Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Structural Phylogeny of Different Allergens May Reveal Common Epitopic Footprint

Author(s): Anubhab Laha, Rajib Bandopadhyay* and Anindya Sundar Panja

Volume 28, Issue 10, 2021

Published on: 22 June, 2021

Page: [1099 - 1107] Pages: 9

DOI: 10.2174/0929866528666210622145710

Price: $65

Abstract

Background: The incidence of allergy has been increasing at an alarming rate over the last few decades.

Objective: Our present study aims to find out the structurally homologous motifs present in different proteinaceous allergens.

Methods: Significant number of protein sequences and their corresponding structures of various pollen, fungal, bacterial, and food allergens were retrieved and the sequence and structural identity were analyzed.

Results: Intra- and inter-sequence along with their structural analysis of the proteinaceous allergens revealed that no significant relationships exist among them. A few, but not the negligible number of high structural similarities, were observed within different groups of allergens from fungus, angiosperms, and animals (Aves and Mammalia).

Conclusion: Our in silico study on thirty-six different allergens showed a significant level of structural similarities among themselves, regardless of their sequences.

Keywords: Allergy, allergen, epitope, hypersensitivity, structural homology, protein sequences.

Graphical Abstract
[1]
Pritchard, D.I.; Falcone, F.H.; Mitchell, P.D. The evolution of IgE-mediated type I hypersensitivity and its immunological value. Allergy, 2021, 76(4), 1024-1040.
[http://dx.doi.org/10.1111/all.14570] [PMID: 32852797]
[2]
Dispenza, M.C. Classification of hypersensitivity reactions. Allergy Asthma Proc., 2019, 40(6), 470-473.
[http://dx.doi.org/10.2500/aap.2019.40.4274] [PMID: 31690397]
[3]
Bidad, K.; Nicknam, M.H.; Farid, R.V. A review of allergy and allergen specific immunotherapy. Iran J. Allergy Asthma Immunol, 2011, 10(1), 1-9.
[4]
Wu, L.C.; Zarrin, A.A. The production and regulation of IgE by the immune system. Nat. Rev. Immunol., 2014, 14(4), 247-259.
[http://dx.doi.org/10.1038/nri3632] [PMID: 24625841]
[5]
Barnes, C. Fungi and Atopy. Clin. Rev. Allergy Immunol., 2019, 57(3), 439-448.
[http://dx.doi.org/10.1007/s12016-019-08750-z] [PMID: 31321665]
[6]
Miller, J.D. The role of dust mites in allergy. Clin. Rev. Allergy Immunol., 2019, 57(3), 312-329.
[http://dx.doi.org/10.1007/s12016-018-8693-0] [PMID: 29936683]
[7]
D’Amato, G.; Chong-Neto, H.J.; Monge Ortega, O.P.; Vitale, C.; Ansotegui, I.; Rosario, N.; Haahtela, T.; Galan, C.; Pawankar, R.; Murrieta-Aguttes, M.; Cecchi, L.; Bergmann, C.; Ridolo, E.; Ramon, G.; Gonzalez Diaz, S.; D’Amato, M.; Annesi-Maesano, I. The effects of climate change on respiratory allergy and asthma induced by pollen and mold allergens. Allergy, 2020, 75(9), 2219-2228.
[http://dx.doi.org/10.1111/all.14476] [PMID: 32589303]
[8]
Eiwegger, T.; Hung, L.; San Diego, K.E.; O’Mahony, L.; Upton, J. Recent developments and highlights in food allergy. Allergy, 2019, 74(12), 2355-2367.
[http://dx.doi.org/10.1111/all.14082] [PMID: 31593325]
[9]
Kim, K.H.; Kabir, E.; Jahan, S.A. Airborne bioaerosols and their impact on human health. J. Environ. Sci. (China), 2018, 67, 23-35.
[http://dx.doi.org/10.1016/j.jes.2017.08.027] [PMID: 29778157]
[10]
Madore, A.M.; Laprise, C. Immunological and genetic aspects of asthma and allergy. J. Asthma Allergy, 2010, 3, 107-121.
[http://dx.doi.org/10.2147/jaa.s8970] [PMID: 21437045]
[11]
Anvari, S.; Miller, J.; Yeh, C.Y.; Davis, C.M. IgE-mediated food allergy. Clin. Rev. Allergy Immunol., 2019, 57(2), 244-260.
[http://dx.doi.org/10.1007/s12016-018-8710-3] [PMID: 30370459]
[12]
Al-Saud, B.; Sigurdardóttir, S.T. Early introduction of egg and the development of egg allergy in children: a systematic review and meta-analysis. Int. Arch. Allergy Immunol., 2018, 177(4), 350-359.
[http://dx.doi.org/10.1159/000492131] [PMID: 30184525]
[13]
Gelis, S.; Rueda, M.; Valero, A.; Fernández, E.A.; Moran, M.; Fernández-Caldas, E. Shellfish allergy: Unmet needs in diagnosis and treatment. J. Investig. Allergol. Clin. Immunol., 2020, 30(6), 409-420.
[http://dx.doi.org/10.18176/jiaci.0565] [PMID: 32694101]
[14]
Wai, C.Y.Y.; Leung, N.Y.H.; Chu, K.H.; Leung, P.S.C.; Leung, A.S.Y.; Wong, G.W.K.; Leung, T.F. Overcoming shellfish allergy: how far have we come? Int. J. Mol. Sci., 2020, 21(6), 2234.
[http://dx.doi.org/10.3390/ijms21062234] [PMID: 32210187]
[15]
Davis, C.M.; Gupta, R.S.; Aktas, O.N.; Diaz, V.; Kamath, S.D.; Lopata, A.L. Clinical management of seafood allergy. J. Allergy Clin. Immunol. Pract., 2020, 8(1), 37-44.
[http://dx.doi.org/10.1016/j.jaip.2019.10.019] [PMID: 31950908]
[16]
Kourani, E.; Corazza, F.; Michel, O.; Doyen, V. What do we know about fish allergy at the end of the decade? J. Investig. Allergol. Clin. Immunol., 2019, 29(6), 414-421.
[http://dx.doi.org/10.18176/jiaci.0381] [PMID: 30741635]
[17]
Ruethers, T.; Taki, A.C.; Karnaneedi, S.; Nie, S.; Kalic, T.; Dai, D.; Daduang, S.; Leeming, M.; Williamson, N.A.; Breiteneder, H.; Mehr, S.S.; Kamath, S.D.; Campbell, D.E.; Lopata, A.L. Expanding the allergen repertoire of salmon and catfish. Allergy, 2020, 76(5), 1443-1453.
[http://dx.doi.org/10.1111/all.14574] [PMID: 32860256]
[18]
Flom, J.D.; Sicherer, S.H. Epidemiology of cow’s milk allergy. Nutrients, 2019, 11(5), 1051.
[http://dx.doi.org/10.3390/nu11051051] [PMID: 31083388]
[19]
Fisher, H.R.; Keet, C.A.; Lack, G.; du Toit, G. Preventing peanut allergy: Where are we now? J. Allergy Clin. Immunol. Pract., 2019, 7(2), 367-373.
[http://dx.doi.org/10.1016/j.jaip.2018.11.005] [PMID: 30717867]
[20]
Vickery, B.P.; Ebisawa, M.; Shreffler, W.G.; Wood, R.A. Current and future treatment of peanut allergy. J. Allergy Clin. Immunol. Pract., 2019, 7(2), 357-365.
[http://dx.doi.org/10.1016/j.jaip.2018.11.049] [PMID: 30717866]
[21]
Daschner, A.; González Fernández, J. Allergy in an evolutionary framework. J. Mol. Evol., 2020, 88(1), 66-76.
[http://dx.doi.org/10.1007/s00239-019-09895-3] [PMID: 31175388]
[22]
Verduci, E.; Di Profio, E.; Cerrato, L.; Nuzzi, G.; Riva, L.; Vizzari, G.; D’Auria, E.; Giannì, M.L.; Zuccotti, G.; Peroni, D.G. Use of soy-based formulas and cow’s milk allergy: lights and shadows. Front Pediatr., 2020, 8, 591988.
[http://dx.doi.org/10.3389/fped.2020.591988] [PMID: 33313028]
[23]
Kayode, O.S.; Prado, N.; Thursfield, D.J.; Till, S.J.; Siew, L.Q.C. Lemon seed allergy: a case presentation. Allergy Asthma Clin. Immunol., 2020, 16, 32.
[http://dx.doi.org/10.1186/s13223-020-00429-x] [PMID: 32377208]
[24]
Kakleas, K.; Luyt, D.; Foley, G.; Noimark, L. Is it necessary to avoid all legumes in legume allergy? Pediatr. Allergy Immunol., 2020, 31(7), 848-851.
[http://dx.doi.org/10.1111/pai.13275] [PMID: 32408382]
[25]
Cresti, M.; Linskens, H.F. Pollen-allergy as an ecological phenomenon: a review. Plant Biosyst., 2000, 134(3), 341-352.
[http://dx.doi.org/10.1080/11263500012331350495]
[26]
Lehrer, S.B.; Ayuso, R.; Reese, G. Seafood allergy and allergens: a review. Mar. Biotechnol. (NY), 2003, 5(4), 339-348.
[http://dx.doi.org/10.1007/s10126-002-0082-1] [PMID: 14719162]
[27]
Lucas, J.S.; Lewis, S.A.; Hourihane, J.O.B. Kiwi fruit allergy: a review. Pediatr. Allergy Immunol., 2003, 14(6), 420-428.
[http://dx.doi.org/10.1046/j.0905-6157.2003.00095.x] [PMID: 14675467]
[28]
Cariñanos, P.; Casares-Porcel, M. Urban green zones and related pollen allergy: a review. Some guidelines for designing spaces with low allergy impact. Landsc. Urban Plan., 2011, 101(3), 205-214.
[http://dx.doi.org/10.1016/j.landurbplan.2011.03.006]
[29]
Sharp, M.F.; Lopata, A.L. Fish allergy: in review. Clin. Rev. Allergy Immunol., 2014, 46(3), 258-271.
[http://dx.doi.org/10.1007/s12016-013-8363-1] [PMID: 23440653]
[30]
Abrams, E.M.; Golden, D.B.K. Approach to patients with stinging insect allergy. Med. Clin. North Am., 2020, 104(1), 129-143.
[http://dx.doi.org/10.1016/j.mcna.2019.08.006] [PMID: 31757231]
[31]
Vega, A.; Castro, L. Impact of climate change on insect-human interactions. Curr. Opin. Allergy Clin. Immunol., 2019, 19(5), 475-481.
[http://dx.doi.org/10.1097/ACI.0000000000000565] [PMID: 31259746]
[32]
Greenberger, P.A. Drug allergy. Allergy Asthma Proc., 2019, 40(6), 474-479.
[http://dx.doi.org/10.2500/aap.2019.40.4275] [PMID: 31690398]
[33]
Macy, E. Addressing the epidemic of antibiotic “allergy” over-diagnosis. Ann. Allergy Asthma Immunol., 2020, 124(6), 550-557.
[http://dx.doi.org/10.1016/j.anai.2019.12.016] [PMID: 31881269]
[34]
Lucas, M.; Arnold, A.; Sommerfield, A.; Trevenen, M.; Braconnier, L.; Schilling, A.; Abass, F.; Slevin, L.; Knezevic, B.; Blyth, C.; Murray, K.; von Ungern-Sternberg, B.; Rueter, K. Antibiotic allergy labels in children are associated with adverse clinical outcomes. J. Allergy Clin. Immunol. Pract., 2019, 7(3), 975-982.
[http://dx.doi.org/10.1016/j.jaip.2018.09.003] [PMID: 30240887]
[35]
Abrams, E.; Netchiporouk, E.; Miedzybrodzki, B.; Ben-Shoshan, M. Antibiotic allergy in children: more than just a label. Int. Arch. Allergy Immunol., 2019, 180(2), 103-112.
[http://dx.doi.org/10.1159/000501518] [PMID: 31394524]
[36]
Blumenthal, K.G.; Peter, J.G.; Trubiano, J.A.; Phillips, E.J. Antibiotic allergy. Lancet, 2019, 393(10167), 183-198.
[http://dx.doi.org/10.1016/S0140-6736(18)32218-9] [PMID: 30558872]
[37]
Graham, F.; Eigenmann, P.A. Atopic dermatitis and its relation to food allergy. Curr. Opin. Allergy Clin. Immunol., 2020, 20(3), 305-310.
[http://dx.doi.org/10.1097/ACI.0000000000000638] [PMID: 32109909]
[38]
Resiliac, J.; Grayson, M.H. Epidemiology of infections and development of asthma. Immunol. Allergy Clin. North Am., 2019, 39(3), 297-307.
[http://dx.doi.org/10.1016/j.iac.2019.03.001] [PMID: 31284921]
[39]
Mullol, J.; Del Cuvillo, A.; Lockey, R.F. Rhinitis phenotypes. J. Allergy Clin. Immunol. Pract., 2020, 8(5), 1492-1503.
[http://dx.doi.org/10.1016/j.jaip.2020.02.004] [PMID: 32389274]
[40]
Mariño-Sánchez, F.; Valls-Mateus, M.; de Los Santos, G.; Plaza, A.M.; Cobeta, I.; Mullol, J. Multimorbidities of pediatric allergic rhinitis. Curr. Allergy Asthma Rep., 2019, 19(2), 13.
[http://dx.doi.org/10.1007/s11882-019-0843-9] [PMID: 30793232]
[41]
Cookson, W. Genetics and genomics of asthma and allergic diseases. Immunol. Rev., 2002, 190(1), 195-206.
[http://dx.doi.org/10.1034/j.1600-065X.2002.19015.x] [PMID: 12493016]
[42]
Chantzi, F.M.; Kafetzis, D.A.; Bairamis, T.; Avramidou, C.; Paleologou, N.; Grimani, I.; Apostolopoulos, N.; Papadopoulos, N.G. IgE sensitization, respiratory allergy symptoms, and heritability independently increase the risk of otitis media with effusion. Allergy, 2006, 61(3), 332-336.
[http://dx.doi.org/10.1111/j.1398-9995.2006.00971.x] [PMID: 16436142]
[43]
Kaplan, D.H.; Igyártó, B.Z.; Gaspari, A.A. Early immune events in the induction of allergic contact dermatitis. Nat. Rev. Immunol., 2012, 12(2), 114-124.
[http://dx.doi.org/10.1038/nri3150] [PMID: 22240625]
[44]
Pawankar, R.; Canonica, G.W.; Holgate, S.T.; Lockey, R.F. The World Allergy Organization (WAO) white book on allergy; World Allergy Organization: Wisconsin, 2011.
[45]
Popescu, F.D. Cross-reactivity between aeroallergens and food allergens. World J. Methodol., 2015, 5(2), 31-50.
[http://dx.doi.org/10.5662/wjm.v5.i2.31] [PMID: 26140270]
[46]
Sánchez-Borges, M.; Ansotegui, I.J. Second generation antihistamines: an update. Curr. Opin. Allergy Clin. Immunol., 2019, 19(4), 358-364.
[http://dx.doi.org/10.1097/ACI.0000000000000556] [PMID: 31169593]
[47]
Huang, C.Z.; Jiang, Z.H.; Wang, J.; Luo, Y.; Peng, H. Antihistamine effects and safety of fexofenadine: a systematic review and meta-analysis of randomized controlled trials. BMC Pharmacol. Toxicol., 2019, 20(1), 72.
[http://dx.doi.org/10.1186/s40360-019-0363-1] [PMID: 31783781]
[48]
Hunto, S.T.; Kim, H.G.; Baek, K.S.; Jeong, D.; Kim, E.; Kim, J.H.; Cho, J.Y. Loratadine, an antihistamine drug, exhibits anti-inflammatory activity through suppression of the NF-kB pathway. Biochem. Pharmacol., 2020, 177, 113949.
[http://dx.doi.org/10.1016/j.bcp.2020.113949] [PMID: 32251678]
[49]
Pullerits, T.; Praks, L.; Ristioja, V.; Lötvall, J. Comparison of a nasal glucocorticoid, antileukotriene, and a combination of antileukotriene and antihistamine in the treatment of seasonal allergic rhinitis. J. Allergy Clin. Immunol., 2002, 109(6), 949-955.
[http://dx.doi.org/10.1067/mai.2002.124467] [PMID: 12063523]
[50]
Bielory, L.; Lien, K.W.; Bigelsen, S. Efficacy and tolerability of newer antihistamines in the treatment of allergic conjunctivitis. Drugs, 2005, 65(2), 215-228.
[http://dx.doi.org/10.2165/00003495-200565020-00004] [PMID: 15631542]
[51]
Humbert, M.; Bousquet, J.; Bachert, C.; Palomares, O.; Pfister, P.; Kottakis, I.; Jaumont, X.; Thomsen, S.F.; Papadopoulos, N.G. IgE-mediated multimorbidities in allergic asthma and the potential for omalizumab therapy. J. Allergy Clin. Immunol. Pract., 2019, 7(5), 1418-1429.
[http://dx.doi.org/10.1016/j.jaip.2019.02.030] [PMID: 30928481]
[52]
Gasser, P.; Tarchevskaya, S.S.; Guntern, P.; Brigger, D.; Ruppli, R.; Zbären, N.; Kleinboelting, S.; Heusser, C.; Jardetzky, T.S.; Eggel, A. The mechanistic and functional profile of the therapeutic anti-IgE antibody ligelizumab differs from omalizumab. Nat. Commun., 2020, 11(1), 165.
[http://dx.doi.org/10.1038/s41467-019-13815-w] [PMID: 31913280]
[53]
Cardet, J.C.; Casale, T.B. New insights into the utility of omalizumab. J. Allergy Clin. Immunol., 2019, 143(3), 923-926.e1.
[http://dx.doi.org/10.1016/j.jaci.2019.01.016] [PMID: 30690050]
[54]
Okayama, Y.; Matsumoto, H.; Odajima, H.; Takahagi, S.; Hide, M.; Okubo, K. Roles of omalizumab in various allergic diseases. Allergol. Int., 2020, 69(2), 167-177.
[http://dx.doi.org/10.1016/j.alit.2020.01.004] [PMID: 32067933]
[55]
Holgate, S.T.; Djukanović, R.; Casale, T.; Bousquet, J.; Anti-Immunoglobulin, E. treatment with omalizumab in allergic diseases: an update on anti-inflammatory activity and clinical efficacy. Clin. Exp. Allergy, 2005, 35(4), 408-416.
[http://dx.doi.org/10.1111/j.1365-2222.2005.02191.x] [PMID: 15836747]
[56]
Sokolowska, M.; Boonpiyathad, T.; Escribese, M.M.; Barber, D. Allergen-specific immunotherapy: power of adjuvants and novel predictive biomarkers. Allergy, 2019, 74(11), 2061-2063.
[http://dx.doi.org/10.1111/all.13973] [PMID: 31269231]
[57]
Kucuksezer, U.C.; Ozdemir, C.; Cevhertas, L.; Ogulur, I.; Akdis, M.; Akdis, C.A. Mechanisms of allergen-specific immunotherapy and allergen tolerance. Allergol. Int., 2020, 69(4), 549-560.
[http://dx.doi.org/10.1016/j.alit.2020.08.002] [PMID: 32900655]
[58]
Zissler, U.M.; Schmidt-Weber, C.B. Predicting success of allergen-specific immunotherapy. Front. Immunol., 2020, 11, 1826.
[http://dx.doi.org/10.3389/fimmu.2020.01826] [PMID: 32983092]
[59]
Creticos, P.S.; Schroeder, J.T.; Hamilton, R.G.; Balcer-Whaley, S.L.; Khattignavong, A.P.; Lindblad, R.; Li, H.; Coffman, R.; Seyfert, V.; Eiden, J.J.; Broide, D. Immunotherapy with a ragweed-toll-like receptor 9 agonist vaccine for allergic rhinitis. N. Engl. J. Med., 2006, 355(14), 1445-1455.
[http://dx.doi.org/10.1056/NEJMoa052916] [PMID: 17021320]
[60]
Larché, M. T cell epitope-based allergy vaccines.Vaccines against allergies; Valenta, R.; Coffman, R., Eds.; Current topics in microbiology and immunology. Springer: Berlin, Heidelberg, 2011, 352, pp. 107-119.
[http://dx.doi.org/10.1007/82_2011_131]
[61]
Valenta, R.; Campana, R.; Focke-Tejkl, M.; Niederberger, V. Vaccine development for allergen-specific immunotherapy based on recombinant allergens and synthetic allergen peptides: lessons from the past and novel mechanisms of action for the future. J. Allergy Clin. Immunol., 2016, 137(2), 351-357.
[http://dx.doi.org/10.1016/j.jaci.2015.12.1299] [PMID: 26853127]
[62]
Dorofeeva, Y.; Shilovskiy, I.; Tulaeva, I.; Focke-Tejkl, M.; Flicker, S.; Kudlay, D.; Khaitov, M.; Karsonova, A.; Riabova, K.; Karaulov, A.; Khanferyan, R.; Pickl, W.F.; Wekerle, T.; Valenta, R. Past, present, and future of allergen immunotherapy vaccines. Allergy, 2021, 76(1), 131-149.
[http://dx.doi.org/10.1111/all.14300] [PMID: 32249442]
[63]
Olivella, M.; Gonzalez, A.; Pardo, L.; Deupi, X. Relation between sequence and structure in membrane proteins. Bioinformatics, 2013, 29(13), 1589-1592.
[http://dx.doi.org/10.1093/bioinformatics/btt249] [PMID: 23677941]
[64]
Rost, B. Twilight zone of protein sequence alignments. Protein Eng., 1999, 12(2), 85-94.
[http://dx.doi.org/10.1093/protein/12.2.85] [PMID: 10195279]
[65]
Krissinel, E.; Henrick, K. Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallogr. D Biol. Crystallogr., 2004, 60(Pt 12 Pt 1), 2256-2268.
[66]
Mari, A.; Rasi, C.; Palazzo, P.; Scala, E. Allergen databases: current status and perspectives. Curr. Allergy Asthma Rep., 2009, 9(5), 376-383.
[http://dx.doi.org/10.1007/s11882-009-0055-9] [PMID: 19671381]
[67]
Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The protein data bank. Nucleic Acids Res., 2000, 28(1), 235-242.
[http://dx.doi.org/10.1093/nar/28.1.235] [PMID: 10592235]
[68]
UniProt Consortium. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res., 2019, 47(D1), D506-D515.
[http://dx.doi.org/10.1093/nar/gky1049] [PMID: 30395287]
[69]
Needleman, S.B.; Wunsch, C.D. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J. Mol. Biol., 1970, 48(3), 443-453.
[http://dx.doi.org/10.1016/0022-2836(70)90057-4] [PMID: 5420325]
[70]
Lill, M.A.; Danielson, M.L. Computer-aided drug design platform using PyMOL. J. Comput. Aided Mol. Des., 2011, 25(1), 13-19.
[http://dx.doi.org/10.1007/s10822-010-9395-8] [PMID: 21053052]
[71]
Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol., 2018, 35(6), 1547-1549.
[http://dx.doi.org/10.1093/molbev/msy096] [PMID: 29722887]
[72]
Gascuel, O. Concerning the NJ algorithm and its unweighted version UNJ. In: Mathematical hierarchies and Biology. Dimacs series in discrete mathematics and theoretical computer science; Mirkin, B.; McMorris, F.R.; Roberts, F.; Rzhetsky, A., Eds.; American Mathematical Society: Providence, RI, 1997; vol. 37, pp. 149-171.
[http://dx.doi.org/10.1090/dimacs/037/09]
[73]
Huby, R.D.; Dearman, R.J.; Kimber, I. Why are some proteins allergens? Toxicol. Sci., 2000, 55(2), 235-246.
[http://dx.doi.org/10.1093/toxsci/55.2.235] [PMID: 10828254]
[74]
Yuan, X.H.; Wang, Y.C.; Jin, W.J.; Zhao, B.B.; Chen, C.F.; Yang, J.; Wang, J.F.; Guo, Y.Y.; Liu, J.J.; Zhang, D.; Gong, L.L.; He, Y.W. Structure-based high-throughput epitope analysis of hexon proteins in B and C species human adenoviruses (HAdVs). PLoS One, 2012, 7(3), e32938.
[http://dx.doi.org/10.1371/journal.pone.0032938] [PMID: 22427913]
[75]
Matsuo, H.; Yokooji, T.; Taogoshi, T. Common food allergens and their IgE-binding epitopes. Allergol. Int., 2015, 64(4), 332-343.
[http://dx.doi.org/10.1016/j.alit.2015.06.009] [PMID: 26433529]
[76]
Teng, F.; Yu, L.; Sun, J.; Wang, N.; Cui, Y. Homology modeling and prediction of B‑cell and T‑cell epitopes of the house dust mite allergen Der f 20. Mol. Med. Rep., 2018, 17(1), 1807-1812.
[http://dx.doi.org/10.3892/mmr.2017.8066] [PMID: 29257224]
[77]
Dall’antonia, F.; Pavkov-Keller, T.; Zangger, K.; Keller, W. Structure of allergens and structure based epitope predictions. Methods, 2014, 66(1), 3-21.
[http://dx.doi.org/10.1016/j.ymeth.2013.07.024] [PMID: 23891546]
[78]
Nakashima, K.; Iwashita, S.; Suzuki, T.; Kato, C.; Kohno, T.; Kamei, Y.; Sasaki, M.; Urayama, O.; Ohno-Iwashita, Y.; Dohmae, N.; Song, S.Y. A spatial similarity of stereochemical environments formed by amino acid residues defines a common epitope of two non-homologous proteins. Sci. Rep., 2019, 9(1), 14818.
[http://dx.doi.org/10.1038/s41598-019-51350-2] [PMID: 31616018]
[79]
Sormanni, P.; Aprile, F.A.; Vendruscolo, M. Rational design of antibodies targeting specific epitopes within intrinsically disordered proteins. Proc. Natl. Acad. Sci. USA, 2015, 112(32), 9902-9907.
[http://dx.doi.org/10.1073/pnas.1422401112] [PMID: 26216991]
[80]
Bowyer, P.; Fraczek, M.; Denning, D.W. Comparative genomics of fungal allergens and epitopes shows widespread distribution of closely related allergen and epitope orthologues. BMC Genomics, 2006, 7(1), 251.
[http://dx.doi.org/10.1186/1471-2164-7-251] [PMID: 17029625]
[81]
Midoro-Horiuti, T.; Schein, C.H.; Mathura, V.; Braun, W.; Czerwinski, E.W.; Togawa, A.; Kondo, Y.; Oka, T.; Watanabe, M.; Goldblum, R.M. Structural basis for epitope sharing between group 1 allergens of cedar pollen. Mol. Immunol., 2006, 43(6), 509-518.
[http://dx.doi.org/10.1016/j.molimm.2005.05.006] [PMID: 15975657]
[82]
Liu, C.; Sathe, S.K. Food allergen epitope mapping. J. Agric. Food Chem., 2018, 66(28), 7238-7248.
[http://dx.doi.org/10.1021/acs.jafc.8b01967] [PMID: 29924613]
[83]
Flicker, S.; Steinberger, P.; Norderhaug, L.; Sperr, W.R.; Majlesi, Y.; Valent, P.; Kraft, D.; Valenta, R. Conversion of grass pollen allergen-specific human IgE into a protective IgG(1) antibody. Eur. J. Immunol., 2002, 32(8), 2156-2162.
[http://dx.doi.org/10.1002/1521-4141(200208)32:8<2156::AID-IMMU2156>3.0.CO;2-A] [PMID: 12209627]
[84]
Shamji, M.H.; Durham, S.R. Mechanisms of allergen immunotherapy for inhaled allergens and predictive biomarkers. J. Allergy Clin. Immunol., 2017, 140(6), 1485-1498.
[http://dx.doi.org/10.1016/j.jaci.2017.10.010] [PMID: 29221580]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy