Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

Neurological Effects of SARS-CoV-2 and Neurotoxicity of Antiviral Drugs Against COVID-19

Author(s): Büşra Ünlü, Rahime Simsek*, Selinay Başak Erdemli Köse, Anıl Yirün and Pinar Erkekoglu

Volume 22, Issue 2, 2022

Published on: 29 June, 2021

Page: [213 - 231] Pages: 19

DOI: 10.2174/1389557521666210629100630

Price: $65

Abstract

Abstract: Severe Acute Respiratory Syndrome (SARS) is caused by different SARS viruses. In 2020, novel coronavirus (SARS-CoV-2) led to an ongoing pandemic, known as “Coronavirus Disease 2019 (COVID-19)”. The disease can spread among individuals through direct (via saliva, respiratory secretions, or secretion droplets) or indirect (through contaminated objects or surfaces) contact. The pandemic has spread rapidly from Asia to Europe and later to America. It continues to affect all parts of the world at an increasing rate. There have been over 92 million confirmed cases of COVID-19 by mid-January 2021. The similarity of homological sequences between SARS-CoV-2 and other SARSCoVs is high. In addition, clinical symptoms of SARS-CoV-2 and other SARS viruses show similarities. However, some COVID-19 cases show neurologic signs like headache, loss of smell, hiccups and encephalopathy. The drugs used in the palliative treatment of the disease also have some neurotoxic effects. Currently, there are approved vaccines for COVID-19. However, there is a need for specific therapeutics against COVID-19. This review will describe the neurological effects of SARS-CoV-2 and the neurotoxicity of COVID-19 drugs used in clinics. Drugs used in the treatment of COVID-19 will be evaluated by their mechanism of action and their toxicological effects.

Keywords: COVID-19, neurotoxicity, SARS-CoV-2, olfactory epithelium, newborn, antiviral drugs.

Graphical Abstract
[1]
The 2019-nCoV Outbreak Joint Field Epidemiology Investigation Team, Qun, Li. An Outbreak of NCIP (2019-nCoV) Infection in China-Wuhan, Hubei Province, 2019−2020. China CDC Weekly, 2020, 2(5), 79-80.
[http://dx.doi.org/10.46234/ccdcw2020.022]
[2]
Chan, J.F.; Kok, K.H.; Zhu, Z.; Chu, H.; To, K.K.; Yuan, S.; Yuen, K.Y. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg. Microbes Infect., 2020, 9(1), 221-236.
[http://dx.doi.org/10.1080/22221751.2020.1719902] [PMID: 31987001]
[3]
Chiappelli, F. Towards Neuro-COVID-19. Bioinformation, 2020, 16(4), 288-292.
[http://dx.doi.org/10.6026/97320630016288] [PMID: 32773986]
[4]
Hassan, S.A.; Sheikh, F.N.; Jamal, S.; Ezeh, J.K.; Akhtar, A. Coronavirus (COVID-19): A Review of Clinical Features, Diagnosis, and Treatment. Cureus, 2020, 12(3)e7355
[http://dx.doi.org/10.7759/cureus.7355] [PMID: 32328367]
[5]
Wang, Y.; Wang, Y.; Chen, Y.; Qin, Q. Unique epidemiological and clinical features of the emerging 2019 novel coronavirus pneumonia (COVID-19) implicate special control measures. J. Med. Virol., 2020, 92(6), 568-576.
[http://dx.doi.org/10.1002/jmv.25748] [PMID: 32134116]
[6]
Li, Y.C.; Bai, W.Z.; Hashikawa, T. The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19 patients. J. Med. Virol., 2020, 92(6), 552-555.
[http://dx.doi.org/10.1002/jmv.25728] [PMID: 32104915]
[7]
Wu, Y.; Xu, X.; Chen, Z.; Duan, J.; Hashimoto, K.; Yang, L.; Liu, C.; Yang, C. Nervous system involvement after infection with COVID-19 and other coronaviruses. Brain Behav. Immun., 2020, 87, 18-22.
[http://dx.doi.org/10.1016/j.bbi.2020.03.031] [PMID: 32240762]
[8]
Baig, A.M.; Khaleeq, A.; Ali, U.; Syeda, H. Evidence of the COVID-19 Virus Targeting the CNS: Tissue Distribution, Host-Virus Interaction, and Proposed Neurotropic Mechanisms. ACS Chem. Neurosci., 2020, 11(7), 995-998.
[http://dx.doi.org/10.1021/acschemneuro.0c00122] [PMID: 32167747]
[9]
Xia, H.; Lazartigues, E. Angiotensin-converting enzyme 2 in the brain: properties and future directions. J. Neurochem., 2008, 107(6), 1482-1494.
[http://dx.doi.org/10.1111/j.1471-4159.2008.05723.x] [PMID: 19014390]
[10]
Ovalı, F. SARS-CoV-2 Infection and the Newborn. Front Pediatr., 2020, 8, 294.
[http://dx.doi.org/10.3389/fped.2020.00294] [PMID: 32574287]
[11]
Scavone, C.; Brusco, S.; Bertini, M.; Sportiello, L.; Rafaniello, C.; Zoccoli, A.; Berrino, L.; Racagni, G.; Rossi, F.; Capuano, A. Current pharmacological treatments for COVID-19: What’s next? Br. J. Pharmacol., 2020, 177(21), 4813-4824.
[http://dx.doi.org/10.1111/bph.15072] [PMID: 32329520]
[12]
Luo, Z.; Ang, M.J.Y.; Chan, S.Y.; Yi, Z.; Goh, Y.Y.; Yan, S.; Tao, J.; Liu, K.; Li, X.; Zhang, H.; Huang, W.; Liu, X. Combating the Coronavirus Pandemic: Early Detection, Medical Treatment, and a Concerted Effort by the Global Community. Research (Wash D C), 2020, 20206925296
[http://dx.doi.org/10.34133/2020/6925296] [PMID: 32607499]
[13]
Altay, O.; Mohammadi, E.; Lam, S.; Turkez, H.; Boren, J.; Nielsen, J.; Uhlen, M.; Mardinoglu, A. Current status of covid-19 therapies and drug repositioning applications. iscience, 2020, 23(7), 101303,
[14]
Mao, L.; Jin, H.; Wang, M.; Hu, Y.; Chen, S.; He, Q.; Chang, J.; Hong, C.; Zhou, Y.; Wang, D.; Miao, X.; Li, Y.; Hu, B. Neurologic Manifestations of Hospitalized Patients With Coronavirus Disease 2019 in Wuhan, China. JAMA Neurol., 2020, 77(6), 683-690.
[http://dx.doi.org/10.1001/jamaneurol.2020.1127] [PMID: 32275288]
[15]
Rodriguez-es, A.J.; Cardona-Ospina, J.A.; Gutierrez-Ocampo, E.; Villamizar-Pena, R.; Holguin-Rivera, Y.; Escalera-Antezana, J.P.; Alvarado-Arnez, L.E.; Bonilla-Aldana, D.K.; Franco-Paredes, C.; Henao-Martinez, A.F.; Paniz-Mondolfi, A.; Lagos-Grisales, G.J.; Ramirez-Vallejo, E.; Suarez, J.A.; Zambrano, L.I.; Villamil-Gomez, W.E.; Balbin-Ramon, G.J.; Rabaan, A.A.; Harapan, H.; Dhama, K.; Nishiura, H.; Kataoka, H.; Ahmad, T.; Sah, R. Latin American Network of Coronavirus Disease, C.-R. E. a. h. w. l. o., Clinical, laboratory and imaging features of COVID-19: A systematic review and meta-analysis. Travel Med. Infect. Dis., 2020, 34101623
[http://dx.doi.org/10.1016/j.tmaid.2020.101623]
[16]
Filatov, A.; Sharma, P.; Hindi, F.; Espinosa, P.S. Neurological Complications of Coronavirus Disease (COVID-19): Encephalopathy. Cureus, 2020, 12(3)e7352
[http://dx.doi.org/10.7759/cureus.7352] [PMID: 32328364]
[17]
Chen, N.; Zhou, M.; Dong, X.; Qu, J.; Gong, F.; Han, Y.; Qiu, Y.; Wang, J.; Liu, Y.; Wei, Y.; Xia, J.; Yu, T.; Zhang, X.; Zhang, L. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet, 2020, 395(10223), 507-513.
[http://dx.doi.org/10.1016/S0140-6736(20)30211-7] [PMID: 32007143]
[18]
Sharifi-Razavi, A.; Karimi, N.; Rouhani, N. COVID-19 and intracerebral haemorrhage: causative or coincidental? New Microbes New Infect., 2020, 35100669
[http://dx.doi.org/10.1016/j.nmni.2020.100669] [PMID: 32322398]
[19]
Lau, K.K.; Yu, W.C.; Chu, C.M.; Lau, S.T.; Sheng, B.; Yuen, K.Y. Possible central nervous system infection by SARS coronavirus. Emerg. Infect. Dis., 2004, 10(2), 342-344.
[http://dx.doi.org/10.3201/eid1002.030638] [PMID: 15030709]
[20]
Poyiadji, N.; Shahin, G.; Noujaim, D.; Stone, M.; Patel, S.; Griffith, B. COVID-19-associated Acute Hemorrhagic Necrotizing Encephalopathy: Imaging Features. Radiology, 2020, 296(2), E119-E120.
[http://dx.doi.org/10.1148/radiol.2020201187] [PMID: 32228363]
[21]
Kansagra, S.M.; Gallentine, W.B. Cytokine storm of acute necrotizing encephalopathy. Pediatr. Neurol., 2011, 45(6), 400-402.
[http://dx.doi.org/10.1016/j.pediatrneurol.2011.09.007] [PMID: 22115004]
[22]
Zhou, L.; Zhang, M.; Wang, J.; Gao, J. Sars-Cov-2: Underestimated damage to nervous system. Travel Med. Infect. Dis., 2020, 36101642
[http://dx.doi.org/10.1016/j.tmaid.2020.101642] [PMID: 32220634]
[23]
Moriguchi, T.; Harii, N.; Goto, J.; Harada, D.; Sugawara, H.; Takamino, J.; Ueno, M.; Sakata, H.; Kondo, K.; Myose, N.; Nakao, A.; Takeda, M.; Haro, H.; Inoue, O.; Suzuki-Inoue, K.; Kubokawa, K.; Ogihara, S.; Sasaki, T.; Kinouchi, H.; Kojin, H.; Ito, M.; Onishi, H.; Shimizu, T.; Sasaki, Y.; Enomoto, N.; Ishihara, H.; Furuya, S.; Yamamoto, T.; Shimada, S. A first case of meningitis/encephalitis associated with SARS-Coronavirus-2. Int. J. Infect. Dis., 2020, 94, 55-58.
[http://dx.doi.org/10.1016/j.ijid.2020.03.062] [PMID: 32251791]
[24]
Giacomelli, A.; Pezzati, L.; Conti, F.; Bernacchia, D.; Siano, M.; Oreni, L.; Rusconi, S.; Gervasoni, C.; Ridolfo, A.L.; Rizzardini, G.; Antinori, S.; Galli, M. Self-reported Olfactory and Taste Disorders in Patients With Severe Acute Respiratory Coronavirus 2 Infection: A Cross-sectional Study. Clin. Infect. Dis., 2020, 71(15), 889-890.
[http://dx.doi.org/10.1093/cid/ciaa330] [PMID: 32215618]
[25]
Karimi, N.; Razavi, A.S.; Rouhani, N. Frequent Convulsive Seizures in an Adult Patient with COVID-19: A Case Report. Iran Red Crescent Me, 2020, 22(3)e102828
[http://dx.doi.org/10.5812/ircmj.102828]
[26]
Yasri, S.; Wiwanikit, V. COVID-19 and Epilepsy. Ann. Indian Acad. Neurol., 2020, 23(Suppl. 1), S43.
[PMID: 32419755]
[27]
Lu, L.; Xiong, W.; Liu, D.; Liu, J.; Yang, D.; Li, N.; Mu, J.; Guo, J.; Li, W.; Wang, G.; Gao, H.; Zhang, Y.; Lin, M.; Chen, L.; Shen, S.; Zhang, H.; Sander, J.W.; Luo, J.; Chen, S.; Zhou, D. New onset acute symptomatic seizure and risk factors in coronavirus disease 2019: A retrospective multicenter study. Epilepsia, 2020, 61(6), e49-e53.
[http://dx.doi.org/10.1111/epi.16524] [PMID: 32304092]
[28]
Nicastri, E.; Petrosillo, N.; Ascoli Bartoli, T.; Lepore, L.; Mondi, A.; Palmieri, F.; D’Offizi, G.; Marchioni, L.; Murachelli, S.; Ippolito, G.; Antinori, A. National Institute for the Infectious Diseases “L. Spallanzani”, IRCCS. Recommendations for COVID-19 clinical management. Infect. Dis. Rep., 2020, 12(1), 8543.
[http://dx.doi.org/10.4081/idr.2020.8543] [PMID: 32218915]
[29]
Badyal, D.K.; Mahajan, R. Chloroquine: Can it be a Novel Drug for COVID-19. Int. J. Appl. Basic Med. Res., 2020, 10(2), 128-130.
[PMID: 32363157]
[30]
Li, Y.; Zhao, R.; Zheng, S.; Chen, X.; Wang, J.; Sheng, X.; Zhou, J.; Cai, H.; Fang, Q.; Yu, F.; Fan, J.; Xu, K.; Chen, Y.; Sheng, J. Lack of Vertical Transmission of Severe Acute Respiratory Syndrome Coronavirus 2, China. Emerg. Infect. Dis., 2020, 26(6), 1335-1336.
[http://dx.doi.org/10.3201/eid2606.200287] [PMID: 32134381]
[31]
Chen, D.; Yang, H.; Cao, Y.; Cheng, W.; Duan, T.; Fan, C.; Fan, S.; Feng, L.; Gao, Y.; He, F.; He, J.; Hu, Y.; Jiang, Y.; Li, Y.; Li, J.; Li, X.; Li, X.; Lin, K.; Liu, C.; Liu, J.; Liu, X.; Pan, X.; Pang, Q.; Pu, M.; Qi, H.; Shi, C.; Sun, Y.; Sun, J.; Wang, X.; Wang, Y.; Wang, Z.; Wang, Z.; Wang, C.; Wu, S.; Xin, H.; Yan, J.; Zhao, Y.; Zheng, J.; Zhou, Y.; Zou, L.; Zeng, Y.; Zhang, Y.; Guan, X. Expert consensus for managing pregnant women and neonates born to mothers with suspected or confirmed novel coronavirus (COVID-19) infection. Int. J. Gynaecol. Obstet., 2020, 149(2), 130-136.
[http://dx.doi.org/10.1002/ijgo.13146] [PMID: 32196655]
[32]
Ferrazzi, E.; Frigerio, L.; Savasi, V.; Vergani, P.; Prefumo, F.; Barresi, S.; Bianchi, S.; Ciriello, E.; Facchinetti, F.; Gervasi, M.T.; Iurlaro, E.; Kustermann, A.; Mangili, G.; Mosca, F.; Patanè, L.; Spazzini, D.; Spinillo, A.; Trojano, G.; Vignali, M.; Villa, A.; Zuccotti, G.V.; Parazzini, F.; Cetin, I. Vaginal delivery in SARS-CoV-2-infected pregnant women in Northern Italy: a retrospective analysis. BJOG, 2020, 127(9), 1116-1121.
[http://dx.doi.org/10.1111/1471-0528.16278] [PMID: 32339382]
[33]
Lyra, J.; Valente, R.; Rosário, M.; Guimarães, M. Cesarean Section in a Pregnant Woman with COVID-19: First Case in Portugal. Acta Med. Port., 2020, 33(6), 429-431.
[http://dx.doi.org/10.20344/amp.13883] [PMID: 32352913]
[34]
Bobele, G.B. Subacute encephalopathy in a 5-year-old boy. Semin. Pediatr. Neurol., 1999, 6(3), 168-171.
[http://dx.doi.org/10.1016/S1071-9091(99)80008-4] [PMID: 10522334]
[35]
Birbeck, G.L.; French, J.A.; Perucca, E.; Simpson, D.M.; Fraimow, H.; George, J.M.; Okulicz, J.F.; Clifford, D.B.; Hachad, H.; Levy, R.H. Quality Standards Subcommittee of the American Academy of Neurology; Ad Hoc Task Force of the Commission on Therapeutic Strategies of the International League Against Epilepsy. Evidence-based guideline: Antiepileptic drug selection for people with HIV/AIDS: report of the Quality Standards Subcommittee of the American Academy of Neurology and the Ad Hoc Task Force of the Commission on Therapeutic Strategies of the International League Against Epilepsy. Neurology, 2012, 78(2), 139-145.
[http://dx.doi.org/10.1212/WNL.0b013e31823efcf8] [PMID: 22218281]
[36]
Ying, W.; Qian, Y.; Kun, Z. Drugs supply and pharmaceutical care management practices at a designated hospital during the COVID- 19 epidemic. Res Social Adm Pharm, 2020, S1551-7411(20)30325- 9.,
[http://dx.doi.org/10.1016/j.sapharm.2020.04.001]
[37]
Baig, A.M. Neurological manifestations in COVID-19 caused by SARS-CoV-2. CNS Neurosci. Ther., 2020, 26(5), 499-501.
[http://dx.doi.org/10.1111/cns.13372] [PMID: 32266761]
[38]
McAbee, G.N.; Brosgol, Y.; Pavlakis, S.; Agha, R.; Gaffoor, M. Encephalitis Associated with COVID-19 Infection in an 11-Year-Old Child. Pediatr. Neurol., 2020, 109, 94.
[http://dx.doi.org/10.1016/j.pediatrneurol.2020.04.013] [PMID: 32586676]
[39]
Manto, M.; Dupre, N.; Hadjivassiliou, M.; Louis, E.D.; Mitoma, H.; Molinari, M.; Shaikh, A.G.; Soong, B.W.; Strupp, M.; Van Overwalle, F.; Schmahmann, J.D. Management of Patients with Cerebellar Ataxia During the COVID-19 Pandemic: Current Concerns and Future Implications. Cerebellum, 2020, 19(4), 562-568.
[http://dx.doi.org/10.1007/s12311-020-01139-1] [PMID: 32405955]
[40]
Butowt, R.; Bilinska, K. SARS-CoV-2: Olfaction, Brain Infection, and the Urgent Need for Clinical Samples Allowing Earlier Virus Detection. ACS Chem. Neurosci., 2020, 11(9), 1200-1203.
[http://dx.doi.org/10.1021/acschemneuro.0c00172] [PMID: 32283006]
[41]
Joffily, L.; Ungierowicz, A.; David, A.G.; Melo, B.; Brito, C.L.T.; Mello, L.; Santos, P.S.C.D.; Pezato, R. The close relationship between sudden loss of smell and COVID-19. Rev. Bras. Otorrinolaringol. (Engl. Ed.), 2020, 86(5), 632-638.
[PMID: 32561220]
[42]
Lee, Y.; Min, P.; Lee, S.; Kim, S.W. Prevalence and Duration of Acute Loss of Smell or Taste in COVID-19 Patients. J. Korean Med. Sci., 2020, 35(18)e174
[http://dx.doi.org/10.3346/jkms.2020.35.e174] [PMID: 32383370]
[43]
Zanin, L.; Saraceno, G.; Panciani, P.P.; Renisi, G.; Signorini, L.; Migliorati, K.; Fontanella, M.M. SARS-CoV-2 can induce brain and spine demyelinating lesions. Acta Neurochir. (Wien), 2020, 162(7), 1491-1494.
[http://dx.doi.org/10.1007/s00701-020-04374-x] [PMID: 32367205]
[44]
Samaranayake, L.P.; Fakhruddin, K.S.; Panduwawala, C. Sudden onset, acute loss of taste and smell in coronavirus disease 2019 (COVID-19): a systematic review. Acta Odontol. Scand., 2020, 78(6), 467-473.
[http://dx.doi.org/10.1080/00016357.2020.1787505] [PMID: 32762282]
[45]
Lechien, J.R.; Cabaraux, P.; Chiesa-Estomba, C.M.; Khalife, M.; Hans, S.; Calvo-Henriquez, C.; Martiny, D.; Journe, F.; Sowerby, L.; Saussez, S. Objective olfactory evaluation of self-reported loss of smell in a case series of 86 COVID-19 patients. Head Neck, 2020, 42(7), 1583-1590.
[http://dx.doi.org/10.1002/hed.26279] [PMID: 32437033]
[46]
Dell’Era, V.; Farri, F.; Garzaro, G.; Gatto, M.; Aluffi Valletti, P.; Garzaro, M. Smell and taste disorders during COVID-19 outbreak: Cross-sectional study on 355 patients. Head Neck, 2020, 42(7), 1591-1596.
[http://dx.doi.org/10.1002/hed.26288] [PMID: 32524707]
[47]
Jin, Y.H.; Cai, L.; Cheng, Z.S.; Cheng, H.; Deng, T.; Fan, Y.P.; Fang, C.; Huang, D.; Huang, L.Q.; Huang, Q.; Han, Y.; Hu, B.; Hu, F.; Li, B.H.; Li, Y.R.; Liang, K.; Lin, L.K.; Luo, L.S.; Ma, J.; Ma, L.L.; Peng, Z.Y.; Pan, Y.B.; Pan, Z.Y.; Ren, X.Q.; Sun, H.M.; Wang, Y.; Wang, Y.Y.; Weng, H.; Wei, C.J.; Wu, D.F.; Xia, J.; Xiong, Y.; Xu, H.B.; Yao, X.M.; Yuan, Y.F.; Ye, T.S.; Zhang, X.C.; Zhang, Y.W.; Zhang, Y.G.; Zhang, H.M.; Zhao, Y.; Zhao, M.J.; Zi, H.; Zeng, X.T.; Wang, Y.Y.; Wang, X.H.; Management, Z.H.W.U.N.C. for the Zhongnan Hospital of Wuhan University Novel Coronavirus Management and Research Team, Evidence-Based Medicine Chapter of China International Exchange and Promotive Association for Medical and Health Care (CPAM) A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia (standard version). Mil. Med. Res., 2020, 7(1), 4.
[http://dx.doi.org/10.1186/s40779-020-0233-6] [PMID: 32029004]
[48]
Tu, Y.F.; Chien, C.S.; Yarmishyn, A.A.; Lin, Y.Y.; Luo, Y.H.; Lin, Y.T.; Lai, W.Y.; Yang, D.M.; Chou, S.J.; Yang, Y.P.; Wang, M.L.; Chiou, S.H. A Review of SARS-CoV-2 and the Ongoing Clinical Trials. Int. J. Mol. Sci., 2020, 21(7), 2657-2676.
[http://dx.doi.org/10.3390/ijms21072657] [PMID: 32290293]
[49]
Yıldız, P.A.; Dizbay, M. COVID-19’un Klinik Bulguları ve Tedavisi. GMJ, 2020, 31, 255-259.
[50]
Trindade, G.G.; Caxito, S.M.C.; Xavier, A.R.E.O.; Xavier, M.A.S. BrandÃo, F. COVID-19: therapeutic approaches description and discussion. An. Acad. Bras. Cienc., 2020, 92(2)e20200466
[http://dx.doi.org/10.1590/0001-3765202020200466] [PMID: 32556054]
[51]
Owa, A.B.; Owa, O.T. Lopinavir/ritonavir use in Covid-19 infection: is it completely non-beneficial? J. Microbiol. Immunol. Infect., 2020, 53(5), 674-675.
[http://dx.doi.org/10.1016/j.jmii.2020.05.014] [PMID: 32474026]
[52]
Zhang, J.; Xie, B.; Hashimoto, K. Current status of potential therapeutic candidates for the COVID-19 crisis. Brain Behav. Immun., 2020, 87, 59-73.
[http://dx.doi.org/10.1016/j.bbi.2020.04.046] [PMID: 32334062]
[53]
Saber-Ayad, M.; Saleh, M.A.; Abu-Gharbieh, E. The Rationale for Potential Pharmacotherapy of COVID-19. Pharmaceuticals (Basel), 2020, 13(5), 96-125.
[http://dx.doi.org/10.3390/ph13050096] [PMID: 32423024]
[54]
Jing, R.; Vunnam, R.R.; Yang, Y.H.; Karevoll, A.; Vunnam, S.R. Current Status of Treatment Options, Clinical Trials, and Vaccine Development for SARS-CoV-2 Infection. J. Pure Appl. Microbiol., 2020, 14, 733-740.
[http://dx.doi.org/10.22207/JPAM.14.SPL1.10]
[55]
Choy, K.T.; Wong, A.Y.L.; Kaewpreedee, P.; Sia, S.F.; Chen, D.D.; Hui, K.P.Y.; Chu, D.K.W.; Chan, M.C.W.; Cheung, P.P.H.; Huang, X.H.; Peiris, M.; Yen, H.L. Remdesivir, lopinavir, emetine, and homoharringtonine inhibit SARS-CoV-2 replication in vitro; Antivir Res, 2020, p. 178.
[56]
Cao, B.; Wang, Y.; Wen, D.; Liu, W.; Wang, J.; Fan, G.; Ruan, L.; Song, B.; Cai, Y.; Wei, M.; Li, X.; Xia, J.; Chen, N.; Xiang, J.; Yu, T.; Bai, T.; Xie, X.; Zhang, L.; Li, C.; Yuan, Y.; Chen, H.; Li, H.; Huang, H.; Tu, S.; Gong, F.; Liu, Y.; Wei, Y.; Dong, C.; Zhou, F.; Gu, X.; Xu, J.; Liu, Z.; Zhang, Y.; Li, H.; Shang, L.; Wang, K.; Li, K.; Zhou, X.; Dong, X.; Qu, Z.; Lu, S.; Hu, X.; Ruan, S.; Luo, S.; Wu, J.; Peng, L.; Cheng, F.; Pan, L.; Zou, J.; Jia, C.; Wang, J.; Liu, X.; Wang, S.; Wu, X.; Ge, Q.; He, J.; Zhan, H.; Qiu, F.; Guo, L.; Huang, C.; Jaki, T.; Hayden, F.G.; Horby, P.W.; Zhang, D.; Wang, C. A Trial of Lopinavir-Ritonavir in Adults Hospitalized with Severe Covid-19. N. Engl. J. Med., 2020, 382(19), 1787-1799.
[http://dx.doi.org/10.1056/NEJMoa2001282] [PMID: 32187464]
[57]
Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; Guan, L.; Wei, Y.; Li, H.; Wu, X.; Xu, J.; Tu, S.; Zhang, Y.; Chen, H.; Cao, B. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet, 2020, 395(10229), 1054-1062.
[http://dx.doi.org/10.1016/S0140-6736(20)30566-3] [PMID: 32171076]
[58]
Sanders, J.M.; Monogue, M.L.; Jodlowski, T.Z.; Cutrell, J.B. Pharmacologic Treatments for Coronavirus Disease 2019 (COVID-19): A Review. JAMA, 2020, 323(18), 1824-1836.
[PMID: 32282022]
[59]
Yousefi, B.; Valizadeh, S.; Ghaffari, H.; Vahedi, A.; Karbalaei, M.; Eslami, M. A global treatments for coronaviruses including COVID-19. J. Cell. Physiol., 2020, 235(12), 9133-9142.
[http://dx.doi.org/10.1002/jcp.29785] [PMID: 32394467]
[60]
Li, H.; Yang, L.; Liu, F.F.; Ma, X.N.; He, P.L.; Tang, W.; Tong, X.K.; Zuo, J.P. Overview of therapeutic drug research for COVID-19 in China. Acta Pharmacol. Sin., 2020, 41(9), 1133-1140.
[http://dx.doi.org/10.1038/s41401-020-0438-y] [PMID: 32555446]
[61]
Cattaneo, D.; Cattaneo, D.; Gervasoni, C.; Corbellino, M.; Galli, M.; Riva, A.; Gervasoni, C.; Clementi, E.; Clementi, E. Does lopinavir really inhibit SARS-CoV-2? Pharmacol. Res., 2020, 158104898
[http://dx.doi.org/10.1016/j.phrs.2020.104898] [PMID: 32438034]
[62]
Gul, M.H.; Htun, Z.M.; Shaukat, N.; Imran, M.; Khan, A. Potential specific therapies in COVID-19. Ther. Adv. Respir. Dis., 2020, 141753466620926853
[http://dx.doi.org/10.1177/1753466620926853] [PMID: 32436445]
[63]
Şimşek Yavuz, S.; Ünal, S. Antiviral treatment of COVID-19. Turk. J. Med. Sci., 2020, 50(SI-1), 611-619.
[http://dx.doi.org/10.3906/sag-2004-145] [PMID: 32293834]
[64]
Li, H.; Liu, S. M.; Yu, X. H.; Tang, S. L.; Tang, C. K. .Coronavirus disease 2019 (COVID-19): Current status and future perspectives. Int J Antimicrob Ag, 2020, 55(5),
[65]
Young, B.E.; Ong, S.W.X.; Kalimuddin, S.; Low, J.G.; Tan, S.Y.; Loh, J.; Ng, O.T.; Marimuthu, K.; Ang, L.W.; Mak, T.M.; Lau, S.K.; Anderson, D.E.; Chan, K.S.; Tan, T.Y.; Ng, T.Y.; Cui, L.; Said, Z.; Kurupatham, L.; Chen, M.I.; Chan, M.; Vasoo, S.; Wang, L.F.; Tan, B.H.; Lin, R.T.P.; Lee, V.J.M.; Leo, Y.S.; Lye, D.C. Epidemiologic Features and Clinical Course of Patients Infected With SARS-CoV-2 in Singapore. JAMA, 2020, 323(15), 1488-1494.
[http://dx.doi.org/10.1001/jama.2020.3204] [PMID: 32125362]
[66]
Abers, M.S.; Shandera, W.X.; Kass, J.S. Neurological and psychiatric adverse effects of antiretroviral drugs. CNS Drugs, 2014, 28(2), 131-145.
[http://dx.doi.org/10.1007/s40263-013-0132-4] [PMID: 24362768]
[67]
Bilbul, M.; Paparone, P.; Kim, A.M.; Mutalik, S.; Ernst, C.L. Psychopharmacology of COVID-19. Psychosomatics, 2020, 61(5), 411-427.
[http://dx.doi.org/10.1016/j.psym.2020.05.006] [PMID: 32425246]
[68]
Gordon, C.J.; Tchesnokov, E.P.; Woolner, E.; Perry, J.K.; Feng, J.Y.; Porter, D.P.; Götte, M. Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency. J. Biol. Chem., 2020, 295(20), 6785-6797.
[http://dx.doi.org/10.1074/jbc.RA120.013679] [PMID: 32284326]
[69]
Pardo, J.; Shukla, A.M.; Chamarthi, G.; Gupte, A. The journey of remdesivir: from Ebola to COVID-19. Drugs Context, 2020, 9, 4-14.
[http://dx.doi.org/10.7573/dic.2020-4-14] [PMID: 32547625]
[70]
Jean, S.S.; Lee, P.I.; Hsueh, P.R. Treatment options for COVID-19: The reality and challenges. J. Microbiol. Immunol. Infect., 2020, 53(3), 436-443.
[http://dx.doi.org/10.1016/j.jmii.2020.03.034] [PMID: 32307245]
[71]
Dong, L.; Hu, S.; Gao, J. Discovering drugs to treat coronavirus disease 2019 (COVID-19). Drug Discov. Ther., 2020, 14(1), 58-60.
[http://dx.doi.org/10.5582/ddt.2020.01012] [PMID: 32147628]
[72]
Manjili, R.H.; Zarei, M.; Habibi, M.; Manjili, M.H. COVID-19 as an Acute Inflammatory Disease. J. Immunol., 2020, 205(1), 12-19.
[http://dx.doi.org/10.4049/jimmunol.2000413] [PMID: 32423917]
[73]
Grein, J.; Ohmagari, N.; Shin, D.; Diaz, G.; Asperges, E.; Castagna, A.; Feldt, T.; Green, G.; Green, M.L.; Lescure, F.X.; Nicastri, E.; Oda, R.; Yo, K.; Quiros-Roldan, E.; Studemeister, A.; Redinski, J.; Ahmed, S.; Bernett, J.; Chelliah, D.; Chen, D.; Chihara, S.; Cohen, S.H.; Cunningham, J.; D’Arminio Monforte, A.; Ismail, S.; Kato, H.; Lapadula, G.; L’Her, E.; Maeno, T.; Majumder, S.; Massari, M.; Mora-Rillo, M.; Mutoh, Y.; Nguyen, D.; Verweij, E.; Zoufaly, A.; Osinusi, A.O.; DeZure, A.; Zhao, Y.; Zhong, L.; Chokkalingam, A.; Elboudwarej, E.; Telep, L.; Timbs, L.; Henne, I.; Sellers, S.; Cao, H.; Tan, S.K.; Winterbourne, L.; Desai, P.; Mera, R.; Gaggar, A.; Myers, R.P.; Brainard, D.M.; Childs, R.; Flanigan, T. Compassionate Use of Remdesivir for Patients with Severe Covid-19. N. Engl. J. Med., 2020, 382(24), 2327-2336.
[http://dx.doi.org/10.1056/NEJMoa2007016] [PMID: 32275812]
[74]
Wang, Y.; Zhang, D.; Du, G.; Du, R.; Zhao, J.; Jin, Y.; Fu, S.; Gao, L.; Cheng, Z.; Lu, Q.; Hu, Y.; Luo, G.; Wang, K.; Lu, Y.; Li, H.; Wang, S.; Ruan, S.; Yang, C.; Mei, C.; Wang, Y.; Ding, D.; Wu, F.; Tang, X.; Ye, X.; Ye, Y.; Liu, B.; Yang, J.; Yin, W.; Wang, A.; Fan, G.; Zhou, F.; Liu, Z.; Gu, X.; Xu, J.; Shang, L.; Zhang, Y.; Cao, L.; Guo, T.; Wan, Y.; Qin, H.; Jiang, Y.; Jaki, T.; Hayden, F.G.; Horby, P.W.; Cao, B.; Wang, C. Remdesivir in adults with severe COVID-19: A randomised, double-blind, placebo-controlled, multicentre trial. Lancet, 2020, 395(10236), 1569-1578.
[http://dx.doi.org/10.1016/S0140-6736(20)31022-9] [PMID: 32423584]
[75]
Takahashi, N.; Abe, R.; Hattori, N.; Matsumura, Y.; Oshima, T.; Taniguchi, T.; Igari, H.; Nakada, T.A. Clinical course of a critically ill patient with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). J. Artif. Organs, 2020, 23(4), 397-400.
[http://dx.doi.org/10.1007/s10047-020-01183-y] [PMID: 32556649]
[76]
Chen, C.; Zhang, Y.; Huang, J.; Yin, P.; Cheng, Z.; Wu, J.; Chen, S.; Zhang, Y.; Chen, B.; Lu, M.; Luo, Y.; Ju, L.; Zhang, J.; Wang, X. Favipiravir versus arbidol for covid-19: A randomized clinical trial. Preprint from medRxiv,, 2020.
[77]
Cai, Q.; Yang, M.; Liu, D.; Chen, J.; Shu, D.; Xia, J.; Liao, X.; Gu, Y.; Cai, Q.; Yang, Y.; Shen, C.; Li, X.; Peng, L.; Huang, D.; Zhang, J.; Zhang, S.; Wang, F.; Liu, J.; Chen, L.; Chen, S.; Wang, Z.; Zhang, Z.; Cao, R.; Zhong, W.; Liu, Y.; Liu, L. Experimental Treatment with Favipiravir for COVID-19: An Open-Label Control Study. Engineering (Beijing),, 2020.
[78]
Ghasemiyeh, P.; Borhani-Haghighi, A.; Karimzadeh, I.; Mohammadi-Samani, S.; Vazin, A.; Safari, A.; Qureshi, A.I. Major Neurologic Adverse Drug Reactions, Potential Drug-Drug Interactions and Pharmacokinetic Aspects of Drugs Used in COVID-19 Patients with Stroke: A Narrative Review. Ther. Clin. Risk Manag., 2020, 16, 595-605.
[http://dx.doi.org/10.2147/TCRM.S259152] [PMID: 32669846]
[79]
von Hentig, N. Clinical use of cobicistat as a pharmacoenhancer of human immunodeficiency virus therapy. HIV AIDS (Auckl.), 2015, 8, 1-16.
[http://dx.doi.org/10.2147/HIV.S70836] [PMID: 26730211]
[80]
Cobicistat Side Effects. 2020. Available from:, https://www.drugs.com/sfx/cobicistat-side-effects.html
[81]
Khodadadi, E.; Maroufi, P.; Khodadadi, E.; Esposito, I.; Ganbarov, K.; Espsoito, S.; Yousefi, M.; Zeinalzadeh, E.; Kafil, H.S. Study of combining virtual screening and antiviral treatments of the Sars-CoV-2 (Covid-19). Microb. Pathog., 2020, 146104241
[http://dx.doi.org/10.1016/j.micpath.2020.104241] [PMID: 32387389]
[83]
Paik, S.W. Side effects of peginterferon and ribavirin treatment for hepatitis C and their management. SILS 2009-The 5th Seoul International Liver Symposium (Symposium III Current and future issues in hepatitis C treatment), 2009, pp. 43-48.,
[84]
Li, Y.; Xie, Z.; Lin, W.; Cai, W.; Wen, C.; Guan, Y.; Mo, X.; Wang, J.; Wang, Y.; Peng, P.; Chen, X.; Hong, W.; Xiao, G.; Liu, J.; Zhang, L.; Hu, F.; Li, F.; Zhang, F.; Deng, X.; Li, L. Efficacy and Safety of Lopinavir/Ritonavir or Arbidol in Adult Patients with 230 Mini-Reviews in Medicinal Chemistry, 2022, Vol. 22, No. 2 Ünlü et al. Mild/Moderate COVID-19: An Exploratory Randomized Controlled Trial. Med (N Y), 2020;
[85]
Barlow, A.; Landolf, K.M.; Barlow, B.; Yeung, S.Y.A.; Heavner, J.J.; Claassen, C.W.; Heavner, M.S. Review of Emerging Pharmacotherapy for the Treatment of Coronavirus Disease 2019. Pharmacotherapy, 2020, 40(5), 416-437.
[http://dx.doi.org/10.1002/phar.2398] [PMID: 32259313]
[86]
Huang, D.; Yu, H.; Wang, T.; Yang, H.; Yao, R.; Liang, Z. Efficacy and safety of umifenovir for coronavirus disease 2019 (COVID-19): A systematic review and meta-analysis. J. Med. Virol., 2020, 93(1), 481-490.
[http://dx.doi.org/10.1002/jmv.26256] [PMID: 32617989]
[87]
Wang, Z.; Yang, B.; Li, Q.; Wen, L.; Zhang, R. Clinical Features of 69 Cases With Coronavirus Disease 2019 in Wuhan, China. Clin. Infect. Dis., 2020, 71(15), 769-777.
[http://dx.doi.org/10.1093/cid/ciaa272] [PMID: 32176772]
[88]
Ramsey, M.L.; Nuttall, J.; Hart, P.A.; Team, T.I. A phase 1/2 trial to evaluate the pharmacokinetics, safety, and efficacy of NI-03 in patients with chronic pancreatitis: study protocol for a randomized controlled trial on the assessment of camostat treatment in chronic pancreatitis (TACTIC). Trials, 2019, 20(1), 501.
[http://dx.doi.org/10.1186/s13063-019-3606-y] [PMID: 31412955]
[89]
Alam, A.; Siddiqui, M.F.; Imam, N.; Ali, R.; Mushtaque, M.; Ishrat, R. Covid-19: Current knowledge, disease potential, prevention and clinical advances. Turk. J. Biol., 2020, 44(3), 121-131.
[http://dx.doi.org/10.3906/biy-2005-29] [PMID: 32595349]
[90]
Quiros Roldan, E.; Biasiotto, G.; Magro, P.; Zanella, I. The possible mechanisms of action of 4-aminoquinolines (chloroquine/hydroxychloroquine) against Sars-Cov-2 infection (COVID-19): A role for iron homeostasis? Pharmacol. Res., 2020, 158104904
[http://dx.doi.org/10.1016/j.phrs.2020.104904] [PMID: 32430286]
[91]
Gautret, P.; Lagier, J.C.; Parola, P.; Hoang, V.T.; Meddeb, L.; Mailhe, M.; Doudier, B.; Courjon, J.; Giordanengo, V.; Vieira, V.E.; Tissot Dupont, H.; Honoré, S.; Colson, P.; Chabrière, E.; La Scola, B.; Rolain, J.M.; Brouqui, P.; Raoult, D. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int. J. Antimicrob. Agents, 2020, 56(1)105949
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105949] [PMID: 32205204]
[92]
Magagnoli, J.; Narendran, S.; Pereira, F.; Cummings, T.H.; Hardin, J.W.; Sutton, S.S.; Ambati, J. Outcomes of Hydroxychloroquine Usage in United States Veterans Hospitalized with COVID-19; Med, N Y, 2020.
[93]
Galluccio, F.; Ergonenc, T.; Garcia Martos, A.; Allam, A.E.; Pérez-Herrero, M.; Aguilar, R.; Emmi, G.; Spinicci, M.; Terrancle Juan, I.; Fajardo-Pérez, M. Treatment algorithm for COVID-19: a multidisciplinary point of view. Clin. Rheumatol., 2020, 39(7), 2077-2084.
[http://dx.doi.org/10.1007/s10067-020-05179-0] [PMID: 32472459]
[94]
Yao, X.; Ye, F.; Zhang, M.; Cui, C.; Huang, B.; Niu, P.; Liu, X.; Zhao, L.; Dong, E.; Song, C.; Zhan, S.; Lu, R.; Li, H.; Tan, W.; Liu, D. In Vitro Antiviral Activity and Projection of Optimized Dosing Design of Hydroxychloroquine for the Treatment of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Clin. Infect. Dis., 2020, 71(15), 732-739.
[http://dx.doi.org/10.1093/cid/ciaa237] [PMID: 32150618]
[95]
Sun, X.; Ni, Y.; Zhang, M. Rheumotologitsts’ view on the use of hydroxychloroquine to treat COVID-19. Emerg. Microbes Infect., 2020, 9(1), 830-832.
[http://dx.doi.org/10.1080/22221751.2020.1760145] [PMID: 32338155]
[96]
Potì, F.; Pozzoli, C.; Adami, M.; Poli, E.; Costa, L.G. Treatments for COVID-19: emerging drugs against the coronavirus. Acta Biomed., 2020, 91(2), 118-136.
[PMID: 32420936]
[97]
Gevers, S.; Kwa, M.S.G.; Wijnans, E.; van Nieuwkoop, C. Safety considerations for chloroquine and hydroxychloroquine in the treatment of COVID-19. Clin. Microbiol. Infect., 2020, 26(9), 1276-1277.
[http://dx.doi.org/10.1016/j.cmi.2020.05.006] [PMID: 32422406]
[98]
Chary, M.A.; Barbuto, A.F.; Izadmehr, S.; Hayes, B.D.; Burns, M.M. COVID-19. Therapeutics and Their Toxicities. J. Med. Toxicol., 2020, 16(3), 284-294.
[http://dx.doi.org/10.1007/s13181-020-00777-5] [PMID: 32356252]
[99]
Mascolo, A.; Berrino, P.M.; Gareri, P.; Castagna, A.; Capuano, A.; Manzo, C.; Berrino, L. Neuropsychiatric clinical manifestations in elderly patients treated with hydroxychloroquine: a review article. Inflammopharmacology, 2018, 26(5), 1141-1149.
[http://dx.doi.org/10.1007/s10787-018-0498-5] [PMID: 29948492]
[100]
Fox, L.M.; Saravolatz, L.D. Nitazoxanide: a new thiazolide antiparasitic agent. Clin. Infect. Dis., 2005, 40(8), 1173-1180.
[http://dx.doi.org/10.1086/428839] [PMID: 15791519]
[101]
González Canga, A.; Sahagún Prieto, A.M.; Diez Liébana, M.J.; Fernández Martínez, N.; Sierra Vega, M.; García Vieitez, J.J. The pharmacokinetics and interactions of ivermectin in humans-A mini-review. AAPS J., 2008, 10(1), 42-46.
[http://dx.doi.org/10.1208/s12248-007-9000-9] [PMID: 18446504]
[102]
Götz, V.; Magar, L.; Dornfeld, D.; Giese, S.; Pohlmann, A.; Höper, D.; Kong, B.W.; Jans, D.A.; Beer, M.; Haller, O.; Schwemmle, M. Influenza A viruses escape from MxA restriction at the expense of efficient nuclear vRNP import. Sci. Rep., 2016, 6, 23138.
[http://dx.doi.org/10.1038/srep23138] [PMID: 26988202]
[103]
Lundberg, L.; Pinkham, C.; Baer, A.; Amaya, M.; Narayanan, A.; Wagstaff, K.M.; Jans, D.A.; Kehn-Hall, K. Nuclear import and export inhibitors alter capsid protein distribution in mammalian cells and reduce Venezuelan Equine Encephalitis Virus replication. Antiviral Res., 2013, 100(3), 662-672.
[http://dx.doi.org/10.1016/j.antiviral.2013.10.004] [PMID: 24161512]
[104]
Tay, M.Y.; Fraser, J.E.; Chan, W.K.; Moreland, N.J.; Rathore, A.P.; Wang, C.; Vasudevan, S.G.; Jans, D.A. Nuclear localization of dengue virus (DENV) 1-4 non-structural protein 5; protection against all 4 DENV serotypes by the inhibitor Ivermectin. Antiviral Res., 2013, 99(3), 301-306.
[http://dx.doi.org/10.1016/j.antiviral.2013.06.002] [PMID: 23769930]
[105]
Wagstaff, K.M.; Rawlinson, S.M.; Hearps, A.C.; Jans, D.A. An AlphaScreen®-based assay for high-throughput screening for specific inhibitors of nuclear import. J. Biomol. Screen., 2011, 16(2), 192-200.
[http://dx.doi.org/10.1177/1087057110390360] [PMID: 21297106]
[106]
Kosyna, F.K.; Nagel, M.; Kluxen, L.; Kraushaar, K.; Depping, R. The importin α/β-specific inhibitor Ivermectin affects HIF-dependent hypoxia response pathways. Biol. Chem., 2015, 396(12), 1357-1367.
[http://dx.doi.org/10.1515/hsz-2015-0171] [PMID: 26351913]
[107]
van der Watt, P.J.; Chi, A.; Stelma, T.; Stowell, C.; Strydom, E.; Carden, S.; Angus, L.; Hadley, K.; Lang, D.; Wei, W.; Birrer, M.J.; Trent, J.O.; Leaner, V.D. Targeting the Nuclear Import Receptor Kpnβ1 as an Anticancer Therapeutic. Mol. Cancer Ther., 2016, 15(4), 560-573.
[http://dx.doi.org/10.1158/1535-7163.MCT-15-0052] [PMID: 26832790]
[108]
Ghildyal, R.; Ho, A.; Wagstaff, K.M.; Dias, M.M.; Barton, C.L.; Jans, P.; Bardin, P.; Jans, D.A. Nuclear import of the respiratory syncytial virus matrix protein is mediated by importin beta1 independent of importin alpha. Biochemistry, 2005, 44(38), 12887-12895.
[http://dx.doi.org/10.1021/bi050701e] [PMID: 16171404]
[109]
Yang, S.N.Y.; Atkinson, S.C.; Wang, C.; Lee, A.; Bogoyevitch, M.A.; Borg, N.A.; Jans, D.A. The broad spectrum antiviral ivermectin targets the host nuclear transport importin α/β1 heterodimer. Antiviral Res., 2020, 177104760
[http://dx.doi.org/10.1016/j.antiviral.2020.104760] [PMID: 32135219]
[110]
Dornfeld, D.; Petric, P.P.; Hassan, E.; Zell, R.; Schwemmle, M. Eurasian Avian-Like Swine Influenza A Viruses Escape Human MxA Restriction through Distinct Mutations in Their Nucleoprotein. J. Virol., 2019, 93(2), e00997-e18.
[PMID: 30355693]
[111]
Yamasmith, E. Efficacy and safety of ivermectin against dengue infection: a phase III, randomized, double-blind, placebo-controlled trial.He 34th Annual Meeting the Royal College of Physicians of Thailand, Internal Medicine and One Health, Chonburi, Thailand 2018.
[112]
Caly, L.; Wagstaff, K.M.; Jans, D.A. Nuclear trafficking of proteins from RNA viruses: Potential target for antivirals? Antiviral Res., 2012, 95(3), 202-206.
[http://dx.doi.org/10.1016/j.antiviral.2012.06.008] [PMID: 22750233]
[113]
Jans, D.A.; Martin, A.J.; Wagstaff, K.M. Inhibitors of nuclear transport. Curr. Opin. Cell Biol., 2019, 58, 50-60.
[http://dx.doi.org/10.1016/j.ceb.2019.01.001] [PMID: 30826604]
[114]
Lv, C.; Liu, W.; Wang, B.; Dang, R.; Qiu, L.; Ren, J.; Yan, C.; Yang, Z.; Wang, X. Ivermectin inhibits DNA polymerase UL42 of pseudorabies virus entrance into the nucleus and proliferation of the virus in vitro and vivo. Antiviral Res., 2018, 159, 55-62.
[http://dx.doi.org/10.1016/j.antiviral.2018.09.010] [PMID: 30266338]
[115]
Caly, L.; Druce, J.D.; Catton, M.G.; Jans, D.A.; Wagstaff, K.M. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Res., 2020, 178104787
[http://dx.doi.org/10.1016/j.antiviral.2020.104787] [PMID: 32251768]
[116]
Camprubí, D.; Almuedo-Riera, A.; Martí-Soler, H.; Soriano, A.; Hurtado, J.C.; Subirà, C.; Grau-Pujol, B.; Krolewiecki, A.; Muñoz, J. Lack of efficacy of standard doses of ivermectin in severe COVID-19 patients. PLoS One, 2020, 15(11)e0242184
[http://dx.doi.org/10.1371/journal.pone.0242184] [PMID: 33175880]
[117]
Patrì, A.; Fabbrocini, G. Hydroxychloroquine and ivermectin: A synergistic combination for COVID-19 chemoprophylaxis and treatment? J. Am. Acad. Dermatol., 2020, 82(6)e221
[http://dx.doi.org/10.1016/j.jaad.2020.04.017] [PMID: 32283237]
[118]
Momekov, G.; Momekova, D. Ivermectin as a potential COVID-19 treatment from the pharmacokinetic point of view: Antiviral levels are not likely attainable with known dosing regimens. Biotechnol. Biotechnol. Equip., 2020, 34, 469-474.
[http://dx.doi.org/10.1080/13102818.2020.1775118]
[119]
Chandler, R.E. Serious Neurological Adverse Events after Ivermectin-Do They Occur beyond the Indication of Onchocerciasis? Am. J. Trop. Med. Hyg., 2018, 98(2), 382-388.
[http://dx.doi.org/10.4269/ajtmh.17-0042] [PMID: 29210346]
[120]
Makenga Bof, J.C.; Muteba, D.; Mansiangi, P.; Ilunga-Ilunga, F.; Coppieters, Y. Analysis of severe adverse effects following community-based ivermectin treatment in the Democratic Republic of Congo. BMC Pharmacol. Toxicol., 2019, 20(1), 49.
[http://dx.doi.org/10.1186/s40360-019-0327-5] [PMID: 31420005]
[121]
Sirois, F. Delirium associated with azithromycin administration Can. J. Psychiatry, 2002, 47(6), 585-586.
[http://dx.doi.org/10.1177/070674370204700622] [PMID: 12211892]
[122]
Zithromax Side Effects. 2020. Available from:, https://www.rxlist.com/zithromax-side-effects-drug-center.htm
[123]
Fardet, L.; Flahault, A.; Kettaneh, A.; Tiev, K.P.; Généreau, T.; Tolédano, C.; Lebbé, C.; Cabane, J. Corticosteroid-induced clinical adverse events: frequency, risk factors and patient’s opinion. Br. J. Dermatol., 2007, 157(1), 142-148.
[http://dx.doi.org/10.1111/j.1365-2133.2007.07950.x] [PMID: 17501951]
[124]
NSAIDs. 2020. Available from:, https://www.nhs.uk/conditions/nsaids/
[125]
Auriel, E.; Regev, K.; Korczyn, A.D. Nonsteroidal anti-inflammatory drugs exposure and the central nervous system. Handb. Clin. Neurol., 2014, 119, 577-584.
[http://dx.doi.org/10.1016/B978-0-7020-4086-3.00038-2] [PMID: 24365321]
[126]
Cantini, F.; Niccoli, L.; Matarrese, D.; Nicastri, E.; Stobbione, P.; Goletti, D. Baricitinib therapy in COVID-19: A pilot study on safety and clinical impact. J. Infect., 2020, 81(2), 318-356.
[http://dx.doi.org/10.1016/j.jinf.2020.04.017] [PMID: 32333918]
[127]
Olumiant Side Effects. 2020. Available from:, https://www.drugs.com/sfx/olumiant-side-effects.html
[128]
Actemra Side Effects. 2020. Available from:, https://www.rxlist.com/actemra-side-effects-drug-center.htm
[129]
Sarilumab Side Effects. 2020. Available from:, https://www.drugs.com/sfx/sarilumab-side-effects.htmlv
[130]
COVID-19 Studies from the World Health Organization Database. 2020. Available from: , www.clinicaltrials.gov
[131]
McNamara, L.A.; Topaz, N.; Wang, X.; Hariri, S.; Fox, L.; MacNeil, J.R. High Risk for Invasive Meningococcal Disease Among Patients Receiving Eculizumab (Soliris) Despite Receipt of Meningococcal Vaccine. MMWR Morb. Mortal. Wkly. Rep., 2017, 66(27), 734-737.
[http://dx.doi.org/10.15585/mmwr.mm6627e1] [PMID: 28704351]
[132]
Sharma, A.; Tiwari, S.; Deb, M.K.; Marty, J.L. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2): a global pandemic and treatment strategies. Int. J. Antimicrob. Agents, 2020, 56(2)106054
[http://dx.doi.org/10.1016/j.ijantimicag.2020.106054] [PMID: 32534188]
[133]
Interferon beta-1a (Rebif). 2020. Available from:, https://www.medicinenet.com/interferon_beta-1a_rebif/article.htm
[134]
[135]
Desforges, M.; Le Coupanec, A.; Dubeau, P.; Bourgouin, A.; Lajoie, L.; Dubé, M.; Talbot, P.J. Human Coronaviruses and Other Respiratory Viruses: Underestimated Opportunistic Pathogens of the Central Nervous System? Viruses, 2019, 12(1), 14.
[http://dx.doi.org/10.3390/v12010014] [PMID: 31861926]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy