and biomedicine is needed for the notable translation of nanomaterials into theranostic cardiovascular applications. In this review, the authors have summarized different nanomaterials which are being extensively used to diagnose and treat the diseases, such as coronary heart disease, myocardial infarction, atherosclerosis, stroke and thrombosis.

Keywords: Nanomaterials, cardiovascular diseases, nanotechnology, theranostic, diagnostic, therapeutic, drug delivery.

[1]
Behera SS, Pramanik K, Nayak MK. Recent advancement in the treatment of cardiovascular diseases: Conventional therapy to nanotechnology. Curr Pharm Des 2015; 21(30): 4479-97.
[http://dx.doi.org/10.2174/1381612821666150817104635] [PMID: 26278923]
[2]
Cai H, Harrison DG. Endothelial dysfunction in cardiovascular diseases: The role of oxidant stress. Circ Res 2000; 87(10): 840-4.
[http://dx.doi.org/10.1161/01.RES.87.10.840] [PMID: 11073878]
[3]
Lim SS, Vos T, Flaxman AD, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012; 380(9859): 2224-60.
[http://dx.doi.org/10.1016/S0140-6736(12)61766-8] [PMID: 23245609]
[4]
Yusuf S, Reddy S, Ounpuu S, Anand S. Global burden of cardiovascular diseases: Part I: General considerations, the epidemiologic transition, risk factors, and impact of urbanization. Circulation 2001; 104(22): 2746-53.
[http://dx.doi.org/10.1161/hc4601.099487] [PMID: 11723030]
[5]
Bae S, Kim SR, Kim MN, Shim WJ, Park SM. Impact of cardiovascular disease and risk factors on fatal outcomes in patients with COVID-19 according to age: A systematic review and meta-analysis. Heart 2021; 107(5): 373-80.
[http://dx.doi.org/10.1136/heartjnl-2020-317901] [PMID: 33334865]
[6]
Chen Z, Liu Z, Peng Y, et al. Cardiovascular diseases and natural products. Curr Protein Pept Sci 2019; 20(10): 962-3.
[http://dx.doi.org/10.2174/138920372010190920124756] [PMID: 31592748]
[7]
Emerich DF, Thanos CG. Nanotechnology and medicine. Expert Opin Biol Ther 2003; 3(4): 655-63.
[http://dx.doi.org/10.1517/14712598.3.4.655] [PMID: 12831370]
[8]
Wong XY, Sena-Torralba A, Álvarez-Diduk R, Muthoosamy K, Merkoçi A. Nanomaterials for nanotheranostics: Tuning their properties according to disease needs. ACS Nano 2020; 14(3): 2585-627.
[http://dx.doi.org/10.1021/acsnano.9b08133] [PMID: 32031781]
[9]
Caldorera-Moore ME, Liechty WB, Peppas NA. Responsive theranostic systems: Integration of diagnostic imaging agents and responsive controlled release drug delivery carriers. Acc Chem Res 2011; 44(10): 1061-70.
[http://dx.doi.org/10.1021/ar2001777] [PMID: 21932809]
[10]
Yang Z, Song J, Tang W, et al. Stimuli responsive nanotheranostics for real-time monitoring drug release by photoacoustic imaging. Theranostics 2019; 9(2): 526-36.
[http://dx.doi.org/10.7150/thno.30779] [PMID: 30809290]
[11]
Lim EK, Kim T, Paik S, Haam S, Huh YM, Lee K. Nanomaterials for theranostics: Recent advances and future challenges. Chem Rev 2015; 115(1): 327-94.
[http://dx.doi.org/10.1021/cr300213b] [PMID: 25423180]
[12]
Patel KD, Singh RK, Kim HW. Carbon-based nanomaterials as an emerging platform for theranostics. Mater Horiz 2019; 6(3): 434-69.
[http://dx.doi.org/10.1039/C8MH00966J]
[13]
Thakor AS, Gambhir SS. Nanooncology: The future of cancer diagnosis and therapy. CA Cancer J Clin 2013; 63(6): 395-418.
[http://dx.doi.org/10.3322/caac.21199] [PMID: 24114523]
[14]
Lammers T, Kiessling F, Hennink WE, Storm G. Nanotheranostics and image-guided drug delivery: Current concepts and future directions. Mol Pharm 2010; 7(6): 1899-912.
[http://dx.doi.org/10.1021/mp100228v] [PMID: 20822168]
[15]
Muthu MS, Leong DT, Mei L, Feng SS. Nanotheranostics - application and further development of nanomedicine strategies for advanced theranostics. Theranostics 2014; 4(6): 660-77.
[http://dx.doi.org/10.7150/thno.8698] [PMID: 24723986]
[16]
Wang LS, Chuang MC, Ho JAA. Nanotheranostics--a review of recent publications. Int J Nanomedicine 2012; 7: 4679-95.
[PMID: 22956869]
[17]
Lu J, Yao C, Yang L, Webster TJ. Decreased platelet adhesion and enhanced endothelial cell functions on nano and submicron-rough titanium stents. Tissue Eng Part A 2012; 18(13-14): 1389-98.
[http://dx.doi.org/10.1089/ten.tea.2011.0268] [PMID: 22607484]
[18]
Park J, Bauer S, von der Mark K, Schmuki P. Nanosize and vitality: TiO2 nanotube diameter directs cell fate. Nano Lett 2007; 7(6): 1686-91.
[http://dx.doi.org/10.1021/nl070678d] [PMID: 17503870]
[19]
Jiang W, Rutherford D, Vuong T, Liu H. Nanomaterials for treating cardiovascular diseases: A review. Bioact Mater 2017; 2(4): 185-98.
[http://dx.doi.org/10.1016/j.bioactmat.2017.11.002] [PMID: 29744429]
[20]
del Campo A, Arzt E. Fabrication approaches for generating complex micro- and nanopatterns on polymeric surfaces. Chem Rev 2008; 108(3): 911-45.
[http://dx.doi.org/10.1021/cr050018y] [PMID: 18298098]
[21]
Pala R, Pattnaik S, Busi S, Nauli SM. Nanomaterials as novel cardiovascular theranostics. Pharmaceutics 2021; 13(3): 348.
[http://dx.doi.org/10.3390/pharmaceutics13030348] [PMID: 33799932]
[22]
Sun Y, Lu Y, Yin L, Liu Z. The roles of nanoparticles in stem cell-based therapy for cardiovascular disease. Front Bioeng Biotechnol 2020; 8(8): 947.
[http://dx.doi.org/10.3389/fbioe.2020.00947] [PMID: 32923434]
[23]
Bejarano J, Navarro-Marquez M, Morales-Zavala F, et al. Nanoparticles for diagnosis and therapy of atherosclerosis and myocardial infarction: Evolution toward prospective theranostic approaches. Theranostics 2018; 8(17): 4710-32.
[http://dx.doi.org/10.7150/thno.26284] [PMID: 30279733]
[24]
Aizik G, Grad E, Golomb G. Monocyte-mediated drug delivery systems for the treatment of cardiovascular diseases. Drug Deliv Transl Res 2018; 8(4): 868-82.
[http://dx.doi.org/10.1007/s13346-017-0431-2] [PMID: 29058205]
[25]
Tang J, Lobatto ME, Read JC, Mieszawska AJ, Fayad ZA, Mulder WJ. Nanomedical theranostics in cardiovascular disease. Curr Cardiovasc Imaging Rep 2012; 5(1): 19-25.
[http://dx.doi.org/10.1007/s12410-011-9120-6] [PMID: 22308199]
[26]
Pouliquen D, Le Jeune JJ, Perdrisot R, Ermias A, Jallet P. Iron oxide nanoparticles for use as an MRI contrast agent: Pharmacokinetics and metabolism. Magn Reson Imaging 1991; 9(3): 275-83.
[http://dx.doi.org/10.1016/0730-725X(91)90412-F] [PMID: 1881245]
[27]
Unterweger H, Janko C, Schwarz M, et al. Non-immunogenic dextran-coated superparamagnetic iron oxide nanoparticles: A biocompatible, size-tunable contrast agent for magnetic resonance imaging. Int J Nanomedicine 2017; 12: 5223-38.
[http://dx.doi.org/10.2147/IJN.S138108] [PMID: 28769560]
[28]
Kahraman E, Güngör S, Özsoy Y. Potential enhancement and targeting strategies of polymeric and lipid-based nanocarriers in dermal drug delivery. Ther Deliv 2017; 8(11): 967-85.
[http://dx.doi.org/10.4155/tde-2017-0075] [PMID: 29061106]
[29]
Wang D, Lin B, Ai H. Theranostic nanoparticles for cancer and cardiovascular applications. Pharm Res 2014; 31(6): 1390-406.
[http://dx.doi.org/10.1007/s11095-013-1277-z] [PMID: 24595494]
[30]
Nadimi AE, Ebrahimipour SY, Afshar EG, et al. Nano-scale drug delivery systems for antiarrhythmic agents. Eur J Med Chem 2018; 157: 1153-63.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.080] [PMID: 30189397]
[31]
Katsuki S, Matoba T, Nakashiro S, et al. Nanoparticle-mediated delivery of pitavastatin inhibits atherosclerotic plaque destabilization/rupture in mice by regulating the recruitment of inflammatory monocytes. Circulation 2014; 129(8): 896-906.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.113.002870] [PMID: 24305567]
[32]
Winter PM, Neubauer AM, Caruthers SD, et al. Endothelial α(v)β3 integrin-targeted fumagillin nanoparticles inhibit angiogenesis in atherosclerosis. Arterioscler Thromb Vasc Biol 2006; 26(9): 2103-9.
[http://dx.doi.org/10.1161/01.ATV.0000235724.11299.76] [PMID: 16825592]
[33]
Cohen-Sela E, Rosenzweig O, Gao J, et al. Alendronate-loaded nanoparticles deplete monocytes and attenuate restenosis. J Control Release 2006; 113(1): 23-30.
[http://dx.doi.org/10.1016/j.jconrel.2006.03.010] [PMID: 16697068]
[34]
Markovsky E, Koroukhov N, Golomb G. Additive-free albumin nanoparticles of alendronate for attenuating inflammation through monocyte inhibition. Nanomedicine 2007; 2(4): 545-53.
[http://dx.doi.org/10.2217/17435889.2.4.545] [PMID: 17716137]
[35]
Lee D, Bae S, Ke Q, et al. Hydrogen peroxide-responsive copolyoxalate nanoparticles for detection and therapy of ischemia-reperfusion injury. J Control Release 2013; 172(3): 1102-10.
[http://dx.doi.org/10.1016/j.jconrel.2013.09.020] [PMID: 24096013]
[36]
Kim H, Kim Y, Kim IH, Kim K, Choi Y. ROS-responsive activatable photosensitizing agent for imaging and photodynamic therapy of activated macrophages. Theranostics 2013; 4(1): 1-11.
[http://dx.doi.org/10.7150/thno.7101] [PMID: 24396511]
[37]
Bietenbeck M, Florian A, Sechtem U, Yilmaz A. The diagnostic value of iron oxide nanoparticles for imaging of myocardial inflammation--quo vadis? J Cardiovasc Magn Reson 2015; 17(1): 54.
[http://dx.doi.org/10.1186/s12968-015-0165-6] [PMID: 26152269]
[38]
McCarthy JR, Jaffer FA, Weissleder R. A macrophage-targeted theranostic nanoparticle for biomedical applications. Small 2006; 2(8-9): 983-7.
[http://dx.doi.org/10.1002/smll.200600139] [PMID: 17193154]
[39]
Polyak B, Fishbein I, Chorny M, et al. High field gradient targeting of magnetic nanoparticle-loaded endothelial cells to the surfaces of steel stents. Proc Natl Acad Sci USA 2008; 105(2): 698-703.
[http://dx.doi.org/10.1073/pnas.0708338105] [PMID: 18182491]
[40]
Ma LL, Feldman MD, Tam JM, et al. Small multifunctional nanoclusters (nanoroses) for targeted cellular imaging and therapy. ACS Nano 2009; 3(9): 2686-96.
[http://dx.doi.org/10.1021/nn900440e] [PMID: 19711944]
[41]
McCarthy JR, Korngold E, Weissleder R, Jaffer FA. A light-activated theranostic nanoagent for targeted macrophage ablation in inflammatory atherosclerosis. Small 2010; 6(18): 2041-9.
[http://dx.doi.org/10.1002/smll.201000596] [PMID: 20721949]
[42]
Cowan DB, Yao R, Akurathi V, et al. Intracoronary delivery of mitochondria to the ischemic heart for cardioprotection. PLoS One 2016; 11(8): e0160889.
[http://dx.doi.org/10.1371/journal.pone.0160889] [PMID: 27500955]
[43]
Barchet TM, Amiji MM. Challenges and opportunities in CNS delivery of therapeutics for neurodegenerative diseases. Expert Opin Drug Deliv 2009; 6(3): 211-25.
[http://dx.doi.org/10.1517/17425240902758188] [PMID: 19290842]
[44]
Mauricio MD, Guerra-Ojeda S, Marchio P, et al. Nanoparticles in medicine: A focus on vascular oxidative stress. Oxid Med Cell Longev 2018; 6231482.
[http://dx.doi.org/10.1155/2018/6231482] [PMID: 30356429]
[45]
Gorabi AM, Kiaie N, Reiner Ž, Carbone F, Montecucco F, Sahebkar A. The therapeutic potential of nanoparticles to reduce inflammation in atherosclerosis. Biomolecules 2019; 9(9): 416.
[http://dx.doi.org/10.3390/biom9090416] [PMID: 31455044]
[46]
Kim KS, Song CG, Kang PM. Targeting oxidative stress using nanoparticles as a theranostic strategy for cardiovascular diseases. Antioxid Redox Signal 2019; 30(5): 733-46.
[http://dx.doi.org/10.1089/ars.2017.7428] [PMID: 29228781]
[47]
Qin H, Zhou T, Yang S, Chen Q, Xing D. Gadolinium(III)-gold nanorods for MRI and photoacoustic imaging dual-modality detection of macrophages in atherosclerotic inflammation. Nanomedicine (Lond) 2013; 8(10): 1611-24.
[http://dx.doi.org/10.2217/nnm.12.168] [PMID: 23351094]
[48]
Li X, Wang C, Tan H, et al. Gold nanoparticles-based SPECT/CT imaging probe targeting for vulnerable atherosclerosis plaques. Biomaterials 2016; 108: 71-80.
[http://dx.doi.org/10.1016/j.biomaterials.2016.08.048] [PMID: 27619241]
[49]
Cheng D, Li X, Zhang C, et al. Detection of vulnerable atherosclerosis plaques with a dual-modal single-photon-emission computed tomography/magnetic resonance imaging probe targeting apoptotic macrophages. ACS Appl Mater Interfaces 2015; 7(4): 2847-55.
[http://dx.doi.org/10.1021/am508118x] [PMID: 25569777]
[50]
Modak M, Frey MA, Yi S, Liu Y, Scott EA. Employment of targeted nanoparticles for imaging of cellular processes in cardiovascular disease. Curr Opin Biotechnol 2020; 66: 59-68.
[http://dx.doi.org/10.1016/j.copbio.2020.06.003] [PMID: 32682272]
[51]
Cormode DP, Roessl E, Thran A, et al. Atherosclerotic plaque composition: Analysis with multicolor CT and targeted gold nanoparticles. Radiology 2010; 256(3): 774-82.
[http://dx.doi.org/10.1148/radiol.10092473] [PMID: 20668118]
[52]
Gao W, Sun Y, Cai M, et al. Copper sulfide nanoparticles as a photothermal switch for TRPV1 signaling to attenuate atherosclerosis. Nat Commun 2018; 9(1): 231.
[http://dx.doi.org/10.1038/s41467-017-02657-z] [PMID: 29335450]
[53]
Wei X, Ying M, Dehaini D, et al. Nanoparticle functionalization with platelet membrane enables multifactored biological targeting and detection of atherosclerosis. ACS Nano 2018; 12(1): 109-16.
[http://dx.doi.org/10.1021/acsnano.7b07720] [PMID: 29216423]
[54]
Erdoğar N, Akkın S, Bilensoy E. Nanocapsules for drug delivery: An updated review of the last decade. Recent Pat Drug Deliv Formul 2018; 12(4): 252-66.
[http://dx.doi.org/10.2174/1872211313666190123153711] [PMID: 30674269]
[55]
Roy J, Oliveira LT, Oger C, et al. Polymeric nanocapsules prevent oxidation of core-loaded molecules: Evidence based on the effects of docosahexaenoic acid and neuroprostane on breast cancer cells proliferation. J Exp Clin Cancer Res 2015; 34(1): 155.
[http://dx.doi.org/10.1186/s13046-015-0273-z] [PMID: 26689718]
[56]
Hu SH, Chen SY, Gao X. Multifunctional nanocapsules for simultaneous encapsulation of hydrophilic and hydrophobic compounds and on-demand release. ACS Nano 2012; 6(3): 2558-65.
[http://dx.doi.org/10.1021/nn205023w] [PMID: 22339040]
[57]
Deng S, Gigliobianco MR, Censi R, Di Martino P. Polymeric nanocapsules as nanotechnological alternative for drug delivery system: Current status, challenges and opportunities. Nanomaterials (Basel) 2020; 10(5): 847.
[http://dx.doi.org/10.3390/nano10050847] [PMID: 32354008]
[58]
Rong X, Xie Y, Hao X, Chen T, Wang Y, Liu Y. Applications of polymeric nanocapsules in field of drug delivery systems. Curr Drug Discov Technol 2011; 8(3): 173-87.
[http://dx.doi.org/10.2174/157016311796799008] [PMID: 21644922]
[59]
Chen H, Chen L, Liang R, Wei J. Ultrasound and magnetic resonance molecular imaging of atherosclerotic neovasculature with perfluorocarbon magnetic nanocapsules targeted against vascular endothelial growth factor receptor 2 in rats. Mol Med Rep 2017; 16(5): 5986-96.
[http://dx.doi.org/10.3892/mmr.2017.7314] [PMID: 28849045]
[60]
El-Gebaly RH, Rageh MM, Maamoun IK. Radio-protective potential of lipoic acid free and nano-capsule against 99mTc-MIBI induced injury in cardio vascular tissue. J XRay Sci Technol 2019; 27(1): 83-96.
[http://dx.doi.org/10.3233/XST-180438] [PMID: 30507603]
[61]
Losa C, Alonso MJ, Vila JL, et al. Reduction of cardiovascular side effects associated with ocular administration of metipranolol by inclusion in polymeric nanocapsules. J Ocul Pharmacol 1992; 8(3): 191-8.
[http://dx.doi.org/10.1089/jop.1992.8.191] [PMID: 1360489]
[62]
Leite EA, Grabe-Guimarães A, Guimarães HN, Machado-Coelho GL, Barratt G, Mosqueira VC. Cardiotoxicity reduction induced by halofantrine entrapped in nanocapsule devices. Life Sci 2007; 80(14): 1327-34.
[http://dx.doi.org/10.1016/j.lfs.2006.12.019] [PMID: 17303179]
[63]
Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 2005; 4(2): 145-60.
[http://dx.doi.org/10.1038/nrd1632] [PMID: 15688077]
[64]
McCarthy JR. Multifunctional agents for concurrent imaging and therapy in cardiovascular disease. Adv Drug Deliv Rev 2010; 62(11): 1023-30.
[http://dx.doi.org/10.1016/j.addr.2010.07.004] [PMID: 20654664]
[65]
Ghaghada KB, Bockhorst KH, Mukundan S Jr, Annapragada AV, Narayana PA. High-resolution vascular imaging of the rat spine using liposomal blood pool MR agent. AJNR Am J Neuroradiol 2007; 28(1): 48-53.
[PMID: 17213423]
[66]
Ayyagari AL, Zhang X, Ghaghada KB, Annapragada A, Hu X, Bellamkonda RV. Long-circulating liposomal contrast agents for magnetic resonance imaging. Magn Reson Med 2006; 55(5): 1023-9.
[http://dx.doi.org/10.1002/mrm.20846] [PMID: 16586449]
[67]
Leuschner F, Nahrendorf M. Molecular imaging of coronary atherosclerosis and myocardial infarction: Considerations for the bench and perspectives for the clinic. Circ Res 2011; 108(5): 593-606.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.232678] [PMID: 21372291]
[68]
Maiseyeu A, Mihai G, Kampfrath T, et al. Gadolinium-containing phosphatidylserine liposomes for molecular imaging of atherosclerosis. J Lipid Res 2009; 50(11): 2157-63.
[http://dx.doi.org/10.1194/jlr.M800405-JLR200] [PMID: 19017616]
[69]
Dellinger A, Olson J, Link K, et al. Functionalization of gadolinium metallofullerenes for detecting atherosclerotic plaque lesions by cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2013; 15(1): 7.
[http://dx.doi.org/10.1186/1532-429X-15-7] [PMID: 23324435]
[70]
Danila D, Partha R, Elrod DB, Lackey M, Casscells SW, Conyers JL. Antibody-labeled liposomes for CT imaging of atherosclerotic plaques: In vitro investigation of an anti-ICAM antibody-labeled liposome containing iohexol for molecular imaging of atherosclerotic plaques via computed tomography. Tex Heart Inst J 2009; 36(5): 393-403.
[PMID: 19876414]
[71]
Eraso LH, Reilly MP, Sehgal C, Mohler ER III. Emerging diagnostic and therapeutic molecular imaging applications in vascular disease. Vasc Med 2011; 16(2): 145-56.
[http://dx.doi.org/10.1177/1358863X10392474] [PMID: 21310769]
[72]
Smith DA, Porter TM, Martinez J, et al. Destruction thresholds of echogenic liposomes with clinical diagnostic ultrasound. Ultrasound Med Biol 2007; 33(5): 797-809.
[http://dx.doi.org/10.1016/j.ultrasmedbio.2006.11.017] [PMID: 17412486]
[73]
Huang SL, Hamilton AJ, Nagaraj A, et al. Improving ultrasound reflectivity and stability of echogenic liposomal dispersions for use as targeted ultrasound contrast agents. J Pharm Sci 2001; 90(12): 1917-26.
[http://dx.doi.org/10.1002/jps.1142] [PMID: 11745750]
[74]
Demos SM, Alkan-Onyuksel H, Kane BJ, et al. In vivo targeting of acoustically reflective liposomes for intravascular and transvascular ultrasonic enhancement. J Am Coll Cardiol 1999; 33(3): 867-75.
[http://dx.doi.org/10.1016/S0735-1097(98)00607-X] [PMID: 10080492]
[75]
Hamilton AJ, Huang SL, Warnick D, et al. Intravascular ultrasound molecular imaging of atheroma components in vivo. J Am Coll Cardiol 2004; 43(3): 453-60.
[http://dx.doi.org/10.1016/j.jacc.2003.07.048] [PMID: 15013130]
[76]
Hagisawa K, Nishioka T, Suzuki R, et al. Enhancement of ultrasonic thrombus imaging using novel liposomal bubbles targeting activated platelet glycoprotein IIb/IIIa complex-in vitro and in vivo study. Int J Cardiol 2011; 152(2): 202-6.
[http://dx.doi.org/10.1016/j.ijcard.2010.07.016] [PMID: 20678821]
[77]
Afergan E, Ben David M, Epstein H, et al. Liposomal simvastatin attenuates neointimal hyperplasia in rats. AAPS J 2010; 12(2): 181-7.
[http://dx.doi.org/10.1208/s12248-010-9173-5] [PMID: 20143196]
[78]
Aso S, Ise H, Takahashi M, et al. Effective uptake of N-acetylglucosamine-conjugated liposomes by cardiomyocytes in vitro. J Control Release 2007; 122(2): 189-98.
[http://dx.doi.org/10.1016/j.jconrel.2007.07.003] [PMID: 17681632]
[79]
Levchenko TS, Hartner WC, Verma DD, Bernstein EA, Torchilin VP. ATP-loaded liposomes for targeted treatment in models of myocardial ischemia. Methods Mol Biol 2010; 605: 361-75.
[http://dx.doi.org/10.1007/978-1-60327-360-2_25] [PMID: 20072894]
[80]
Xu GX, Xie XH, Liu FY, et al. Adenosine triphosphate liposomes: Encapsulation and distribution studies. Pharm Res 1990; 7(5): 553-7.
[http://dx.doi.org/10.1023/A:1015837321087] [PMID: 2367324]
[81]
Liang W, Levchenko T, Khaw BA, Torchilin V. ATP-containing immunoliposomes specific for cardiac myosin. Curr Drug Deliv 2004; 1(1): 1-7.
[http://dx.doi.org/10.2174/1567201043480063] [PMID: 16305365]
[82]
Verma DD, Levchenko TS, Bernstein EA, Torchilin VP. ATP-loaded liposomes effectively protect mechanical functions of the myocardium from global ischemia in an isolated rat heart model. J Control Release 2005; 108(2-3): 460-71.
[http://dx.doi.org/10.1016/j.jconrel.2005.08.029] [PMID: 16233928]
[83]
Verma DD, Levchenko TS, Bernstein EA, Mongayt D, Torchilin VP. ATP-loaded immunoliposomes specific for cardiac myosin provide improved protection of the mechanical functions of myocardium from global ischemia in an isolated rat heart model. J Drug Target 2006; 14(5): 273-80.
[http://dx.doi.org/10.1080/10611860600763103] [PMID: 16882547]
[84]
Verma DD, Hartner WC, Levchenko TS, Bernstein EA, Torchilin VP. ATP-loaded liposomes effectively protect the myocardium in rabbits with an acute experimental myocardial infarction. Pharm Res 2005; 22(12): 2115-20.
[http://dx.doi.org/10.1007/s11095-005-8354-x] [PMID: 16258743]
[85]
Ylitalo R, Mönkkönen J, Ylä-Herttuala S. Effects of liposome-encapsulated bisphosphonates on acetylated LDL metabolism, lipid accumulation and viability of phagocyting cells. Life Sci 1998; 62(5): 413-22.
[http://dx.doi.org/10.1016/S0024-3205(97)01134-X] [PMID: 9449231]
[86]
Danenberg HD, Golomb G, Groothuis A, et al. Liposomal alendronate inhibits systemic innate immunity and reduces in-stent neointimal hyperplasia in rabbits. Circulation 2003; 108(22): 2798-804.
[http://dx.doi.org/10.1161/01.CIR.0000097002.69209.CD] [PMID: 14610008]
[87]
Epstein H, Gutman D, Cohen-Sela E, et al. Preparation of alendronate liposomes for enhanced stability and bioactivity: In vitro and in vivo characterization. AAPS J 2008; 10(4): 505-15.
[http://dx.doi.org/10.1208/s12248-008-9060-5] [PMID: 18937071]
[88]
Baker AH. Designing gene delivery vectors for cardiovascular gene therapy. Prog Biophys Mol Biol 2004; 84(2-3): 279-99.
[http://dx.doi.org/10.1016/j.pbiomolbio.2003.11.006] [PMID: 14769440]
[89]
Khurana R, Shafi S, Martin J, Zachary I. Vascular endothelial growth factor gene transfer inhibits neointimal macrophage accumulation in hypercholesterolemic rabbits. Arterioscler Thromb Vasc Biol 2004; 24(6): 1074-80.
[http://dx.doi.org/10.1161/01.ATV.0000128127.57688.e0] [PMID: 15072995]
[90]
Abegunewardene N, Schmidt KH, Vosseler M, et al. Local transient myocardial liposomal gene transfer of inducible nitric oxide synthase does not aggravate myocardial function and fibrosis and leads to moderate neovascularization in chronic myocardial ischemia in pigs. Microcirculation 2010; 17(1): 69-78.
[http://dx.doi.org/10.1111/j.1549-8719.2010.00002.x] [PMID: 20141602]
[91]
Wang X, Huang H, Zhang L, Bai Y, Chen H. PCM and TAT co-modified liposome with improved myocardium delivery: In vitro and in vivo evaluations. Drug Deliv 2017; 24(1): 339-45.
[http://dx.doi.org/10.1080/10717544.2016.1253121] [PMID: 28165817]
[92]
Dong Z, Guo J, Xing X, Zhang X, Du Y, Lu Q. RGD modified and PEGylated lipid nanoparticles loaded with puerarin: Formulation, characterization and protective effects on acute myocardial ischemia model. Biomed Pharmacother 2017; 89: 297-304.
[http://dx.doi.org/10.1016/j.biopha.2017.02.029] [PMID: 28236703]
[93]
Shao M, Yang W, Han G. Protective effects on myocardial infarction model: Delivery of schisandrin B using matrix metalloproteinase-sensitive peptide-modified, PEGylated lipid nanoparticles. Int J Nanomedicine 2017; 12: 7121-30.
[http://dx.doi.org/10.2147/IJN.S141549] [PMID: 29026305]
[94]
Oumzil K, Ramin MA, Lorenzato C, et al. Solid lipid nanoparticles for image-guided therapy of atherosclerosis. Bioconjug Chem 2016; 27(3): 569-75.
[http://dx.doi.org/10.1021/acs.bioconjchem.5b00590] [PMID: 26751997]
[95]
Fuentes E, Yameen B, Bong SJ, Salvador-Morales C, Palomo I, Vilos C. Antiplatelet effect of differentially charged PEGylated lipid-polymer nanoparticles. Nanomedicine 2017; 13(3): 1089-94.
[http://dx.doi.org/10.1016/j.nano.2016.10.010] [PMID: 27789259]
[96]
Gao Y, Gu W, Chen L, Xu Z, Li Y. The role of daidzein-loaded sterically stabilized solid lipid nanoparticles in therapy for cardio-cerebrovascular diseases. Biomaterials 2008; 29(30): 4129-36.
[http://dx.doi.org/10.1016/j.biomaterials.2008.07.008] [PMID: 18667234]
[97]
Guo J, Xing X, Lv N, et al. Therapy for myocardial infarction: In vitro and in vivo evaluation of puerarin-prodrug and tanshinone co-loaded lipid nanoparticulate system. Biomed Pharmacother 2019; 120: 109480.
[http://dx.doi.org/10.1016/j.biopha.2019.109480] [PMID: 31562980]
[98]
Paliwal R, Paliwal SR, Agrawal GP, Vyas SP. Biomimetic solid lipid nanoparticles for oral bioavailability enhancement of low molecular weight heparin and its lipid conjugates: In vitro and in vivo evaluation. Mol Pharm 2011; 8(4): 1314-21.
[http://dx.doi.org/10.1021/mp200109m] [PMID: 21598996]
[99]
Pandya NT, Jani P, Vanza J, Tandel H. Solid lipid nanoparticles as an efficient drug delivery system of olmesartan medoxomil for the treatment of hypertension. Colloids Surf B Biointerfaces 2018; 165: 37-44.
[http://dx.doi.org/10.1016/j.colsurfb.2018.02.011] [PMID: 29453084]
[100]
Tan ME, He CH, Jiang W, et al. Development of solid lipid nanoparticles containing total flavonoid extract from Dracocephalum moldavica L. and their therapeutic effect against myocardial ischemia-reperfusion injury in rats. Int J Nanomedicine 2017; 12: 3253-65.
[http://dx.doi.org/10.2147/IJN.S131893] [PMID: 28458544]
[101]
Gupta AS. Nanomedicine approaches in vascular disease: A review. Nanomedicine (Lond) 2011; 7(6): 763-79.
[http://dx.doi.org/10.1016/j.nano.2011.04.001] [PMID: 21601009]
[102]
Mourya VK, Inamdar N, Nawale RB, Kulthe SS. Polymeric micelles: General considerations and their applications. Indian Journal of Pharmaceutical Education and Research 2011; 45(2): 128-38.
[103]
Trinh HM, Joseph M, Cholkar K, Mitra R, Mitra AK. Nanomicelles in diagnosis and drug delivery.Emerging nanotechnologies for diagnostics, drug delivery and medical devices. Elsevier 2017; pp. 45-58.
[http://dx.doi.org/10.1016/B978-0-323-42978-8.00003-6]
[104]
Eniola-Adefeso O, Heslinga MJ, Porter TM. Design of nanovectors for therapy and imaging of cardiovascular diseases. Methodist DeBakey Cardiovasc J 2012; 8(1): 13-7.
[http://dx.doi.org/10.14797/mdcj-8-1-13] [PMID: 22891105]
[105]
Ma R, Ma ZG, Zhen CL, et al. Design, synthesis and characterization of poly (methacrylic acid-niclosamide) and its effect on arterial function. Mater Sci Eng C 2017; 77: 352-9.
[http://dx.doi.org/10.1016/j.msec.2017.03.161] [PMID: 28532040]
[106]
Chmielowski RA, Abdelhamid DS, Faig JJ, et al. Athero-inflammatory nanotherapeutics: Ferulic acid-based poly(anhydride-ester) nanoparticles attenuate foam cell formation by regulating macrophage lipogenesis and reactive oxygen species generation. Acta Biomater 2017; 57: 85-94.
[http://dx.doi.org/10.1016/j.actbio.2017.05.029] [PMID: 28522412]
[107]
Singla P, Singh O, Chabba S, Mahajan RK. Pluronic-SAILs (surface active ionic liquids) mixed micelles as efficient hydrophobic quercetin drug carriers. J Mol Liq 2018; 249: 294-303.
[http://dx.doi.org/10.1016/j.molliq.2017.11.044]
[108]
Wu T, Chen X, Wang Y, et al. Aortic plaque-targeted andrographolide delivery with oxidation-sensitive micelle effectively treats atherosclerosis via simultaneous ROS capture and anti-inflammation. Nanomedicine (Lond) 2018; 14(7): 2215-26.
[http://dx.doi.org/10.1016/j.nano.2018.06.010] [PMID: 29964220]
[109]
Akagi D, Oba M, Koyama H, et al. Biocompatible micellar nanovectors achieve efficient gene transfer to vascular lesions without cytotoxicity and thrombus formation. Gene Ther 2007; 14(13): 1029-38.
[http://dx.doi.org/10.1038/sj.gt.3302945] [PMID: 17460721]
[110]
El-Gendy MA, El-Assal MI, Tadros MI, El-Gazayerly ON. Olmesartan medoxomil-loaded mixed micelles: Preparation, characterization and in-vitro evaluation. Future J Pharma Sci 2017; 3(2): 90-104.
[http://dx.doi.org/10.1016/j.fjps.2017.04.001]
[111]
Norwood D, Branch E, Smith B, Honeywell M. Olmesartan medoxomil for hypertension: A clinical review. Drug Forecast 2002; 27(12): 611-8.
[112]
Wang J, Seo MJ, Deci MB, Weil BR, Canty JM, Nguyen J. Effect of CCR2 inhibitor-loaded lipid micelles on inflammatory cell migration and cardiac function after myocardial infarction. Int J Nanomedicine 2018; 13: 6441-51.
[http://dx.doi.org/10.2147/IJN.S178650] [PMID: 30410330]
[113]
Wennink JWH, Liu Y, Mäkinen PI, et al. Macrophage selective photodynamic therapy by meta-tetra(hydroxyphenyl)chlorin loaded polymeric micelles: A possible treatment for cardiovascular diseases. Eur J Pharm Sci 2017; 107: 112-25.
[http://dx.doi.org/10.1016/j.ejps.2017.06.038] [PMID: 28679107]
[114]
Caminade AM, Laurent R, Zablocka M, Majoral JP. Organophosphorus chemistry for the synthesis of dendrimers. Molecules 2012; 17(11): 13605-21.
[http://dx.doi.org/10.3390/molecules171113605] [PMID: 23159922]
[115]
Criscione JM, Le BL, Stern E, et al. Self-assembly of pH-responsive fluorinated dendrimer-based particulates for drug delivery and noninvasive imaging. Biomaterials 2009; 30(23-24): 3946-55.
[http://dx.doi.org/10.1016/j.biomaterials.2009.04.014] [PMID: 19443028]
[116]
Tomalia DA, Naylor AM, Goddard WA III. Starburst dendrimers: Molecular‐level control of size, shape, surface chemistry, topology, and flexibility from atoms to macroscopic matter. Angew Chem Int Ed Engl 1990; 29(2): 138-75.
[http://dx.doi.org/10.1002/anie.199001381]
[117]
Jansen JF, de Brabander-van den Berg EM, Meijer EW. Encapsulation of guest molecules into a dendritic box. Science 1994; 266(5188): 1226-9.
[http://dx.doi.org/10.1126/science.266.5188.1226] [PMID: 17810265]
[118]
Vögtle F, Richardt G, Werner N. Dendrimer chemistry: Concepts, syntheses, properties, applications. NJ, USA: John Wiley & Sons 2009.
[http://dx.doi.org/10.1002/9783527626953]
[119]
Ye K, Qin J, Peng Z, et al. Polyethylene glycol-modified dendrimer-entrapped gold nanoparticles enhance CT imaging of blood pool in atherosclerotic mice. Nanoscale Res Lett 2014; 9(1): 529.
[http://dx.doi.org/10.1186/1556-276X-9-529] [PMID: 25288918]
[120]
Qin J, Peng C, Zhao B, et al. Noninvasive detection of macrophages in atherosclerotic lesions by computed tomography enhanced with PEGylated gold nanoparticles. Int J Nanomedicine 2014; 9: 5575-90.
[PMID: 25506213]
[121]
Liu J, Gu C, Cabigas EB, et al. Functionalized dendrimer-based delivery of angiotensin type 1 receptor siRNA for preserving cardiac function following infarction. Biomaterials 2013; 34(14): 3729-36.
[http://dx.doi.org/10.1016/j.biomaterials.2013.02.008] [PMID: 23433774]
[122]
Yu M, Jie X, Xu L, et al. Recent advances in dendrimer research for cardiovascular diseases. Biomacromolecules 2015; 16(9): 2588-98.
[http://dx.doi.org/10.1021/acs.biomac.5b00979] [PMID: 26310544]
[123]
Mohtavinejad N, Amanlou M, Bitarafan-Rajabi A, Khalaj A, Pormohammad A, Ardestani MS. Technetium-99 m-PEGylated dendrimer-G2-(Dabcyle-Lys6,Phe7)-pHBSP: A novel nano-radiotracer for molecular and early detecting of cardiac ischemic region. Bioorg Chem 2020; 98: 103731.
[http://dx.doi.org/10.1016/j.bioorg.2020.103731] [PMID: 32171100]
[124]
Chanyshev B, Shainberg A, Isak A, et al. Anti-ischemic effects of multivalent dendrimeric A₃ adenosine receptor agonists in cultured cardiomyocytes and in the isolated rat heart. Pharmacol Res 2012; 65(3): 338-46.
[http://dx.doi.org/10.1016/j.phrs.2011.11.013] [PMID: 22154845]
[125]
Wang Y, Bai Y, Price C, et al. Combination of electroporation and DNA/dendrimer complexes enhances gene transfer into murine cardiac transplants. Am J Transplant 2001; 1(4): 334-8.
[http://dx.doi.org/10.1034/j.1600-6143.2001.10408.x] [PMID: 12099377]
[126]
Johnson TA, Stasko NA, Matthews JL, et al. Reduced ischemia/reperfusion injury via glutathione-initiated nitric oxide-releasing dendrimers. Nitric Oxide 2010; 22(1): 30-6.
[http://dx.doi.org/10.1016/j.niox.2009.11.002] [PMID: 19914388]
[127]
Magruder JT, Crawford TC, Lin YA, et al. Selective localization of a novel dendrimer nanoparticle in myocardial ischemia-reperfusion injury. Ann Thorac Surg 2017; 104(3): 891-8.
[http://dx.doi.org/10.1016/j.athoracsur.2016.12.051] [PMID: 28366468]
[128]
Huang ZJ, Yi B, Yuan H, Yang GP. Efficient delivery of connective tissue growth factor shRNA using PAMAM nanoparticles. Genet Mol Res 2014; 13(3): 6716-23.
[http://dx.doi.org/10.4238/2014.August.28.15] [PMID: 25177951]
[129]
Zhang B, Zhang Y, Liang W, et al. Nanogold-penetrated poly(amidoamine) dendrimer for enzyme-free electrochemical immunoassay of cardiac biomarker using cathodic stripping voltammetric method. Anal Chim Acta 2016; 904: 51-7.
[http://dx.doi.org/10.1016/j.aca.2015.11.025] [PMID: 26724762]
[130]
Zhou Y, He J, Zhang C, et al. Novel Ce (III)-metal organic framework with a luminescent property to fabricate an electrochemiluminescence immunosensor. ACS Appl Mater Interfaces 2020; 12(1): 338-46.
[http://dx.doi.org/10.1021/acsami.9b19246] [PMID: 31794188]
[131]
Zhu K, Guo C, Xia Y, et al. Transplantation of novel vascular endothelial growth factor gene delivery system manipulated skeletal myoblasts promote myocardial repair. Int J Cardiol 2013; 168(3): 2622-31.
[http://dx.doi.org/10.1016/j.ijcard.2013.03.041] [PMID: 23578891]
[132]
Liu H, Shen M, Zhao J, et al. Tunable synthesis and acetylation of dendrimer-entrapped or dendrimer-stabilized gold-silver alloy nanoparticles. Colloids Surf B Biointerfaces 2012; 94: 58-67.
[http://dx.doi.org/10.1016/j.colsurfb.2012.01.019] [PMID: 22326342]
[133]
Liu H, Wang H, Guo R, et al. Size-controlled synthesis of dendrimer-stabilized silver nanoparticles for X-ray computed tomography imaging applications. Polym Chem 2010; 1(10): 1677-83.
[http://dx.doi.org/10.1039/c0py00218f]
[134]
Wang H, Zheng L, Peng C, et al. Computed tomography imaging of cancer cells using acetylated dendrimer-entrapped gold nanoparticles. Biomaterials 2011; 32(11): 2979-88.
[http://dx.doi.org/10.1016/j.biomaterials.2011.01.001] [PMID: 21277019]
[135]
Wang H, Zheng L, Guo R, et al. Dendrimer-entrapped gold nanoparticles as potential CT contrast agents for blood pool imaging. Nanoscale Res Lett 2012; 7(1): 190.
[http://dx.doi.org/10.1186/1556-276X-7-190] [PMID: 22429280]
[136]
Shen H, Zhang L, Liu M, Zhang Z. Biomedical applications of graphene. Theranostics 2012; 2(3): 283-94.
[http://dx.doi.org/10.7150/thno.3642] [PMID: 22448195]
[137]
Liao C, Li Y, Tjong SC. Graphene nanomaterials: Synthesis, biocompatibility, and cytotoxicity. Int J Mol Sci 2018; 19(11): 3564.
[http://dx.doi.org/10.3390/ijms19113564] [PMID: 30424535]
[138]
Priyadarsini S, Mohanty S, Mukherjee S, Basu S, Mishra M. Graphene and graphene oxide as nanomaterials for medicine and biology application. J Nanostructure Chem 2018; 8(2): 123-37.
[http://dx.doi.org/10.1007/s40097-018-0265-6]
[139]
Lee SK, Kim H, Shim BS. Graphene: An emerging material for biological tissue engineering. Carbon Letters 2013; 14(2): 63-75.
[http://dx.doi.org/10.5714/CL.2013.14.2.063]
[140]
Wu SY, An SS, Hulme J. Current applications of graphene oxide in nanomedicine. Int J Nanomedicine 2015; 10(Spec Iss): 9-24.
[PMID: 26345988]
[141]
Nanda SS, Papaefthymiou GC, Yi DK. Functionalization of graphene oxide and its biomedical applications. Crit Rev Solid State Mater Sci 2015; 40(5): 291-315.
[http://dx.doi.org/10.1080/10408436.2014.1002604]
[142]
Inagaki M, Kim YA, Endo M. Graphene: Preparation and structural perfection. J Mater Chem 2011; 21(10): 3280-94.
[http://dx.doi.org/10.1039/C0JM02991B]
[143]
Delle LE, Pachauri V, Sharma S, et al. ScFv-modified graphene- coated IDE-arrays for ‘label-free’ screening of cardiovascular disease biomarkers in physiological saline. Biosens Bioelectron 2018; 102: 574-81.
[http://dx.doi.org/10.1016/j.bios.2017.12.005] [PMID: 29241061]
[144]
Jiang L, Chen D, Wang Z, et al. Preparation of an electrically conductive graphene oxide/chitosan scaffold for cardiac tissue engineering. Appl Biochem Biotechnol 2019; 188(4): 952-64.
[http://dx.doi.org/10.1007/s12010-019-02967-6] [PMID: 30740624]
[145]
Shin SR, Zihlmann C, Akbari M, et al. Reduced graphene oxide-gelMA hybrid hydrogels as scaffolds for cardiac tissue engineering. Small 2016; 12(27): 3677-89.
[http://dx.doi.org/10.1002/smll.201600178] [PMID: 27254107]
[146]
Smith AST, Yoo H, Yi H, et al. Micro- and nano-patterned conductive graphene-PEG hybrid scaffolds for cardiac tissue engineering. Chem Commun 2017; 53(53): 7412-5.
[http://dx.doi.org/10.1039/C7CC01988B] [PMID: 28634611]
[147]
Nazari H, Azadi S, Hatamie S, et al. Fabrication of graphene‐silver/polyurethane nanofibrous scaffolds for cardiac tissue engineering. Polym Adv Technol 2019; 30(8): 2086-99.
[http://dx.doi.org/10.1002/pat.4641]
[148]
Liu F, Ding N, Huo D, et al. Surface-engineered monocyte inhibits atherosclerotic plaque destabilization via graphene quantum dot-mediated microrna delivery. Adv Healthc Mater 2019; 8(15): e1900386.
[http://dx.doi.org/10.1002/adhm.201900386] [PMID: 31168947]
[149]
Sharma A, Jang J. Flexible electrical aptasensor using dielectrophoretic assembly of graphene oxide and its subsequent reduction for cardiac biomarker detection. Sci Rep 2019; 9(1): 5970.
[http://dx.doi.org/10.1038/s41598-019-42506-1] [PMID: 30979922]
[150]
Liu D, Zeng Y, Zhou G, et al. Fluorometric determination of cardiac myoglobin based on energy transfer from a pyrene-labeled aptamer to graphene oxide. Mikrochim Acta 2019; 186(5): 287.
[http://dx.doi.org/10.1007/s00604-019-3385-x] [PMID: 30989406]
[151]
Saravanan S, Sareen N, Abu-El-Rub E, et al. Graphene oxide-gold nanosheets containing chitosan scaffold improves ventricular contractility and function after implantation into infarcted heart. Sci Rep 2018; 8(1): 15069.
[http://dx.doi.org/10.1038/s41598-018-33144-0] [PMID: 30305684]
[152]
Wang J, Cui C, Nan H, et al. Graphene sheet-induced global maturation of cardiomyocytes derived from human induced pluripotent stem cells. ACS Appl Mater Interfaces 2017; 9(31): 25929-40.
[http://dx.doi.org/10.1021/acsami.7b08777] [PMID: 28718622]
[153]
Norahan MH, Amroon M, Ghahremanzadeh R, Mahmoodi M, Baheiraei N. Electroactive graphene oxide-incorporated collagen assisting vascularization for cardiac tissue engineering. J Biomed Mater Res A 2019; 107(1): 204-19.
[http://dx.doi.org/10.1002/jbm.a.36555] [PMID: 30371973]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy