Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Nano-biotechnology and its Innovative Perspective in Diabetes Management

Author(s): Jigar Raval, Riddhi Trivedi, Sonali Suman, Arvind Kukrety and Prajesh Prajapati*

Volume 22, Issue 1, 2022

Published on: 23 June, 2021

Page: [89 - 114] Pages: 26

DOI: 10.2174/1389557521666210623164052

Price: $65

Abstract

Abstract: The occurrence of the diabetes happens due to the irregular operation of glucose in the body, which is also known as glucose homeostasis, thus leading to metabolic changes in the body. The two stages whether hypoglycemia or hyperglycemia differentiates diabetes into various categories and brought new innovative management for the new routes of administration of these disease condition. Various bio-nanotechnologies which are coupled with nano particulates, polymers, Liposome, various gold plated and Solid Lipids Particulates regulate the transcellular transport, non specific cellular uptake, and paracellular transport, which leads to oral, transdermal, Pulmonary, buccal, Nasal, specific gene oriented administration to avoid the non patience compliance with the parental routes of administration. Phytochemicals have an emerging strategy for the future prospects of diabetes management.

Keywords: Nano-biotechnology, diabetes, nanoparticles, metabolic disease, treatment, Insulin.

Graphical Abstract
[1]
Bratlie, K.M.; York, R.L.; Invernale, M.A.; Langer, R.; Anderson, D.G. Materials for diabetes therapeutics. Adv. Healthc. Mater., 2012, 1(3), 267-284.
[http://dx.doi.org/10.1002/adhm.201200037] [PMID: 23184741]
[2]
Bahshi, L.; Freeman, R.; Gill, R.; Willner, I. Optical detection of glucose by means of metal nanoparticles or semiconductor quantum dots. Small, 2009, 5(6), 676-680.
[http://dx.doi.org/10.1002/smll.200801403] [PMID: 19226598]
[3]
Chun, A. Nanosensors: Bring it on; Nat Nanotech, 2006, p. 84.
[4]
Nelson, D.; Priscyla, D.; Zaine, T.; Marcela, D.; Fabio, T.; Marcelo, B. State of the art of nanobiotechnology applications in neglected diseases. Curr. Nanosci., 2009, 5(4), 396-408.
[http://dx.doi.org/10.2174/157341309789378069]
[5]
Krol, S.; Ellis-Behnke, R.; Marchetti, P. Nanomedicine for treatment of diabetes in an aging population: state-of-the-art and future developments. Nanomedicine (Lond.), 2012, 8(Suppl. 1), S69-S76.
[http://dx.doi.org/10.1016/j.nano.2012.05.005] [PMID: 22640905]
[6]
Szablewski, L. Glucose Homeostasis – Mechanism and Defects. Diabetes – Damages and Treatments. Intechopen, 2011, 12, 227-256.
[7]
Guidance for industry diabetes mellitus — evaluating cardiovascular risk in new antidia-betic therapies to treat type 2 diabetes. U.S. department of health and human services, food and drug administration, center for drug evaluation and research (CDER). https://www.federalregister.gov/documents/2008/12/19/E8-30086/guidance-for-industry-on-diabetes-mellitus-evaluating-cardiovascular-risk-in-new-antidiabetic2008.
[8]
Yannis, V. Trends of nanotechnology in type 2 diabetes mellitus treatment. Asian J. Pharm. Sci., 2020.
[9]
DiSanto, R.M.; Subramanian, V.; Gu, Z. Recent advances in nanotechnology for diabetes treatment. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2015, 7(4), 548-564.
[http://dx.doi.org/10.1002/wnan.1329] [PMID: 25641955]
[10]
Diagnosis and classification of diabetes mellitus, american diabetes association. Diabetes care, 2009, 32(Suppl. 1), S62-S67.https://care.diabetesjournals.org/content/32/Supplement_1/S62
[http://dx.doi.org/10.2337/dc09-S062]
[11]
Riaz, S. Diabetes mellitus. Sci. Res. Essays, 2009, 4(5), 367-373.
[PMID: 20015604]
[13]
Luke, R.; Devleena, D.; Natalia, H.; Raghavendra, G.; Daniel, G. Nanomedicine-based strategies for diabetes: Diagnostics, monitoring, a; Treat. Tre. Endo: Meta, 2020.
[14]
Gupta, R.; Mishra, A. Type 2 diabetes in India: Regional disparities. Br. J. Diabetes Vasc., 2007, 7(1), 12-16.
[http://dx.doi.org/10.1177/14746514070070010301]
[15]
Pathogenesis of type 2 diabetes mellitus. Med. Clin. N., 2004, 787-835.
[16]
Guilherme, A.; Virbasius, J.V.; Puri, V.; Czech, M.P. Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat. Rev. Mol. Cell Biol., 2008, 9(5), 367-377.
[http://dx.doi.org/10.1038/nrm2391] [PMID: 18401346]
[17]
Dedoussis, G.V.; Kaliora, A.C.; Panagiotakos, D.B. Genes, diet and type 2 diabetes mellitus: A review. Rev. Diabet. Stud., 2007, 4(1), 13-24.
[http://dx.doi.org/10.1900/RDS.2007.4.13] [PMID: 17565412]
[18]
Mealey, B.L.; Ocampo, G.L.; Gloria, L. Diabetes mellitus and periodontal disease. Periodontol. 2000, 2007, 44, 127-153.
[http://dx.doi.org/10.1111/j.1600-0757.2006.00193.x] [PMID: 17474930]
[19]
Younis, N.; Soran, H.; Farook, S. The prevention of type 2 diabetes mellitus: recent advances. QJM, 2004, 97(7), 451-455.
[http://dx.doi.org/10.1093/qjmed/hch077] [PMID: 15208433]
[20]
Leea, S.; Parka, J.; Kima, I.; Younb, B.; Gua, M. Sensitive detection of adipokines for early diagnosis of type 2 diabetes using enzyme-linked antibody-aptamer sandwich (ELAAS) assays. Sens. Actuators B Chem., 2012, 168, 243-248.
[http://dx.doi.org/10.1016/j.snb.2012.04.016]
[21]
Kalra, S.; Kalra, B.; Agrawal, N. Oral insulin. Diabetol. Metab. Syndr., 2010, 2, 66.
[http://dx.doi.org/10.1186/1758-5996-2-66] [PMID: 21059246]
[22]
Heinemann, L.; Jacques, Y. Oral insulin and buccal insulin: a critical reappraisal. J. Diabetes Sci. Technol., 2009, 3(3), 568-584.
[http://dx.doi.org/10.1177/193229680900300323] [PMID: 20144297]
[23]
Arbit, E.; Kidron, M. Oral insulin: the rationale for this approach and current developments. J. Diabetes Sci. Technol., 2009, 3(3), 562-567.
[http://dx.doi.org/10.1177/193229680900300322] [PMID: 20144296]
[24]
Ehud arbit the physiological rationale for oral insulin administration. Diabetes Technol. Ther., 2004, 6(4)
[25]
Chen, M.C.; Sonaje, K.; Chen, K.J.; Sung, H.W. A review of the prospects for polymeric nanoparticle platforms in oral insulin delivery. Biomaterials, 2011, 32(36), 9826-9838.
[http://dx.doi.org/10.1016/j.biomaterials.2011.08.087] [PMID: 21925726]
[26]
Amani, M. Oral Delivery of Insulin: Novel Approaches, Recent Advances in Novel Drug Carrier Systems; IntechOpen, 2012.
[27]
Ahmad, A. Oral nano-insulin therapy: Current progress on nanoparticle-based devices for intestinal epithelium-targeted insulin delivery J Nanomedic Nanotechnol, 2012, S4.
[28]
Vinod, K.; Reddy, R. Critical review on mucoadhesive drug delivery system. J.D. Med., 2012, 4(1), 7-28.
[29]
Lai, S.K.; Wang, Y.Y.; Hanes, J. Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv. Drug Deliv. Rev., 2009, 61(2), 158-171.
[http://dx.doi.org/10.1016/j.addr.2008.11.002] [PMID: 19133304]
[30]
Wells, J.M.; Mercenier, A. Mucosal delivery of therapeutic and prophylactic molecules using lactic acid bacteria. Nat. Rev. Microbiol., 2008, 6(5), 349-362.
[http://dx.doi.org/10.1038/nrmicro1840] [PMID: 18345021]
[31]
Azizi, F.; Ghanbarian, A.; Momenan, A. A. Prevention of noncommunicable disease in a population in nutrition transition: Tehran lipid and glucose study phase II, 2009.
[http://dx.doi.org/10.1186/1745-6215-10-5]
[32]
Diabetes mellitus – a devastating metabolic disorder. Asian J.bio & Pharm. Sci., 2014, 04(40), 1-7.
[33]
Lebovitz, H.E. Diagnosis, classification, and pathogenesis of diabetes mellitus. J. Clin. Psychiatry, 2001, 62(27)(Suppl. 27), 5-9.
[PMID: 11806489]
[34]
Muhas Chelakkadan Naseef, P.P. A review article-gestational diabetes mellitus. Int J. Curr Pharm Res, 2016, 9(1), 1.
[http://dx.doi.org/10.22159/ijcpr.2017v9i1.16615]
[35]
Papanas, N.; Katsiki, N.; Putz, Z.; Mikhailidis, D.P. Diabetes, obesity and vascular disease-an update. Curr. Pharm. Des., 2013, 19(27), 4900-4903.
[http://dx.doi.org/10.2174/1381612811319270013] [PMID: 23278495]
[36]
Budhian, A.; Winey, K.; Siegel, S. Production of haloperidol loaded PLGA nanoparticles for extended controlled drug release of haloperi-dol. 2004.https://repository.upenn.edu/cgi/viewcontent.cgi?referer=https://www.google.com/&httpsredir=1&article=1159&context=mse_papers2005
[http://dx.doi.org/10.1080/02652040500273753]
[37]
Mukhopadhyaya, P.; Mishrab, R.; Ranac, D.; Patit, P.; Kundua, P.P. Strategies for effective oral insulin delivery with modified chitosan nanoparticles: A review. Prog. Polym. Sci., 2012, 37, 1457-1475.
[http://dx.doi.org/10.1016/j.progpolymsci.2012.04.004]
[38]
Pan, Y.; Li, Y.J.; Zhao, H.Y.; Zheng, J.M.; Xu, H.; Wei, G.; Hao, J.S.; Cui, F.D. Bioadhesive polysaccharide in protein delivery system: chitosan nanoparticles improve the intestinal absorption of insulin in vivo. Int. J. Pharm., 2002, 249(1-2), 139-147.
[http://dx.doi.org/10.1016/S0378-5173(02)00486-6] [PMID: 12433442]
[39]
Mao, S.; Bakowsky, U.; Jintapattanakit, A.; Kissel, T. Self-assembled polyelectrolyte nanocomplexes between chitosan derivatives and insulin. J. Pharm. Sci., 2006, 95(5), 1035-1048.
[http://dx.doi.org/10.1002/jps.20520] [PMID: 16565978]
[40]
Lin, Y.H.; Sonaje, K.; Lin, K.M.; Juang, J.H.; Mi, F.L.; Yang, H.W.; Sung, H.W. Multi-ion-crosslinked nanoparticles with pH-responsive characteristics for oral delivery of protein drugs. J. Control. Release, 2008, 132(2), 141-149.
[http://dx.doi.org/10.1016/j.jconrel.2008.08.020] [PMID: 18817821]
[41]
Mi, F.L.; Wu, Y.Y.; Lin, Y.H.; Sonaje, K.; Ho, Y.C.; Chen, C.T.; Juang, J.H.; Sung, H.W. Oral delivery of peptide drugs using nanoparticles self-assembled by poly(gamma-glutamic acid) and a chitosan derivative functionalized by trimethylation. Bioconjug. Chem., 2008, 19(6), 1248-1255.
[http://dx.doi.org/10.1021/bc800076n] [PMID: 18517235]
[42]
Bayat, A.; Larijani, B.; Ahmadian, S.; Junginger, H.E.; Rafiee-Tehrani, M. Preparation and characterization of insulin nanoparticles using chitosan and its quaternized derivatives. Nanomedicine (Lond.), 2008, 4(2), 115-120.
[http://dx.doi.org/10.1016/j.nano.2008.01.003] [PMID: 18339584]
[43]
Chaudhury, A.; Das, S. Recent advancement of chitosan-based nanoparticles for oral controlled delivery of insulin and other therapeutic agents. AAPS PharmSciTech, 2011, 12(1), 10-20.
[http://dx.doi.org/10.1208/s12249-010-9561-2] [PMID: 21153572]
[44]
Assal, M. Peroral insulin delivery: New concepts and excipients; geboren te Tehran, Iran, 2008.
[45]
Kumar, T.; Paul, W.; Sharma, C.; Kuriachan, M. Bioadhesive, pH responsive micromatrix for oral delivery of insulin. Trends Biomater. Artif. Organs, 2005, 18, 198-202.
[46]
Rekha, M.R.; Sharma, C.P. Synthesis and evaluation of lauryl succinyl chitosan particles towards oral insulin delivery and absorption. J. Control. Release, 2009, 135(2), 144-151.
[http://dx.doi.org/10.1016/j.jconrel.2009.01.011] [PMID: 19331862]
[47]
Kydonieus, A.; Elson, C.; Thanou, M. Methods of drug delivery using sulphated chitinous polymers. US Patent US20080076704, 2008.
[48]
Sharma, C.; Mannemcherril, R. Opinion on Therapeutic Patents, 2007.WO2007032018
[49]
Wong, T.W. Chitosan and its use in design of insulin delivery system. Recent Pat. Drug Deliv. Formul., 2009, 3(1), 8-25.
[http://dx.doi.org/10.2174/187221109787158346] [PMID: 19149726]
[50]
Shofner, J.P.; Phillips, M.A.; Peppas, N.A. Cellular evaluation of synthesized insulin/transferrin bioconjugates for oral insulin delivery using intelligent complexation hydrogels. Macromol. Biosci., 2010, 10(3), 299-306.
[http://dx.doi.org/10.1002/mabi.200900223] [PMID: 20034125]
[51]
Sonia, T.; Sharma, C. In vitro evaluation of N-(2-hydroxy) propyl-3 trimethyl ammonium chitosan for oral insulin delivery. Carbohydr. Polym., 2011, 84(1), 103-109.
[http://dx.doi.org/10.1016/j.carbpol.2010.10.070]
[52]
Mahjub, R.; Dorkoosh, F.A.; Amini, M.; Khoshayand, M.R.; Rafiee-Tehrani, M. Preparation, statistical optimization, and in vitro characterization of insulin nanoparticles composed of quaternized aromatic derivatives of chitosan. AAPS PharmSciTech, 2011, 12(4), 1407-1419.
[http://dx.doi.org/10.1208/s12249-011-9716-9] [PMID: 22033812]
[53]
Su, F.Y.; Lin, K.J.; Sonaje, K.; Wey, S.P.; Yen, T.C.; Ho, Y.C.; Panda, N.; Chuang, E.Y.; Maiti, B.; Sung, H.W. Protease inhibition and absorption enhancement by functional nanoparticles for effective oral insulin delivery. Biomaterials, 2012, 33(9), 2801-2811.
[http://dx.doi.org/10.1016/j.biomaterials.2011.12.038] [PMID: 22243802]
[54]
Lee, K.Y.; Mooney, D.J. Alginate: properties and biomedical applications. Prog. Polym. Sci., 2012, 37(1), 106-126.
[http://dx.doi.org/10.1016/j.progpolymsci.2011.06.003] [PMID: 22125349]
[55]
Chan, A.W.; Neufeld, R.J. Tuneable semi-synthetic network alginate for absorptive encapsulation and controlled release of protein therapeutics. Biomaterials, 2010, 31(34), 9040-9047.
[http://dx.doi.org/10.1016/j.biomaterials.2010.07.111] [PMID: 20739057]
[56]
Mahkam, M. Modification of nano alginate-chitosan matrix for oral delivery of insulin. Nat. Sci., 2009, 7(8), 1-7.
[57]
Zhang, N.; Li, J.; Jiang, W.; Ren, C.; Li, J.; Xin, J.; Li, K. Effective protection and controlled release of insulin by cationic beta-cyclodextrin polymers from alginate/chitosan nanoparticles. Int. J. Pharm., 2010, 393(1-2), 212-218.
[http://dx.doi.org/10.1016/j.ijpharm.2010.04.006] [PMID: 20394813]
[58]
Narayani, R. Oral delivery of insulin needles needless. Trends Biomater. Artif. Organs, 2001, 15(1), 12-16.
[59]
Tyagi, C.; Tomar, L. pH responsive polymeric nanoparticles for oral insulin delivery. Int. J. Appl. Pharm., 2012, 1(2), 277-3436. [IJPPT].
[60]
Cui, F.; Shi, K.; Zhang, L.; Tao, A.; Kawashima, Y. Biodegradable nanoparticles loaded with insulin-phospholipid complex for oral delivery: preparation, in vitro characterization and in vivo evaluation. J. Control. Release, 2006, 114(2), 242-250.
[http://dx.doi.org/10.1016/j.jconrel.2006.05.013] [PMID: 16859800]
[61]
Davaran, S.; Omidi, Y.; Rashidi, M.R.; Anzabi, M.; Shayanfar, A. Preparation and in vitro evaluation of linear and star-branched PLGA nanoparticles for insulin delivery. J. Bioact. Compat. Polym., 2008, 23, 115-131.
[http://dx.doi.org/10.1177/0883911507088276]
[62]
Wu, Z.M.; Zhou, L.; Guo, X.D.; Jiang, W.; Ling, L.; Qian, Y.; Luo, K.Q.; Zhang, L.J. HP55-coated capsule containing PLGA/RS nanoparticles for oral delivery of insulin. Int. J. Pharm., 2012, 425(1-2), 1-8.
[http://dx.doi.org/10.1016/j.ijpharm.2011.12.055] [PMID: 22248666]
[63]
Sharma, G.; van der Walle, C.F.; Ravi Kumar, M.N. Antacid co-encapsulated polyester nanoparticles for peroral delivery of insulin: development, pharmacokinetics, biodistribution and pharmacodynamics. Int. J. Pharm., 2013, 440(1), 99-110.
[http://dx.doi.org/10.1016/j.ijpharm.2011.12.038] [PMID: 22227604]
[64]
Price, T.O.; Farr, S.A.; Yi, X.; Vinogradov, S.; Batrakova, E.; Banks, W.A.; Kabanov, A.V. Transport across the blood-brain barrier of pluronic leptin. J. Pharmacol. Exp. Ther., 2010, 333(1), 253-263.
[http://dx.doi.org/10.1124/jpet.109.158147] [PMID: 20053933]
[65]
Batrakova, E.V.; Kabanov, A.V. Pluronic block copolymers: evolution of drug delivery concept from inert nanocarriers to biological response modifiers. J. Control. Release, 2008, 130(2), 98-106.
[http://dx.doi.org/10.1016/j.jconrel.2008.04.013] [PMID: 18534704]
[66]
Xiong, X.Y.; Li, Y.P.; Li, Z.L.; Zhou, C.L.; Tam, K.C.; Liu, Z.Y.; Xie, G.X. Vesicles from Pluronic/poly(lactic acid) block copolymers as new carriers for oral insulin delivery. J. Control. Release, 2007, 120(1-2), 11-17.
[http://dx.doi.org/10.1016/j.jconrel.2007.04.004] [PMID: 17509718]
[67]
Barwal, I.; Sood, A.; Sharma, M.; Singh, B.; Yadav, S.C. Development of stevioside Pluronic-F-68 copolymer based PLA-nanoparticles as an antidiabetic nanomedicine. Colloids Surf. B Biointerfaces, 2013, 101, 510-516.
[http://dx.doi.org/10.1016/j.colsurfb.2012.07.005] [PMID: 23022553]
[68]
Chalasani, K.B.; Russell-Jones, G.J.; Jain, A.K.; Diwan, P.V.; Jain, S.K. Effective oral delivery of insulin in animal models using vitamin B12-coated dextran nanoparticles. J. Control. Release, 2007, 122(2), 141-150.
[http://dx.doi.org/10.1016/j.jconrel.2007.05.019] [PMID: 17707540]
[69]
Zion, T.C. Glucose-sensitive nanoparticles for controlled insulin delivery; Department of chemical engineering Massachusetts Institute of technology: Cambridge, 2003.
[70]
Higashi, T.; Hirayama, F.; Misumi, S.; Arima, H.; Uekama, K. Design and evaluation of polypseudorotaxanes of pegylated insulin with cyclodextrins as sustained release system. Biomaterials, 2008, 29(28), 3866-3871.
[http://dx.doi.org/10.1016/j.biomaterials.2008.06.019] [PMID: 18620750]
[71]
Foss, A.C.; Goto, T.; Morishita, M.; Peppas, N.A. Development of acrylic-based copolymers for oral insulin delivery. Eur. J. Pharm. Biopharm., 2004, 57(2), 163-169.
[http://dx.doi.org/10.1016/S0939-6411(03)00145-0] [PMID: 15018971]
[72]
Kumar, A.; Lahiri, S.S.; Singh, H. Development of PEGDMA: MAA based hydrogel microparticles for oral insulin delivery. Int. J. Pharm., 2006, 323(1-2), 117-124.
[http://dx.doi.org/10.1016/j.ijpharm.2006.05.050] [PMID: 16828246]
[73]
Sajeesh, S.; Vauthier, C.; Gueutin, C.; Ponchel, G.; Sharma, C.P. Thiol functionalized polymethacrylic acid-based hydrogel microparticles for oral insulin delivery. Acta Biomater., 2010, 6(8), 3072-3080.
[http://dx.doi.org/10.1016/j.actbio.2010.02.007] [PMID: 20144748]
[74]
Michaela, K. Oral Delivery System for Insulin. Pharmaceutical Research. Pharm. Res., 2000, 17(12), 1468-1474.
[http://dx.doi.org/10.1023/A:1007696723125] [PMID: 11303955]
[75]
Mahkam, M. Starch-based polymeric carriers for oral-insulin delivery. J. Biomed. Mater. Res. A, 2010, 92(4), 1392-1397.
[PMID: 19353572]
[76]
Jane, L.; David, M.; Katharine, C.; Korey, K.; Lori, M.; Stuart, A.; Joseph, I.; Desmond, S. Diabetes Care, 2018, 41(9), 2026-2044.
[http://dx.doi.org/10.2337/dci18-0023] [PMID: 30093549]
[77]
Damgé, C.; Maincent, P.; Ubrich, N. Oral delivery of insulin associated to polymeric nanoparticles in diabetic rats. J. Control. Release, 2007, 117(2), 163-170.
[http://dx.doi.org/10.1016/j.jconrel.2006.10.023] [PMID: 17141909]
[78]
Carino, G.P.; Jacob, J.S.; Mathiowitz, E. Nanosphere based oral insulin delivery. J. Control. Release, 2000, 65(1-2), 261-269.
[http://dx.doi.org/10.1016/S0168-3659(99)00247-3] [PMID: 10699286]
[79]
Kopeček, J.; Kopecková, P. HPMA copolymers: origins, early developments, present, and future. Adv. Drug Deliv. Rev., 2010, 62(2), 122-149.
[http://dx.doi.org/10.1016/j.addr.2009.10.004] [PMID: 19919846]
[80]
Oman, M.; Liu, J.; Chen, J.; Durrant, D.; Yang, H.S.; He, Y.; Kopecková, P. Using N-(2-hydroxypropyl) methacrylamide copolymer drug bioconjugate as a novel approach to deliver a Bcl-2-targeting compound HA14-1 in vivo. Proc. Am. Assoc. Cancer Res., 2005, 46.
[81]
Makhlof, A.; Tozuka, Y.; Takeuchi, H. Design and evaluation of novel pH-sensitive chitosan nanoparticles for oral insulin delivery. Eur. J. Pharm. Sci., 2011, 42(5), 445-451.
[http://dx.doi.org/10.1016/j.ejps.2010.12.007] [PMID: 21182939]
[82]
Elsayed, AM Oral Delivery of Insulin: Novel Approaches. Recent Advances in Novel Drug Carrier Systems, , 281-314.
[83]
Kabanov, A.V.; Vinogradov, S.V. Nanogels as pharmaceutical carriers: Finite networks of infinite capabilities. Angew. Chem. Int. Ed. Engl., 2009, 48(30), 5418-5429.
[http://dx.doi.org/10.1002/anie.200900441] [PMID: 19562807]
[84]
Rekha, M.R. Pullulan as a promising biomaterial for biomedical applications: A perspective. Trends Biomater. Artif. Organs, 2007, 20(2)
[85]
Lee, I.; Akiyoshi, K. Single molecular mechanics of a cholesterol-bearing pullulan nanogel at the hydrophobic interfaces. Biomaterials, 2004, 25(15), 2911-2918.
[http://dx.doi.org/10.1016/j.biomaterials.2003.09.065] [PMID: 14967522]
[86]
Torchilin, VP Chemical modification of nanogels for targeted delivery. Multifunctional pharmaceutical nanocarrires, 2008, 71-75.
[87]
Minimol, P.F.; Paul, W.; Sharma, C.P. PEGylated starch acetate nanoparticles and its potential use for oral insulin delivery. Carbohydr. Polym., 2013, 95(1), 1-8.
[http://dx.doi.org/10.1016/j.carbpol.2013.02.021] [PMID: 23618232]
[88]
Damgé, C.; Michel, C.; Aprahamian, M.; Couvreur, P. New approach for oral administration of insulin with polyalkylcyanoacrylate nanocapsules as drug carrier. Diabetes, 1988, 37(2), 246-251.
[http://dx.doi.org/10.2337/diab.37.2.246] [PMID: 3292320]
[89]
Aboubakar, M.; Puisieux, F.; Couvreur, P.; Deyme, M.; Vauthier, C. Study of the mechanism of insulin encapsulation in poly(isobutylcyanoacrylate) nanocapsules obtained by interfacial polymerization. J. Biomed. Mater. Res., 1999, 47(4), 568-576.
[http://dx.doi.org/10.1002/(SICI)1097-4636(19991215)47:4<568::AID-JBM14>3.0.CO;2-X] [PMID: 10497293]
[90]
Damgé, C.; Vranckx, H.; Balschmidt, P.; Couvreur, P. Poly(alkyl cyanoacrylate) nanospheres for oral administration of insulin. J. Pharm. Sci., 1997, 86(12), 1403-1409.
[http://dx.doi.org/10.1021/js970124i] [PMID: 9423155]
[91]
Watnasirichaikul, S.; Davies, N.M.; Rades, T.; Tucker, I.G. Preparation of biodegradable insulin nanocapsules from biocompatible microemulsions. Pharm. Res., 2000, 17(6), 684-689.
[http://dx.doi.org/10.1023/A:1007574030674] [PMID: 10955841]
[92]
Graf, A.; Jack, K.S.; Whittaker, A.K.; Hook, S.M.; Rades, T. Protein delivery using nanoparticles based on microemulsions with different structure-types. Eur. J. Pharm. Sci., 2008, 33(4-5), 434-444.
[http://dx.doi.org/10.1016/j.ejps.2008.01.013] [PMID: 18329862]
[93]
Graf, A.; Rades, T.; Hook, S.M. Oral insulin delivery using nanoparticles based on microemulsions with different structure-types: optimisation and in vivo evaluation. Eur. J. Pharm. Sci., 2009, 37(1), 53-61.
[http://dx.doi.org/10.1016/j.ejps.2008.12.017] [PMID: 19167488]
[94]
Graf, A.; Ablinger, E.; Peters, S.; Zimmer, A.; Hook, S.; Rades, T. Microemulsions containing lecithin and sugar-based surfactants: nanoparticle templates for delivery of proteins and peptides. Int. J. Pharm., 2008, 350(1-2), 351-360.
[http://dx.doi.org/10.1016/j.ijpharm.2007.08.053] [PMID: 17923347]
[95]
Stacia, F. Fabrication and Characterization of an oral Insulin Delivery System Utilizing Poly (Fumaric- Co- Sebacic Anhydride). Microspheres by Stacia Furtado Sc.B Brown University, 1995. [A Dissertation submitted in Partial Fulfillment of the requirements for the degree of doctor of philosophy in the division of biology and medicine at Brown University].
[96]
Clausen, A.E.; Bernkop-Schnürch, A. In vitro evaluation of the permeation-enhancing effect of thiolated polycarbophil. J. Pharm. Sci., 2000, 89(10), 1253-1261.
[http://dx.doi.org/10.1002/1520-6017(200010)89:10<1253::AIDJPS3>3.0.CO;2-8] [PMID: 10980500]
[97]
Marschütz, M.K.; Caliceti, P.; Bernkop-Schnürch, A. Design and in vivo evaluation of an oral delivery system for insulin. Pharm. Res., 2000, 17(12), 1468-1474.
[http://dx.doi.org/10.1023/A:1007696723125] [PMID: 11303955]
[98]
Calceti, P.; Salmaso, S.; Walker, G.; Bernkop-Schnürch, A.; Bernkop-Schnürch, A. Development and in vivo evaluation of an oral insulin-PEG delivery system. Eur. J. Pharm. Sci., 2004, 22(4), 315-323.
[http://dx.doi.org/10.1016/j.ejps.2004.03.015] [PMID: 15196588]
[99]
Torchilin, V.P. Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov., 2005, 4(2), 145-160.
[http://dx.doi.org/10.1038/nrd1632] [PMID: 15688077]
[100]
Niu, M.; Lu, Y.; Hovgaard, L.; Wu, W. Liposomes containing glycocholate as potential oral insulin delivery systems: preparation, in vitro characterization, and improved protection against enzymatic degradation. Int. J. Nanomedicine, 2011, 6, 1155-1166.
[PMID: 21822379]
[101]
Spangler, R.S. Insulin administration via liposomes. Diabetes Care, 1990, 13(9), 911-922.
[http://dx.doi.org/10.2337/diacare.13.9.911] [PMID: 2226109]
[102]
Liposomes for Drug Delivery; Universitatis Upsaliensis Uppsala University, 2003.
[103]
Immordino, M.L.; Dosio, F.; Cattel, L. Stealth liposomes: Review of the basic science, rationale, and clinical applications, existing and potential. Int. J. Nanomedicine, 2006, 1(3), 297-315.
[PMID: 17717971]
[104]
Kim, A.; Yun, M.O.; Oh, Y.K.; Ahn, W.S.; Kim, C.K. Pharmacodynamics of insulin in polyethylene glycol-coated liposomes. Int. J. Pharm., 1999, 180(1), 75-81.
[http://dx.doi.org/10.1016/S0378-5173(98)00408-6] [PMID: 10089294]
[105]
Shaw, J.E.; Sicree, R.A.; Zimmet, P.Z. Global estimates of the prevalence of diabetes for 2010 and 2030 Diabetes research and clinical practise. 2010, 87(1), 4-14.
[106]
Zhang, N.; Ping, Q.N.; Huang, G.H.; Xu, W.F. Investigation of lectin-modified insulin liposomes as carriers for oral administration. Int. J. Pharm., 2005, 294(1-2), 247-259.
[http://dx.doi.org/10.1016/j.ijpharm.2005.01.018] [PMID: 15814248]
[107]
Li, C.; Zhang, Y.; Su, T.; Feng, L.; Long, Y.; Chen, Z. Silica-coated flexible liposomes as a nanohybrid delivery system for enhanced oral bioavailability of curcumin. Int. J. Nanomedicine, 2012, 7, 5995-6002.
[http://dx.doi.org/10.2147/IJN.S38043] [PMID: 23233804]
[108]
Jain, A.K.; Chalasani, K.B.; Khar, R.K.; Ahmed, F.J.; Diwan, P.V. Muco-adhesive multivesicular liposomes as an effective carrier for transmucosal insulin delivery. J. Drug Target., 2007, 15(6), 417-427.
[http://dx.doi.org/10.1080/10611860701453653] [PMID: 17613660]
[109]
Martins, S.; Sarmento, B.; Ferreira, D.C.; Souto, E.B. Lipid-based colloidal carriers for peptide and protein delivery--liposomes versus lipid nanoparticles. Int. J. Nanomedicine, 2007, 2(4), 595-607.
[PMID: 18203427]
[110]
Kook, K.C.; Eun-Bin, I.; Soo-Jeong, L.; Yu-Kyoung, O.; Seok-Kyu, H. Development of glucose-triggered pH-sensitive liposomes for a potential insulin delivery. Int. J. Pharm., 1994, 101(3), 191-197.
[http://dx.doi.org/10.1016/0378-5173(94)90214-3]
[111]
Iwanaga, K.; Ono, S.; Narioka, K.; Kakemi, M.; Morimoto, K.; Yamashita, S.; Namba, Y.; Oku, N. Application of surface-coated liposomes for oral delivery of peptide: effects of coating the liposome’s surface on the GI transit of insulin. J. Pharm. Sci., 1999, 88(2), 248-252.
[http://dx.doi.org/10.1021/js980235x] [PMID: 9950646]
[112]
Park, S.J.; Choi, S.G.; Davaa, E.; Park, J.S. Encapsulation enhancement and stabilization of insulin in cationic liposomes. Int. J. Pharm., 2011, 415(1-2), 267-272.
[http://dx.doi.org/10.1016/j.ijpharm.2011.05.061] [PMID: 21645598]
[113]
Cherian, A.K.; Rana, A.C.; Jain, S.K. Self-assembled carbohydrate-stabilized ceramic nanoparticles for the parenteral delivery of insulin. Drug Dev. Ind. Pharm., 2000, 26(4), 459-463.
[http://dx.doi.org/10.1081/DDC-100101255] [PMID: 10769790]
[114]
Paul, W.; Sharma, C.P. Synthesis and characterization of alginate coated zinc calcium phosphate nanoparticles for intestinal delivery of insulin. Process Biochem., 2012, 47(5), 882-886.
[http://dx.doi.org/10.1016/j.procbio.2012.01.018]
[115]
Paul, W.; Sharma, C.P. Porous hydroxyapatite nanoparticles for intestinal delivery of insulin. Trends Biomater. Artif. Organs, 2001, 14, 37-38.
[116]
Rana, S.; Bajaj, A.; Mout, R.; Rotello, V.M. Monolayer coated gold nanoparticles for delivery applications. Adv. Drug Deliv. Rev., 2012, 64(2), 200-216.
[http://dx.doi.org/10.1016/j.addr.2011.08.006] [PMID: 21925556]
[117]
Bhumkar, D.R.; Joshi, H.M.; Sastry, M.; Pokharkar, V.B. Chitosan reduced gold nanoparticles as novel carriers for transmucosal delivery of insulin. Pharm. Res., 2007, 24(8), 1415-1426.
[http://dx.doi.org/10.1007/s11095-007-9257-9] [PMID: 17380266]
[118]
Daisy, P.; Saipriya, K. Biochemical analysis of Cassia fistula aqueous extract and phytochemically synthesized gold nanoparticles as hypoglycemic treatment for diabetes mellitus. Int. J. Nanomedicine, 2012, 7, 1189-1202.
[http://dx.doi.org/10.2147/IJN.S26650] [PMID: 22419867]
[119]
Rink, J.S.; McMahon, K.M.; Chen, X.; Mirkin, C.A.; Thaxton, C.S.; Kaufman, D.B.; Dixon, B.; Kaufman, D.B. Transfection of pancreatic islets using polyvalent DNA-functionalized gold nanoparticles. Surgery, 2010, 148(2), 335-345.
[http://dx.doi.org/10.1016/j.surg.2010.05.013] [PMID: 20633730]
[120]
Ekambaram, PA solid lipid nanoparticles: A review. Department of pharmaceutics Sci. Revs. Chem. Commun., 2012, 80-102.
[121]
Pedro, F.; Fernanda, A.; Francisca, A. Cláudia, A.; Jose, N.; Bruno, S. Chitosan-Coated Solid Lipid Nanoparticles for Insulin Delivery. Methods Enzymol., 2012, 508.
[122]
Zhang, N.; Ping, Q.; Huang, G.; Xu, W.; Cheng, Y.; Han, X. Lectin-modified solid lipid nanoparticles as carriers for oral administration of insulin. Int. J. Pharm., 2006, 327(1-2), 153-159.
[http://dx.doi.org/10.1016/j.ijpharm.2006.07.026] [PMID: 16935443]
[123]
Zhang, Z.H.; Zhang, Y.L.; Zhou, J.P.; Lv, H.X. Solid lipid nanoparticles modified with stearic acid-octaarginine for oral administration of insulin. Int. J. Nanomedicine, 2012, 7, 3333-3339.
[PMID: 22848162]
[124]
Sarmento, B.; Martins, S.; Ferreira, D.; Souto, E.B. Oral insulin delivery by means of solid lipid nanoparticles. Int. J. Nanomedicine, 2007, 2(4), 743-749.
[PMID: 18203440]
[125]
Shukla Jill, B.; Koli, A.; Ranch Ketan, M. Parikh Rajesh, K Self Mirco Emulsifying Drug Delivery System; Int J of Pharm Science, 2010, p. 976.
[126]
Xiaoyang, L.; Jianping, Q.; Yunchang, X.; Xi, Z.; Shunwen, H.; Ying, X.; Yi, L.; Wei, W. Nanoemulsions coated with alginate/chitosan as oral insulin delivery systems: preparation, characterization, and hypoglycemic effect in rats; Int.J.Nanomed, 2012, p. 2.
[127]
Reis, C.P.; Ribeiro, A.J.; Houng, S.; Veiga, F.; Neufeld, R.J. Nanoparticulate delivery system for insulin: design, characterization and in vitro/in vivo bioactivity. Eur. J. Pharm. Sci., 2007, 30(5), 392-397.
[http://dx.doi.org/10.1016/j.ejps.2006.12.007] [PMID: 17280820]
[128]
Rayanta, P.; Geeta, N.; Ashutosh, M.; Yogesh, B.; Bhushan, M.; Arvind, K.; Shyam, S. SNEDDS curcumin formulation leads to enhanced protection from pain and functional associated with diabetic neuropathy:An insight into its mechanism for neuroprotection, Nanomedicine: Nanotechnology. Biol. Med. (Aligarh), 2013, 9(6), 776-785.
[129]
Zhang, J.; Peng, Q.; Shi, S.; Zhang, Q.; Sun, X.; Gong, T.; Zhang, Z. Preparation, characterization, and in vivo evaluation of a self-nanoemulsifying drug delivery system (SNEDDS) loaded with morin-phospholipid complex. Int. J. Nanomedicine, 2011, 6, 3405-3414.
[PMID: 22267925]
[130]
Starokadomskiĭ, P.L.; Dubeĭ, I.Ia. [Lysalbinic acid--a new absorption enhancer for the buccal delivery of peptide drugs]. Ukr Biokhim Zh (1999), 2005, 77(6), 79-85.
[PMID: 19618746]
[131]
Kumria, R.; Goomber, G. Emerging trends in insulin delivery: Buccal route. J. Diabetes, 2011, 2, 1.
[132]
Modi, P.; Mihic, M.; Lewin, A. The evolving role of oral insulin in the treatment of diabetes using a novel RapidMist System. Diabetes Metab. Res. Rev., 2002, 18(1)(Suppl. 1), S38-S42.
[http://dx.doi.org/10.1002/dmrr.208] [PMID: 11921428]
[133]
Aungst, B.; Rogers, N. Comparison of the effects of various transmucosal absorption promoters on buccal insulin delivery. Int. J. Pharm., 1989, 53, 227-235.
[http://dx.doi.org/10.1016/0378-5173(89)90316-5]
[134]
Bernstein, G. Delivery of insulin to the buccal mucosa utilizing the RapidMist system. Expert Opin. Drug Deliv., 2008, 5(9), 1047-1055.
[http://dx.doi.org/10.1517/17425247.5.9.1047] [PMID: 18754753]
[135]
Venugopalan, P.; Sapre, A.; Venkatesan, N.; Vyas, S.P. Pelleted bioadhesive polymeric nanoparticles for buccal delivery of insulin: preparation and characterization. Pharmazie, 2001, 56(3), 217-219.
[PMID: 11265586]
[136]
Hosny, E.A.; Elkheshen, S.A.; Saleh, S.I. Buccoadhesive tablets for insulin delivery: in vitro and in vivo studies. Boll. Chim. Farm., 2002, 141(3), 210-217.
[PMID: 12197420]
[137]
Remon, J. Nasal delivery of peptides using powder carriers based on starch/poly(acrylic acid). Thesis submitted to obtain the degree of Doctor in Pharmaceutical Sciences Ghent University 2005.
[138]
Challa, R.; Ahuja, A.; Ali, J.; Khar, R.K. Cyclodextrins in drug delivery: an updated review. AAPS PharmSciTech, 2005, 6(2), E329-E357.
[http://dx.doi.org/10.1208/pt060243] [PMID: 16353992]
[139]
Merkus, F.W.; Verhoef, J.C.; Marttin, E.; Romeijn, S.G.; Hermens, W.A.; Schipper, N.G.; Schipper, N. Cyclodextrins in nasal drug delivery. Adv. Drug Deliv. Rev., 1999, 36(1), 41-57.
[http://dx.doi.org/10.1016/S0169-409X(98)00054-4] [PMID: 10837708]
[140]
Pillion, D.J.; Atchison, J.A.; Gargiulo, C.; Wang, R.X.; Wang, P.; Meezan, E. Insulin delivery in nosedrops: New formulations containing alkylglycosides. Endocrinology, 1994, 135(6), 2386-2391.
[http://dx.doi.org/10.1210/endo.135.6.7988421] [PMID: 7988421]
[141]
Yu, S.; Zhao, Y.; Wu, F.; Zhang, X.; Lü, W.; Zhang, H.; Zhang, Q. Nasal insulin delivery in the chitosan solution: In vitro and in vivo studies. Int. J. Pharm., 2004, 281(1-2), 11-23.
[http://dx.doi.org/10.1016/j.ijpharm.2004.05.007] [PMID: 15288339]
[142]
Krauland, A.H.; Leitner, V.M.; Grabovac, V.; Bernkop-Schnürch, A. In vivo evaluation of a nasal insulin delivery system based on thiolated chitosan. J. Pharm. Sci., 2006, 95(11), 2463-2472.
[http://dx.doi.org/10.1002/jps.20700] [PMID: 16886206]
[143]
Krauland, A.H.; Guggi, D.; Bernkop-Schnürch, A. Thiolated chitosan microparticles: a vehicle for nasal peptide drug delivery. Int. J. Pharm., 2006, 307(2), 270-277.
[http://dx.doi.org/10.1016/j.ijpharm.2005.10.016] [PMID: 16300914]
[144]
Wang, J.; Tabata, Y.; Morimoto, K. Aminated gelatin microspheres as a nasal delivery system for peptide drugs: evaluation of in vitro release and in vivo insulin absorption in rats. J. Control. Release, 2006, 113(1), 31-37.
[http://dx.doi.org/10.1016/j.jconrel.2006.03.011] [PMID: 16707188]
[145]
Chun, Y. Microparticles, microcapsules and microspheres: A review of recent developments and pro-spects for oral delivery of insulin. Int. J. Pharm., 2018, 537(1-2), 223-244.
[146]
Nema, T.; Jain, A.; Jain, A.; Shilpi, S.; Gulbake, A.; Hurkat, P.; Jain, S.K. Insulin delivery through nasal route using thiolated microspheres. Drug Deliv., 2013, 20(5), 210-215.
[http://dx.doi.org/10.3109/10717544.2012.746401] [PMID: 23495666]
[147]
Arnold, J.J.; Ahsan, F.; Meezan, E.; Pillion, D.J. Correlation of tetradecylmaltoside induced increases in nasal peptide drug delivery with morphological changes in nasal epithelial cells. J. Pharm. Sci., 2004, 93(9), 2205-2213.
[http://dx.doi.org/10.1002/jps.20123] [PMID: 15295781]
[148]
Pandey, S. Non-Invasive Insulin Delivery Systems: Challenges and Needs for Improvement. Int. J. Pharm. Tech. Res., 2010, 2(1), 603-614.
[149]
Yamamoto, A.; Luo, A.M.; Dodda-Kashi, S.; Lee, V.H. The ocular route for systemic insulin delivery in the albino rabbit. J. Pharmacol. Exp. Ther., 1989, 249(1), 249-255.
[PMID: 2651650]
[150]
Pillion, D.J.; Atchison, J.A.; Wang, R.X.; Meezan, E. Alkylglycosides enhance systemic absorption of insulin applied topically to the rat eye. J. Pharmacol. Exp. Ther., 1994, 271(3), 1274-1280.
[PMID: 7996435]
[151]
Lee, H.K.; Kwon, J.H.; Park, S.H.; Kim, C.W. Enhanced hypoglycemic activity following intratracheal administration of insulin microcrystal suspension with injection adjuvant. Biosci. Biotechnol. Biochem., 2006, 70(4), 1003-1005.
[http://dx.doi.org/10.1271/bbb.70.1003] [PMID: 16636470]
[152]
Mitra, R.; Pezron, I.; Li, Y.; Mitra, A.K. Enhanced pulmonary delivery of insulin by lung lavage fluid and phospholipids. Int. J. Pharm., 2001, 217(1-2), 25-31.
[http://dx.doi.org/10.1016/S0378-5173(01)00588-9] [PMID: 11292539]
[153]
Smola, M.; Vandamme, T.; Sokolowski, A. Nanocarriers as pulmonary drug delivery systems to treat and to diagnose respiratory and non respiratory diseases. Int. J. Nanomedicine, 2008, 3(1), 1-19.
[PMID: 18488412]
[154]
Aguiar, M.M.; Rodrigues, J.M.; Silva Cunha, A. Encapsulation of insulin-cyclodextrin complex in PLGA microspheres: A new approach for prolonged pulmonary insulin delivery. J. Microencapsul., 2004, 21(5), 553-564.
[http://dx.doi.org/10.1080/02652040400000447] [PMID: 15513761]
[155]
Huang, Y.Y.; Wang, C.H. Pulmonary delivery of insulin by liposomal carriers. J. Control. Release, 2006, 113(1), 9-14.
[http://dx.doi.org/10.1016/j.jconrel.2006.03.014] [PMID: 16730838]
[156]
Garcia-Contreras, L.; Morçöl, T.; Bell, S.J.; Hickey, A.J.; Hickey, A. Evaluation of novel particles as pulmonary delivery systems for insulin in rats. AAPS PharmSci, 2003, 5(2), E9.
[http://dx.doi.org/10.1208/ps050209] [PMID: 12866936]
[157]
Ungaro, F.; d’Emmanuele di Villa Bianca, R.; Giovino, C.; Miro, A.; Sorrentino, R.; Quaglia, F.; La Rotonda, M.I. Insulin-loaded PLGA/cyclodextrin large porous particles with improved aerosolization properties: In vivo deposition and hypoglycaemic activity after delivery to rat lungs. J. Control. Release, 2009, 135(1), 25-34.
[http://dx.doi.org/10.1016/j.jconrel.2008.12.011] [PMID: 19154761]
[158]
Hamishehkar, H.; Emami, J.; Najafabadi, A.R.; Gilani, K.; Minaiyan, M.; Hassanzadeh, K.; Mahdavi, H.; Koohsoltani, M.; Nokhodchi, A. Pharmacokinetics and pharmacodynamics of controlled release insulin loaded PLGA microcapsules using dry powder inhaler in diabetic rats. Biopharm. Drug Dispos., 2010, 31(2-3), 189-201.
[http://dx.doi.org/10.1002/bdd.702] [PMID: 20238376]
[159]
Zhang, Q.; Shen, Z.; Nagai, T. Prolonged hypoglycemic effect of insulin-loaded polybutylcyanoacrylate nanoparticles after pulmonary administration to normal rats. Int. J. Pharm., 2001, 218(1-2), 75-80.
[http://dx.doi.org/10.1016/S0378-5173(01)00614-7] [PMID: 11337151]
[160]
Zakzewski, C.A.; Wasilewski, J.; Cawley, P.; Ford, W. Transdermal delivery of regular insulin to chronic diabetic rats: Effect of skin preparation and electrical enhancement. J Cont. Release, 1998, 50(1-3), 267-272.
[161]
Chen, H.; Zhu, H.; Zheng, J.; Mou, D.; Wan, J.; Zhang, J.; Shi, T.; Zhao, Y.; Xu, H.; Yang, X. Iontophoresis-driven penetration of nanovesicles through microneedle-induced skin microchannels for enhancing transdermal delivery of insulin. J. Control. Release, 2009, 139(1), 63-72.
[http://dx.doi.org/10.1016/j.jconrel.2009.05.031] [PMID: 19481577]
[162]
Prausnitz, M.R.; Langer, R. Transdermal drug delivery. Nat. Biotechnol., 2008, 26(11), 1261-1268.
[http://dx.doi.org/10.1038/nbt.1504] [PMID: 18997767]
[163]
Liu, S.; Jin, M.N.; Quan, Y.S.; Kamiyama, F.; Katsumi, H.; Sakane, T.; Yamamoto, A. The development and characteristics of novel microneedle arrays fabricated from hyaluronic acid, and their application in the transdermal delivery of insulin. J. Control. Release, 2012, 161(3), 933-941.
[http://dx.doi.org/10.1016/j.jconrel.2012.05.030] [PMID: 22634072]
[164]
Alain Boucaud, A.; Garrigue, M.A.; Machet, L.; Vaillant, L.; Patat, F. Effect of sonication parameters on transdermal delivery of insulin to hairless rat. J. Control. Release, 2012, 81(1–2), 113-119.
[165]
Malakar, J.; Sen, S.O.; Nayak, A.K.; Sen, K.K. Formulation, optimization and evaluation of transferosomal gel for transdermal insulin delivery. Saudi Pharm. J., 2012, 20(4), 355-363.
[http://dx.doi.org/10.1016/j.jsps.2012.02.001] [PMID: 23960810]
[166]
Sen, A.; Daly, M.E.; Hui, S.W. Transdermal insulin delivery using lipid enhance electroporation Biochimica et Biophysica Acta (BBA) –. Biomembranes, 2002, 1564(1), 5-8.
[http://dx.doi.org/10.1016/S0005-2736(02)00453-4] [PMID: 12100989]
[167]
Ji-Won, Y.; Hee-Sook, J. Recent advances in insulin gene therapy for type 1 diabetes. Trends Mol. Med., 2002, 8(2)
[168]
Niessen, S.J.; Fernandez-Fuente, M.; Mahmoud, A.; Campbell, S.C.; Aldibbiat, A.; Huggins, C.; Brown, A.E.; Holder, A.; Piercy, R.J.; Catchpole, B.; Shaw, J.A.; Church, D.B. Novel diabetes mellitus treatment: mature canine insulin production by canine striated muscle through gene therapy. Domest. Anim. Endocrinol., 2012, 43(1), 16-25.
[http://dx.doi.org/10.1016/j.domaniend.2012.01.006] [PMID: 22405830]
[169]
Soukhareva, N.; Jiang, Y.; Scott, D.W. Treatment of diabetes in NOD mice by gene transfer of Ig-fusion proteins into B cells: role of T regulatory cells. Cell. Immunol., 2006, 240(1), 41-46.
[http://dx.doi.org/10.1016/j.cellimm.2006.06.004] [PMID: 16860296]
[170]
Jean, M.; Alameh, M.; De Jesus, D.; Thibault, M.; Lavertu, M.; Darras, V.; Nelea, M.; Buschmann, M.D.; Merzouki, A. Chitosan-based therapeutic nanoparticles for combination gene therapy and gene silencing of in vitro cell lines relevant to type 2 diabetes. Eur. J. Pharm. Sci., 2012, 45(1-2), 138-149.
[http://dx.doi.org/10.1016/j.ejps.2011.10.029] [PMID: 22085632]
[171]
Oh, T.K.; Li, M.Z.; Kim, S.T. Gene therapy for diabetes mellitus in rats by intramuscular injection of lentivirus containing insulin gene. Diabetes Res. Clin. Pract., 2006, 71(3), 233-240.
[http://dx.doi.org/10.1016/j.diabres.2005.08.005] [PMID: 16171885]
[172]
Samson, S.L.; Chan, L. Gene therapy for diabetes: Reinventing the islet. Trends Endocrinol. Metab., 2006, 17(3), 92-100.
[http://dx.doi.org/10.1016/j.tem.2006.02.002] [PMID: 16504534]
[173]
Doss, M.X.; Koehler, C.I.; Gissel, C.; Hescheler, J.; Sachinidis, A. Embryonic stem cells: A promising tool for cell replacement therapy. J. Cell. Mol. Med., 2004, 8(4), 465-473.
[http://dx.doi.org/10.1111/j.1582-4934.2004.tb00471.x] [PMID: 15601575]
[174]
Keller, G. Embryonic stem cell differentiation: emergence of a new era in biology and medicine. Genes Dev., 2005, 19(10), 1129-1155.
[http://dx.doi.org/10.1101/gad.1303605] [PMID: 15905405]
[175]
Kume, S. Stem-cell-based approaches for regenerative medicine. Dev. Growth Differ., 2005, 47(6), 393-402.
[http://dx.doi.org/10.1111/j.1440-169X.2005.00814.x] [PMID: 16109037]
[176]
Serup, P. Embryonic stem cell-based diabetes therapy--a long road to travel. Diabetologia, 2006, 49(11), 2537-2540.
[http://dx.doi.org/10.1007/s00125-006-0434-x] [PMID: 17019597]
[177]
Stratta, R.J.; Taylor, R.J.; Larsen, J.L.; Cushing, K. Pancreas transplantation. Ren. Fail., 1995, 17(4), 323-337.
[http://dx.doi.org/10.3109/08860229509037599] [PMID: 7569106]
[178]
Shapiro, A.M.; Lakey, J.R.; Ryan, E.A.; Korbutt, G.S.; Toth, E.; Warnock, G.L.; Kneteman, N.M.; Rajotte, R.V. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N. Engl. J. Med., 2000, 343(4), 230-238.
[http://dx.doi.org/10.1056/NEJM200007273430401] [PMID: 10911004]
[179]
Stem cell transplantation for type-1 diabetes mellitus. Diabetes Metab. Syndr., 2009, 1, 4.
[http://dx.doi.org/10.1186/1758-5996-1-4]
[180]
Franco, F.; Terumasa, O.; Carla, P.; Jenny, G.; Chong Wee, L.; Masaru, A.; Anna, D.; Stefano, L.; Claudia, P.; Roberto, L.; Piero, M.; Giorgio, S.; Marc, H.; Lucia, P.; Rohit, N. Altered insulin receptor signaling and beta cell cycle dynamics in type 2 diabetes mellitus. PLoS One, 2011, 11, 1-11.
[181]
Butler, A.E.; Janson, J.; Bonner-Weir, S.; Ritzel, R.; Rizza, R.A.; Butler, P.C. β-cell deficit and increased β-cell apoptosis in humans with type 2 diabetes. Diabetes, 2003, 52(1), 102-110.
[http://dx.doi.org/10.2337/diabetes.52.1.102] [PMID: 12502499]
[182]
Rahier, J.; Guiot, Y.; Goebbels, R.M.; Sempoux, C.; Henquin, J.C. Pancreatic β-cell mass in European subjects with type 2 diabetes. Diabetes Obes. Metab., 2008, 10(4)(Suppl. 4), 32-42.
[http://dx.doi.org/10.1111/j.1463-1326.2008.00969.x] [PMID: 18834431]
[183]
Marques, R.G.; Fontaine, M.J.; Rogers, J. C-peptide: much more than a byproduct of insulin biosynthesis. Pancreas, 2004, 29(3), 231-238.
[http://dx.doi.org/10.1097/00006676-200410000-00009] [PMID: 15367890]
[184]
Gary, T.; Wing-Yee, K.; Peter, C.; Wing-Bun, C.; Xilin, Y.; Ronald, C.; Alice, P.; Risa, O.; Chun-Yip, Y.; Chun-Chung, C.; Juliana, C. Effect of interaction between C peptide levels and insulin treatment on clinical outcomes among patients with type-2 diabetes mellitus. CMAJ, 2009, 9, 919-926.
[185]
Riedel, M.J.; Kieffer, T.J. Treatment of diabetes with glucagon-like peptide-1 gene therapy. Expert Opin. Biol. Ther., 2010, 10(12), 1681-1692.
[http://dx.doi.org/10.1517/14712598.2010.532786] [PMID: 21029027]
[186]
Danny, M.; Mike, L. Nanotechnology and the future of diabetes management. J. Diabetes Nurs., 2009, 13, 8.
[187]
Abhilash, M. Nanorobots. Int. J. Pharma Bio Sci., 2010, 1(1)
[188]
BD Ultra-Fine™ Nano: BD’s Shortest & Thinnest Pen Needle – Now Featuring a Modified Tip with PentaPoint, Shorter Needles Deliver Added Benefits., http://www.multivu.com/assets/58104/documents/58104-About-BD-NanoTM-with-PentaPointTM-original.pdf
[189]
Baruah, M.P. Insulin pens: the modern delivery devices. J. Assoc. Physicians India, 2011, 59(Suppl.), 38-40.
[PMID: 21823254]
[190]
Nitesh, C.; Sanjeev, C.; Vandana, H.; Alka, A.; Vijender, S. Recent Advances in Insulin Delivery Systems: An Update. World Appl. Sci. J., 2010, 11(12), 1552-1556.
[191]
Ramchandani, N.; Heptulla, R.A. New technologies for diabetes: A review of the present and the future. Int. J. Pediatr. Endocrinol., 2012, 2012(1), 28.
[http://dx.doi.org/10.1186/1687-9856-2012-28] [PMID: 23098076]
[192]
Marcus, A. Diabetes care - insulin delivery in a changing world. Medscape J. Med., 2008, 10(5), 120.
[PMID: 18596953]
[193]
Zeynep, G.; Yujiao, Z.; Mehrnaz, A.; Shannon, G.; Dayong, W.; Zhaoyang, F.; Shu, W. Recent advances in nano-encapsulation of phytochemicals to combat obesity and its comorbidities. J. Agric. Food Chem., 2020, 45.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy