Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

Pyridine Moiety: An Insight into Recent Advances in the Treatment of Cancer

Author(s): Rakesh Sahu*, Rakhi Mishra, Rajnish Kumar, Salahuddin, Chandana Majee, Avijit Mazumder and Ajay Kumar

Volume 22, Issue 2, 2022

Published on: 14 June, 2021

Page: [248 - 272] Pages: 25

DOI: 10.2174/1389557521666210614162031

Price: $65

Abstract

Abstract: The incidence of cancer is increasing worldwide, affecting a vast majority of the human population, therefore, new different anticancer agents are being developed now and their safety still needs to be evaluated. Among them, pyridine based drugs are contributing a lot, as they are one of the imperative pharmacophores occurring synthetically as well as naturally in heterocyclic compounds, having a wide-range of therapeutic applications in the area of drug discovery that offers many chances for further improvement in antitumor agents via acting onto numerous receptors of extreme prominence. Many pyridine derivatives are reported to inhibit enzymes, receptors and many other targets for controlling and curing the global health issue of cancer. Nowadays in combination with other moieties, researchers are focusing on the development of pyridine-based new derivatives for cancer treatment. Therefore, this review sheds light on the recent therapeutic expansion of pyridine together with its molecular docking, structure-activity-relationship, availability in the market, a summary of recently patented and published research works that shall jointly help the scientists to produce effective drugs with the desired pharmacological activity.

Keywords: Pyridine moiety, anticancer, heterocyclic compound, structure-activity relationships (SAR), cancer treatment, WHO.

Graphical Abstract
[1]
Begley, C.G.; Ellis, L.M. Drug development: Raise standards for preclinical cancer research. Nature, 2012, 483(7391), 531-533.
[http://dx.doi.org/10.1038/483531a] [PMID: 22460880]
[2]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[3]
Jemal, A.; Bray, F.; Center, M.M.; Ferlay, J.; Ward, E.; Forman, D. Global cancer statistics. CA Cancer J. Clin., 2011, 61(2), 69-90.
[http://dx.doi.org/10.3322/caac.20107] [PMID: 21296855]
[4]
WHO report on cancer: Setting priorities, investing wisely and providing care for all. Geneva: World Health Organization; 2020; Licence: CC BY-NC-SA 3.0 IGO. , 2020.,
[5]
Kerru, N.; Singh, P.; Koorbanally, N.; Raj, R.; Kumar, V. Recent advances (2015-2016) in anticancer hybrids. Eur. J. Med. Chem., 2017, 142, 179-212.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.033] [PMID: 28760313]
[6]
Wang, Y.; Gu, W.; Shan, Y.; Liu, F.; Xu, X.; Yang, Y.; Zhang, Q.; Zhang, Y.; Kuang, H.; Wang, Z.; Wang, S. Design, synthesis and anticancer activity of novel nopinone-based thiosemicarbazone derivatives. Bioorg. Med. Chem. Lett., 2017, 27(11), 2360-2363.
[http://dx.doi.org/10.1016/j.bmcl.2017.04.024] [PMID: 28431878]
[7]
Liu, Z.; Delavan, B.; Roberts, R.; Tong, W. Lessons learned from two decades of anticancer drugs. Trends Pharmacol. Sci., 2017, 38(10), 852-872.
[http://dx.doi.org/10.1016/j.tips.2017.06.005] [PMID: 28709554]
[8]
Wu, X.Z. A new classification system of anticancer drugs - based on cell biological mechanisms. Med. Hypotheses, 2006, 66(5), 883-887.
[http://dx.doi.org/10.1016/j.mehy.2005.11.036] [PMID: 16414204]
[9]
Sharifnia, T.; Hong, A.L.; Painter, C.A.; Boehm, J.S. Emerging opportunities for target discovery in rare cancers. Cell Chem. Biol., 2017, 24(9), 1075-1091.
[http://dx.doi.org/10.1016/j.chembiol.2017.08.002] [PMID: 28938087]
[10]
Pandeya, S.N. A textbook of pharmaceutical organic chemistry, heterocyclic and biomolecules.SG publisher, 2003, pp. 108-113.,
[11]
Henry, G.D. De novo synthesis of substituted pyridines. Tetrahedron, 2004, 29, 6043-6061.
[http://dx.doi.org/10.1016/j.tet.2004.04.043]
[12]
Altaf, A.A.; Shahzad, A.; Gul, Z.; Rasool, N.; Badshah, A.; Lal, B.; Khan, E. A review on the medicinal importance of pyridine derivatives. J. Drug Design Med. Chem, 2015, 1, 1.
[13]
Scriven, E.F.; Murugan, R. Pyridine and pyridine derivatives kirk-othmerencyclopedia of chemical technology, 4th; John Wiley & Sons. Inc: Hoboken, NJ, 2005, p. 20.
[14]
Ranu, B.C.; Jana, R.; Sowmiah, S. An improved procedure for the three-component synthesis of highly substituted pyridines using ionic liquid. J. Org. Chem., 2007, 72(8), 3152-3154.
[http://dx.doi.org/10.1021/jo070015g] [PMID: 17367198]
[15]
Ma, X.; Gang, D.R. The Lycopodium alkaloids. Nat. Prod. Rep., 2004, 21(6), 752-772.
[http://dx.doi.org/10.1039/b409720n] [PMID: 15565253]
[16]
Jemmezi, F.; Kether, F.B.; Amri, I.; Bassem, J.; Eddine-Khiari, J. Synthesis and biological activity of novel benzothiazole pyridine derivatives. IOSR J. Appl. Chem, 2014, 7, 62-66.
[http://dx.doi.org/10.9790/5736-07116266]
[17]
Cohen, M.L. Changing patterns of infectious disease. Nature, 2000, 406(6797), 762-767.
[http://dx.doi.org/10.1038/35021206] [PMID: 10963605]
[18]
Borowski, E.; Bontemps-Gracz, M.M.; Piwkowska, A. Strategies for overcoming ABC-transporters-mediated multidrug resistance (MDR) of tumor cells. Acta Biochim. Pol., 2005, 52(3), 609-627.
[http://dx.doi.org/10.18388/abp.2005_3421] [PMID: 16175236]
[19]
Ibrahim, H.S.; Eldehna, W.M.; Abdel-Aziz, H.A.; Elaasser, M.M.; Abdel-Aziz, M.M. Improvement of antibacterial activity of some sulfa drugs through linkage to certain phthalazin-1(2H)-one scaffolds. Eur. J. Med. Chem., 2014, 85, 480-486.
[http://dx.doi.org/10.1016/j.ejmech.2014.08.016] [PMID: 25113876]
[20]
Zhao, L.X.; Sherchan, J.; Park, J.K.; Jahng, Y.; Jeong, B.S.; Jeong, T.C.; Lee, C.S.; Lee, E.S. Synthesis, cytotoxicity and structure-activity relationship study of terpyridines. Arch. Pharm. Res., 2006, 29(12), 1091-1095.
[http://dx.doi.org/10.1007/BF02969297] [PMID: 17225456]
[21]
Jeong, B.S.; Choi, H.Y.; Kwak, Y.S.; Lee, E.S. Synthesis of 2, 4, 6-tripyridyl pyridines, and evaluation of their antitumor cytotoxicity, topoisomerase I and II inhibitory activity, and structure-activity relationship. Bull. Korean Chem. Soc., 2011, 32, 3566-3570.
[http://dx.doi.org/10.5012/bkcs.2011.32.10.3566]
[22]
El-Sharkawy, K.A.; Ibrahim, R.A. New approaches for the synthesis and antitumor evaluation of pyridine, thieno [3, 4-c] pyridine, pyrazolo [3, 4-b] pyridine and pyrido [3, 4-d] pyridazine derivatives. Eur. Chem. Bull., 2013, 2, 530-537.
[23]
Shimizu, S.; Watanabe, N.; Kataoka, T.; Shoji, T.; Abe, N.; Morishita, S.; Ichimura, H. Pyridine and pyridine derivatives; Ullmann's Encyclopedia of Industrial Chemistry, 2000.
[http://dx.doi.org/10.1002/14356007.a22_399]
[25]
Cournia, Z.; Efstratiadis, A.; Kapella, A.; Couladouros, E.; Christoforidis, S. \ 2,6-bis(((1h-benzo[d]imidazol-2- yl)thio)methyl)pyridine and n2,n6-dibenzylpyridine-2,6- dicarboxamide derivatives and related compounds as phosphoinositide 3-kinase (pi3k) inhibitors for treating cancer. WO2020039097A1, 2020.,
[26]
Cai, X.; Qian, C.; Zhai, H. . Fused, amino pyridine as hsp90 inhibitors. US20200062754A1, 2020.
[27]
Schultz-Fademrecht, C.; Klebl, B.; Nussbaumer, P.; Degenhart, C.; Baumann, M. 4-substituted pyrrolo[2,3-b]pyridine as erbb modulators useful for treating cancer. WO2020039060A1, , 2020.
[28]
Machacek, M.; Witter, D.; Gibeau, C.; Huang, C.; Kawamura, S.; Sloman, D.L.; Siliphaivanh, P.; Quiroz, R.; Wan, M.; Schneider, S.; Yeung, C.S.; Reutershan, M.H.; Henderson, T.J.; Paparin, J.L.; Rahali, H.; Hughes, J.M.E.; Sanyal, S.; Ye, Y.; Candito, D.A.; Fier, P.S.; Silverman, S.M. Prmt5 inhibitors. WO2020033288A1,, 2020.
[29]
Blencowe, P.; Charles, M.; Cridland, A.; Ekwuru, T.; Heald, R.; Macdonald, E.; Mccarron, H.; Rigoreau, L. Heterocyclic substituted ureas, for use against cancer. WO2020030925A1, 2020.
[30]
Yun-Long, L.; Zhu, W.; Mei, S.; Glenn, J. Tricyclic fused thiophene derivatives as jak inhibitors. US20200040002A1,, 2020.
[31]
Strum, J.C.; Bisi, J.E.; Roberts, P.J.; Sorrentino, J.A. Treatment of rbnegative tumors using topoisomerase inhibitors in combination with cyclin dependent kinase 4/6 inhibitors. US20200022983A1,, 2020.
[32]
Sanqi, Z.; Ye, F.; Yongxiao, C.; Yin, S.; Ting, Y.; Soda, Y. Soda Y. 2- (camptothecin-10-oxyl) acetamide compound and application thereof. CN110698491A,, 2020.
[33]
Castro, A.C.; Jonaitis, D.T. Polymorphic compounds and uses thereof. WO2020014465A1, , 2020.
[34]
Haginoya, N.; Suzuki, T.; Hayakawa, M.; Ota, M.; Tsukada, T.; Kobayashi, K.; Ando, Y.; Jimbo, T.; Nakamura, K. Pyridone derivatives having tetrahydropyranylmethyl groups. US20200010458A1, 2020.,
[35]
Gunzner-Toste, J.L.; Sutherlin, D.; Stanley, M.S.; Bao, L.; Castanedo, G.M.; LaLonde, R.L.; Wang, S.; Reynolds, M.E.; Savage, S.J.; Malesky, K.; Dina, M.S.; Koehler, M.F.T. Pyridyl inhibitors of hedgehog signaling. US20200010420A1,, 2020.
[36]
Luzzio, M.J.; Freeman-Cook, K.D.; Bhattacharya, S.K.; Hayward, M.M.; Hulford, C.A.; Autry, C.L.; Zhao, X.; Xiao, J.; Nelson, K.L. Sulfonyl amide derivatives for the treatment of abnormal cell growth. US20200002310A1, 2020.
[37]
Hangauer, D.G., Jr Biaryl compositions and methods for modulating a kinase cascade. US20190367456A1, 2019.
[38]
Ibrahim, P.N; Spevak, W.; Zhang, J.; Shi, S. powell, B.; Ma, Y. Heterocyclic compounds and uses thereof. US20190367507A1,, 2019.
[39]
Kumar, KC S.; Hood, J. 3-(benzoimidazol-2-yl)-indazole inhibitors of the wnt signaling pathway and therapeutic uses thereof. US20190352279A1,, 2019.
[40]
Sokolsky, A.; Vechorkin, O.; Liu, K.; Pan, J.; Yao, W.; Ye, Q. Pyrazolopyridine compounds and uses thereof. US20190343814A1,, 2019.
[41]
Mjalli, A.M.M.; Gaddam, B.; Polisetti, D.R.; Kostura, M.J.; Guzel, M. Tricyclic compounds as modulators of TNF-alpha synthesis and as PDE4 inhibitors. US20190336506A1,, 2019.
[42]
Inukai, T.; Takeuchi, J.; Yasuhiro, T. Quinoline derivative. US20190135785A1,, 2019.
[43]
Phillipson, D.; Reichenbacher, K.; Duguid, R.J.; Ware, J.A. Crystalline form of r)-3-(4-(2-(2-methyltetrazol-5-yl)pyridin-5-yl)-3- fluorophenyl)-5-hydroxymethyl oxazolidin-2-one dihydrogen phosphate. EP2393808A1,, 2019.
[44]
Jacobsen, E.J.; Blinn, J.R.; Springer, J.R.; Hockerman, S.L. Heterocyclic itk inhibitors for treating inflammation and cancer. US20190106439A1,, 2019.
[45]
Hood, J.; Wallace, D.M.; Kumar, S. Indazolie wnt signal pathway inhibitors and their therapeutic applications. RU2682245C1,, 2019.
[46]
Baloglu, E.; Shacham, S.; Senapedis, W. (s,e)-3-(6-aminopyridin- 3-yl)-n-((5-(4-(3-fluoro-3-methylpyrrolidine-1-carbonyl)phenyl)-7- (4-fluorophenyl)benzofuran-2-yl)methyl)acrylamide for the treatment of cancer. US20180235948A1,, 2018.
[47]
Larson, A.M.; Love, K.; Weight, A.K.; Crane, A.; Langer, R.S.; Klibanov, A.M. Polysaccharide and nucleic acid formulations containing viscosity-lowering agents. US20180228831A1,, 2018.
[48]
Kumar, KC S.; Wallace, D.M.; Cao, J.; Chiruta, C.; Hood, J. 3-(1H-pyrrolo[2,3-B]pyridin-2-yl)-1H-pyrazolo[3,4-C]pyridines and therapeutic uses thereof. US20180228782A1,, 2018.
[49]
Hitchcock, M.; Mengel, A.; Pütter, V.; Siemeister, G.; Wengner, A.M.; Briem, H.; Eis, K.; Schulze, V.; Fernandez-Montalvan, A.E.; Prechtl, S.; Holton, S.; Fanghänel, J.; Lienau, P.; Preusse, C.; Gnoth, M.J. Substituted benzylindazoles for use as Bub1 kinase inhibitors in the treatment of hyperproliferative diseases. US20170260198A1, , 2017.
[50]
Sherer, B.A.; Brugger, N. TLR7/8 antagonists and uses thereof. US20170174653A1,, 2017.
[51]
Bader, B; Bone, W; Briem, H; Eberspacher, U.; Eis, K.; Grudzinska-Goebel, J.; Koppitz, M.; Lefranc, J.; Lienau, P.; Lucking, U.; Moosmayer, D.; Schick, H.; Siemeister, G.; Nussbaum, F.V.; Wengner, A.M.; Wortmann, L. 2-(morpholin-4-yl)-l,7- naphthyridines. AU2015299173A1,, 2017.
[52]
Hunter, K.W.; Crawford, N.P.; Alsarraj, J. Mechanisms of metastasis. Breast Cancer Res., 2008, 10(Suppl. 1), S2.
[http://dx.doi.org/10.1186/bcr1988] [PMID: 19091006]
[53]
Arnst, J.L.; Hein, A.L.; Taylor, M.A.; Palermo, N.Y.; Contreras, J.I.; Sonawane, Y.A.; Wahl, A.O.; Ouellette, M.M.; Natarajan, A.; Yan, Y. Discovery and characterization of small molecule Rac1 inhibitors. Oncotarget, 2017, 8(21), 34586-34600.
[http://dx.doi.org/10.18632/oncotarget.16656] [PMID: 28410221]
[54]
Hall, A. Rho GTPases and the control of cell behaviour. Biochem. Soc. Trans., 2005, 33(Pt 5), 891-895.
[http://dx.doi.org/10.1042/BST0330891] [PMID: 16246005]
[55]
Kleer, C.G.; Griffith, K.A.; Sabel, M.S.; Gallagher, G.; van Golen, K.L.; Wu, Z.F.; Merajver, S.D. RhoC-GTPase is a novel tissue biomarker associated with biologically aggressive carcinomas of the breast. Breast Cancer Res. Treat., 2005, 93(2), 101-110.
[http://dx.doi.org/10.1007/s10549-005-4170-6] [PMID: 16187229]
[56]
Vega, F.M.; Ridley, A.J. Rho GTPases in cancer cell biology. FEBS Lett., 2008, 582(14), 2093-2101.
[http://dx.doi.org/10.1016/j.febslet.2008.04.039] [PMID: 18460342]
[57]
Vlaar, C.P.; Castillo-Pichardo, L.; Medina, J.I.; Marrero-Serra, C.M.; Vélez, E.; Ramos, Z.; Hernández, E. Design, synthesis and biological evaluation of new carbazole derivatives as anti-cancer and anti-migratory agents. Bioorg. Med. Chem., 2018, 26(4), 884-890.
[http://dx.doi.org/10.1016/j.bmc.2018.01.003] [PMID: 29358027]
[58]
Litzenburger, U.M.; Opitz, C.A.; Sahm, F.; Rauschenbach, K.J.; Trump, S.; Winter, M.; Ott, M.; Ochs, K.; Lutz, C.; Liu, X.; Anastasov, N.; Lehmann, I.; Höfer, T.; von Deimling, A.; Wick, W.; Platten, M. Constitutive IDO expression in human cancer is sustained by an autocrine signaling loop involving IL-6, STAT3 and the AHR. Oncotarget, 2014, 5(4), 1038-1051.
[http://dx.doi.org/10.18632/oncotarget.1637] [PMID: 24657910]
[59]
Pallotta, M.T.; Orabona, C.; Volpi, C.; Vacca, C.; Belladonna, M.L.; Bianchi, R.; Servillo, G.; Brunacci, C.; Calvitti, M.; Bicciato, S.; Mazza, E.M.; Boon, L.; Grassi, F.; Fioretti, M.C.; Fallarino, F.; Puccetti, P.; Grohmann, U. Indoleamine 2,3-dioxygenase is a signaling protein in long-term tolerance by dendritic cells. Nat. Immunol., 2011, 12(9), 870-878.
[http://dx.doi.org/10.1038/ni.2077] [PMID: 21804557]
[60]
Orabona, C.; Belladonna, M.L.; Vacca, C.; Bianchi, R.; Fallarino, F.; Volpi, C.; Gizzi, S.; Fioretti, M.C.; Grohmann, U.; Puccetti, P. Cutting edge: silencing suppressor of cytokine signaling 3 expression in dendritic cells turns CD28-Ig from immune adjuvant to suppressant. J. Immunol., 2005, 174(11), 6582-6586.
[http://dx.doi.org/10.4049/jimmunol.174.11.6582] [PMID: 15905495]
[61]
Ochs, K.; Ott, M.; Rauschenbach, K.J.; Deumelandt, K.; Sahm, F.; Opitz, C.A.; von Deimling, A.; Wick, W.; Platten, M. Tryptophan-2,3-dioxygenase is regulated by prostaglandin E2 in malignant glioma via a positive signaling loop involving prostaglandin E receptor-4. J. Neurochem., 2016, 136(6), 1142-1154.
[http://dx.doi.org/10.1111/jnc.13503] [PMID: 26708701]
[62]
Kong, K.M.; Zhang, J.W.; Liu, B.Z.; Meng, G.R.; Zhang, Q. Discovery of 5-(pyridin-3-yl)-1H-indole-4,7-diones as indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors. Bioorg. Med. Chem. Lett., 2020, 30(4)126901
[http://dx.doi.org/10.1016/j.bmcl.2019.126901] [PMID: 31882299]
[63]
Yang, R.; Chen, Y.; Pan, L.; Yang, Y.; Zheng, Q.; Hu, Y.; Wang, Y.; Zhang, L.; Sun, Y.; Li, Z.; Meng, X. Design, synthesis and structure-activity relationship study of novel naphthoindolizine and indolizinoquinoline-5,12-dione derivatives as IDO1 inhibitors. Bioorg. Med. Chem., 2018, 26(17), 4886-4897.
[http://dx.doi.org/10.1016/j.bmc.2018.08.028] [PMID: 30170925]
[64]
Tafreshi, N.K.; Lloyd, M.C.; Bui, M.M.; Gillies, R.J.; Morse, D.L. Carbonic anhydrase IX as an imaging and therapeutic target for tumors and metastases. Subcell. Biochem., 2014, 75, 221-254.
[http://dx.doi.org/10.1007/978-94-007-7359-2_12] [PMID: 24146382]
[65]
Sedlakova, O.; Svastova, E.; Takacova, M.; Kopacek, J.; Pastorek, J.; Pastorekova, S. Carbonic anhydrase IX, a hypoxia-induced catalytic component of the pH regulating machinery in tumors. Front. Physiol., 2014, 4, 400.
[http://dx.doi.org/10.3389/fphys.2013.00400] [PMID: 24409151]
[66]
Supuran, C.T. Carbonic anhydrases: novel therapeutic applications for inhibitors and activators. Nat. Rev. Drug Discov., 2008, 7(2), 168-181.
[http://dx.doi.org/10.1038/nrd2467] [PMID: 18167490]
[67]
Neri, D.; Supuran, C.T. Interfering with pH regulation in tumours as a therapeutic strategy. Nat. Rev. Drug Discov., 2011, 10(10), 767-777.
[http://dx.doi.org/10.1038/nrd3554] [PMID: 21921921]
[68]
Kato, Y.; Ozawa, S.; Miyamoto, C.; Maehata, Y.; Suzuki, A.; Maeda, T.; Baba, Y. Acidic extracellular microenvironment and cancer. Cancer Cell Int., 2013, 13(1), 89.
[http://dx.doi.org/10.1186/1475-2867-13-89] [PMID: 24004445]
[69]
Patard, J.J.; Fergelot, P.; Karakiewicz, P.I.; Klatte, T.; Trinh, Q.D.; Rioux-Leclercq, N.; Said, J.W.; Belldegrun, A.S.; Pantuck, A.J. Low CAIX expression and absence of VHL gene mutation are associated with tumor aggressiveness and poor survival of clear cell renal cell carcinoma. Int. J. Cancer, 2008, 123(2), 395-400.
[http://dx.doi.org/10.1002/ijc.23496] [PMID: 18464292]
[70]
Uslu, A.G.; Gür Maz, T.; Nocentini, A.; Banoglu, E.; Supuran, C.T.; Çalışkan, B. Benzimidazole derivatives as potent and isoform selective tumor-associated carbonic anhydrase IX/XII inhibitors. Bioorg. Chem., 2020, 95103544
[http://dx.doi.org/10.1016/j.bioorg.2019.103544] [PMID: 31915112]
[71]
Ansari, M.F.; Idrees, D.; Hassan, M.I.; Ahmad, K.; Avecilla, F.; Azam, A. Design, synthesis and biological evaluation of novel pyridine-thiazolidinone derivatives as anticancer agents: Targeting human carbonic anhydrase IX. Eur. J. Med. Chem., 2018, 144, 544-556.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.049] [PMID: 29289880]
[72]
DiNardo, C.D.; Jabbour, E.; Ravandi, F.; Takahashi, K.; Daver, N.; Routbort, M.; Patel, K.P.; Brandt, M.; Pierce, S.; Kantarjian, H.; Garcia-Manero, G. IDH1 and IDH2 mutations in myelodysplastic syndromes and role in disease progression. Leukemia, 2016, 30(4), 980-984.
[http://dx.doi.org/10.1038/leu.2015.211] [PMID: 26228814]
[73]
Zhou, K.G.; Jiang, L.J.; Shang, Z.; Wang, J.; Huang, L.; Zhou, J.F. Potential application of IDH1 and IDH2 mutations as prognostic indicators in non-promyelocytic acute myeloid leukemia: a meta-analysis. Leuk. Lymphoma, 2012, 53(12), 2423-2429.
[http://dx.doi.org/10.3109/10428194.2012.695359] [PMID: 22616558]
[74]
Reitman, Z.J.; Yan, H. Isocitrate dehydrogenase 1 and 2 mutations in cancer: Alterations at a crossroads of cellular metabolism. J. Natl. Cancer Inst., 2010, 102(13), 932-941.
[http://dx.doi.org/10.1093/jnci/djq187] [PMID: 20513808]
[75]
Dang, L.; Yen, K.; Attar, E.C. IDH mutations in cancer and progress toward development of targeted therapeutics. Ann. Oncol., 2016, 27(4), 599-608.
[http://dx.doi.org/10.1093/annonc/mdw013] [PMID: 27005468]
[76]
Sulkowski, P.L.; Corso, C.D.; Robinson, N.D.; Scanlon, S.E.; Purshouse, K.R.; Bai, H.; Liu, Y.; Sundaram, R.K.; Hegan, D.C.; Fons, N.R.; Breuer, G.A.; Song, Y.; Mishra-Gorur, K.; De Feyter, H.M.; de Graaf, R.A.; Surovtseva, Y.V.; Kachman, M.; Halene, S.; Günel, M.; Glazer, P.M.; Bindra, R.S. 2-Hydroxyglutarate produced by neomorphic IDH mutations suppresses homologous recombination and induces PARP inhibitor sensitivity. Sci. Transl. Med., 2017, 9(375)eaal2463
[http://dx.doi.org/10.1126/scitranslmed.aal2463] [PMID: 28148839]
[77]
Reitman, Z.J.; Parsons, D.W.; Yan, H. IDH1 and IDH2: Not your typical oncogenes. Cancer Cell, 2010, 17(3), 215-216.
[http://dx.doi.org/10.1016/j.ccr.2010.02.024] [PMID: 20227034]
[78]
Chaturvedi, A.; Araujo Cruz, M.M.; Jyotsana, N.; Sharma, A.; Yun, H.; Görlich, K.; Wichmann, M.; Schwarzer, A.; Preller, M.; Thol, F.; Meyer, J.; Haemmerle, R.; Struys, E.A.; Jansen, E.E.; Modlich, U.; Li, Z.; Sly, L.M.; Geffers, R.; Lindner, R.; Manstein, D.J.; Lehmann, U.; Krauter, J.; Ganser, A.; Heuser, M. Mutant IDH1 promotes leukemogenesis in vivo and can be specifically targeted in human AML. Blood, 2013, 122(16), 2877-2887.
[http://dx.doi.org/10.1182/blood-2013-03-491571] [PMID: 23954893]
[79]
Liu, X.; Hu, Y.; Gao, A.; Xu, M.; Gao, L.; Xu, L.; Zhou, Y.; Gao, J.; Ye, Q.; Li, J. Synthesis and biological evaluation of 3-aryl-4-indolyl-maleimides as potent mutant isocitrate dehydrogenase-1 inhibitors. Bioorg. Med. Chem., 2019, 27(4), 589-603.
[http://dx.doi.org/10.1016/j.bmc.2018.12.029] [PMID: 30600148]
[80]
Hu, Y.; Gao, A.; Liao, H.; Zhang, M.; Xu, G.; Gao, L.; Xu, L.; Zhou, Y.; Gao, J.; Ye, Q.; Li, J. 3-(7-Azaindolyl)-4-indolylmaleimides as a novel class of mutant isocitrate dehydrogenase-1 inhibitors: Design, synthesis, and biological evaluation. Arch. Pharm. (Weinheim), 2018, 351(10)e1800039
[http://dx.doi.org/10.1002/ardp.201800039] [PMID: 30113716]
[81]
Ribeiro, R.C.; Kushner, P.J.; Baxter, J.D. The nuclear hormone receptor gene superfamily. Annu. Rev. Med., 1995, 46, 443-453.
[http://dx.doi.org/10.1146/annurev.med.46.1.443] [PMID: 7598477]
[82]
Mangelsdorf, D.J.; Thummel, C.; Beato, M.; Herrlich, P.; Schütz, G.; Umesono, K.; Blumberg, B.; Kastner, P.; Mark, M.; Chambon, P.; Evans, R.M. The nuclear receptor superfamily: The second decade. Cell, 1995, 83(6), 835-839.
[http://dx.doi.org/10.1016/0092-8674(95)90199-X] [PMID: 8521507]
[83]
Kemppainen, J.A.; Langley, E.; Wong, C.I.; Bobseine, K.; Kelce, W.R.; Wilson, E.M. Distinguishing androgen receptor agonists and antagonists: Distinct mechanisms of activation by medroxyprogesterone acetate and dihydrotestosterone. Mol. Endocrinol., 1999, 13(3), 440-454.
[http://dx.doi.org/10.1210/mend.13.3.0255] [PMID: 10077001]
[84]
Dehm, S.M.; Tindall, D.J. Androgen receptor structural and functional elements: Role and regulation in prostate cancer. Mol. Endocrinol., 2007, 21(12), 2855-2863.
[http://dx.doi.org/10.1210/me.2007-0223] [PMID: 17636035]
[85]
Elshan, N.G.R.D.; Rettig, M.B.; Jung, M.E. Molecules targeting the androgen receptor (AR) signaling axis beyond the AR-Ligand binding domain. Med. Res. Rev., 2019, 39(3), 910-960.
[http://dx.doi.org/10.1002/med.21548] [PMID: 30565725]
[86]
Moras, D.; Gronemeyer, H. The nuclear receptor ligand-binding domain: Structure and function. Curr. Opin. Cell Biol., 1998, 10(3), 384-391.
[http://dx.doi.org/10.1016/S0955-0674(98)80015-X] [PMID: 9640540]
[87]
Chang, C.; Lee, S.O.; Yeh, S.; Chang, T.M. Androgen receptor (AR) differential roles in hormone-related tumors including prostate, bladder, kidney, lung, breast and liver. Oncogene, 2014, 33(25), 3225-3234.
[http://dx.doi.org/10.1038/onc.2013.274] [PMID: 23873027]
[88]
Niu, Y.; Chang, T.M.; Yeh, S.; Ma, W.L.; Wang, Y.Z.; Chang, C. Differential androgen receptor signals in different cells explain why androgen-deprivation therapy of prostate cancer fails. Oncogene, 2010, 29(25), 3593-3604.
[http://dx.doi.org/10.1038/onc.2010.121] [PMID: 20440270]
[89]
Marques, R.B.; Dits, N.F.; Erkens-Schulze, S.; van Weerden, W.M.; Jenster, G. Bypass mechanisms of the androgen receptor pathway in therapy-resistant prostate cancer cell models. PLoS One, 2010, 5(10)e13500
[http://dx.doi.org/10.1371/journal.pone.0013500] [PMID: 20976069]
[90]
Perner, S.; Cronauer, M.V.; Schrader, A.J.; Klocker, H.; Culig, Z.; Baniahmad, A. Adaptive responses of androgen receptor signaling in castration-resistant prostate cancer. Oncotarget, 2015, 6(34), 35542-35555.
[http://dx.doi.org/10.18632/oncotarget.4689] [PMID: 26325261]
[91]
Bobach, C.; Tennstedt, S.; Palberg, K.; Denkert, A.; Brandt, W.; de Meijere, A.; Seliger, B.; Wessjohann, L.A. Screening of synthetic and natural product databases: Identification of novel androgens and antiandrogens. Eur. J. Med. Chem., 2015, 90, 267-279.
[http://dx.doi.org/10.1016/j.ejmech.2014.11.026] [PMID: 25461327]
[92]
Ferroni, C.; Pepe, A.; Kim, Y.S.; Lee, S.; Guerrini, A.; Parenti, M.D.; Tesei, A.; Zamagni, A.; Cortesi, M.; Zaffaroni, N.; De Cesare, M.; Beretta, G.L.; Trepel, J.B.; Malhotra, S.V.; Varchi, G. 1, 4-Substituted triazoles as nonsteroidal anti-androgens for prostate cancer treatment. J. Med. Chem., 2017, 60(7), 3082-3093.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00105] [PMID: 28272894]
[93]
Shi, Y.K.; Wang, B.; Shi, X.L.; Zhao, Y.D.; Yu, B.; Liu, H.M. Synthesis and biological evaluation of new steroidal pyridines as potential anti-prostate cancer agents. Eur. J. Med. Chem., 2018, 145, 11-22.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.094] [PMID: 29310026]
[94]
Li, D.; Zhou, W.; Pang, J.; Tang, Q.; Zhong, B.; Shen, C.; Xiao, L.; Hou, T. A magic drug target: Androgen receptor. Med. Res. Rev., 2019, 39(5), 1485-1514.
[http://dx.doi.org/10.1002/med.21558] [PMID: 30569509]
[95]
Penning, T.M.; Wangtrakuldee, P.; Auchus, R.J. Structural and functional biology of aldo-keto reductase steroid-transforming enzymes. Endocr. Rev., 2019, 40(2), 447-475.
[http://dx.doi.org/10.1210/er.2018-00089] [PMID: 30137266]
[96]
Zeng, C.M.; Chang, L.L.; Ying, M.D.; Cao, J.; He, Q.J.; Zhu, H.; Yang, B. Aldo-keto reductase AKR1C1-AKR1C4: Functions, regulation, and intervention for anti-cancer therapy. Front. Pharmacol., 2017, 8, 119.
[http://dx.doi.org/10.3389/fphar.2017.00119] [PMID: 28352233]
[97]
Pippione, A.C.; Carnovale, I.M.; Bonanni, D.; Sini, M.; Goyal, P.; Marini, E.; Pors, K.; Adinolfi, S.; Zonari, D.; Festuccia, C.; Wahlgren, W.Y.; Friemann, R.; Bagnati, R.; Boschi, D.; Oliaro-Bosso, S.; Lolli, M.L. Potent and selective aldo-keto reductase 1C3 (AKR1C3) inhibitors based on the benzoisoxazole moiety: Application of a bioisosteric scaffold hopping approach to flufenamic acid. Eur. J. Med. Chem., 2018, 150, 930-945.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.040] [PMID: 29602039]
[98]
Zheng, X.; Jiang, Z.; Li, X.; Zhang, C.; Li, Z.; Wu, Y.; Wang, X.; Zhang, C.; Luo, H.B.; Xu, J.; Wu, D. Screening, synthesis, crystal structure, and molecular basis of 6-amino-4-phenyl-1,4-dihydropyrano[2,3-c]pyrazole-5-carbonitriles as novel AKR1C3 inhibitors. Bioorg. Med. Chem., 2018, 26(22), 5934-5943.
[http://dx.doi.org/10.1016/j.bmc.2018.10.044] [PMID: 30429100]
[99]
Savić, M.P.; Ajduković, J.J.; Plavša, J.J.; Bekić, S.S.; Ćelić, A.S.; Klisurić, O.R.; Jakimov, D.S.; Petri, E.T.; Djurendić, E.A. Evaluation of A-ring fused pyridine d-modified androstane derivatives for antiproliferative and aldo-keto reductase 1C3 inhibitory activity. MedChemComm, 2018, 9(6), 969-981.
[http://dx.doi.org/10.1039/C8MD00077H] [PMID: 30108986]
[100]
Gross, S.; Rahal, R.; Stransky, N.; Lengauer, C.; Hoeflich, K.P. Targeting cancer with kinase inhibitors. J. Clin. Invest., 2015, 125(5), 1780-1789.
[http://dx.doi.org/10.1172/JCI76094] [PMID: 25932675]
[101]
Coussens, L.; Parker, P.J.; Rhee, L.; Yang-Feng, T.L.; Chen, E.; Waterfield, M.D.; Francke, U.; Ullrich, A. Multiple, distinct forms of bovine and human protein kinase C suggest diversity in cellular signaling pathways. Science, 1986, 233(4766), 859-866.
[http://dx.doi.org/10.1126/science.3755548] [PMID: 3755548]
[102]
Manning, G.; Whyte, D.B.; Martinez, R.; Hunter, T.; Sudarsanam, S. The protein kinase complement of the human genome. Science, 2002, 298(5600), 1912-1934.
[http://dx.doi.org/10.1126/science.1075762] [PMID: 12471243]
[103]
Fabbro, D.; Cowan-Jacob, S.W.; Moebitz, H. Ten things you should know about protein kinases: IUPHAR Review 14. Br. J. Pharmacol., 2015, 172(11), 2675-2700.
[http://dx.doi.org/10.1111/bph.13096] [PMID: 25630872]
[104]
Köstler, W.J.; Zielinski, C.C. Targeting receptor tyrosine kinases in cancer.Receptor tyrosine kinases: Structure, Functions and Role in Human Disease; Springer: New York, 2015, pp. 225-278.
[105]
Maurer, G.; Tarkowski, B.; Baccarini, M. Raf kinases in cancer-roles and therapeutic opportunities. Oncogene, 2011, 30(32), 3477-3488.
[http://dx.doi.org/10.1038/onc.2011.160] [PMID: 21577205]
[106]
Futreal, P.A.; Coin, L.; Marshall, M.; Down, T.; Hubbard, T.; Wooster, R.; Rahman, N.; Stratton, M.R. A census of human cancer genes. Nat. Rev. Cancer, 2004, 4(3), 177-183.
[http://dx.doi.org/10.1038/nrc1299] [PMID: 14993899]
[107]
Bardelli, A.; Parsons, D.W.; Silliman, N.; Ptak, J.; Szabo, S.; Saha, S.; Markowitz, S.; Willson, J.K.; Parmigiani, G.; Kinzler, K.W.; Vogelstein, B.; Velculescu, V.E. Mutational analysis of the tyrosine kinome in colorectal cancers. Science, 2003, 300(5621), 949.
[http://dx.doi.org/10.1126/science.1082596] [PMID: 12738854]
[108]
Nawaz, F.; Alam, O.; Perwez, A.; Rizvi, M.A.; Naim, M.J.; Siddiqui, N.; Pottoo, F.H.; Jha, M. 3′-(4-(Benzyloxy) phenyl)-1′-phenyl-5-(heteroaryl/aryl)-3, 4-dihydro-1′ H, 2H-[3, 4′-bipyrazole]-2-carboxamides as EGFR kinase inhibitors: Synthesis, anticancer evaluation, and molecular docking studies. Arch. Pharm, 2020, 353(4)e1900262
[http://dx.doi.org/10.1002/ardp.201900262]
[109]
Yu, Y.; Han, Y.; Zhang, F.; Gao, Z.; Zhu, T.; Dong, S.; Ma, M. Design, synthesis, and biological evaluation of imidazo[1,2-a]pyridine derivatives as novel PI3K/mTOR dual inhibitors. J. Med. Chem., 2020, 63(6), 3028-3046.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01736] [PMID: 32069401]
[110]
Ullah, S.; El-Gamal, M.I.; Zaib, S.; Anbar, H.S.; Zaraei, S.O.; Sbenati, R.M.; Pelletier, J.; Sévigny, J.; Oh, C.H.; Iqbal, J. Synthesis, biological evaluation, and docking studies of new pyrazole-based thiourea and sulfonamide derivatives as inhibitors of nucleotide pyrophosphatase/phosphodiesterase. Bioorg. Chem., 2020, 99103783
[http://dx.doi.org/10.1016/j.bioorg.2020.103783] [PMID: 32224334]
[111]
Meier, P.; Finch, A.; Evan, G. Apoptosis in development. Nature, 2000, 407(6805), 796-801.
[http://dx.doi.org/10.1038/35037734] [PMID: 11048731]
[112]
Ghiotto, F.; Fais, F.; Bruno, S. BH3-only proteins: The death-puppeteer’s wires. Cytometry A, 2010, 77(1), 11-21.
[PMID: 19899133]
[113]
Czabotar, P.E.; Lessene, G.; Strasser, A.; Adams, J.M. Control of apoptosis by the BCL-2 protein family: Implications for physiology and therapy. Nat. Rev. Mol. Cell Biol., 2014, 15(1), 49-63.
[http://dx.doi.org/10.1038/nrm3722] [PMID: 24355989]
[114]
Adams, J.M.; Cory, S. The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene, 2007, 26(9), 1324-1337.
[http://dx.doi.org/10.1038/sj.onc.1210220] [PMID: 17322918]
[115]
Roberts, A.W.; Huang, D. Targeting BCL2 with BH3 mimetics: Basic science and clinical application of venetoclax in chronic lymphocytic leukemia and related B cell malignancies. Clin. Pharmacol. Ther., 2017, 101(1), 89-98.
[http://dx.doi.org/10.1002/cpt.553] [PMID: 27806433]
[116]
Billard, C. BH3 mimetics: Status of the field and new developments. Mol. Cancer Ther., 2013, 12(9), 1691-1700.
[http://dx.doi.org/10.1158/1535-7163.MCT-13-0058] [PMID: 23974697]
[117]
Delbridge, A.R.; Grabow, S.; Strasser, A.; Vaux, D.L. Thirty years of BCL-2: Translating cell death discoveries into novel cancer therapies. Nat. Rev. Cancer, 2016, 16(2), 99-109.
[http://dx.doi.org/10.1038/nrc.2015.17] [PMID: 26822577]
[118]
Lessene, G.; Czabotar, P.E.; Colman, P.M. BCL-2 family antagonists for cancer therapy. Nat. Rev. Drug Discov., 2008, 7(12), 989-1000.
[http://dx.doi.org/10.1038/nrd2658] [PMID: 19043450]
[119]
Santosh, R.; Prabhu, A.; Selvam, M.K.; Krishna, P.M.; Nagaraja, G.K.; Rekha, P.D. Design, synthesis, and pharmacology of some oxadiazole and hydroxypyrazoline hybrids bearing thiazoyl scaffold: Antiproliferative activity, molecular docking and DNA binding studies. Heliyon, 2019, 5(2)e01255
[http://dx.doi.org/10.1016/j.heliyon.2019.e01255] [PMID: 30886919]
[120]
Sabour, R.; Harras, M.F.; Mehany, A.B.M. Design, synthesis, cytotoxicity screening and molecular docking of new 3-cyanopyridines as survivin inhibitors and apoptosis inducers. Bioorg. Chem., 2020, 94103358
[http://dx.doi.org/10.1016/j.bioorg.2019.103358] [PMID: 31679838]
[121]
Wang, J.C. Cellular roles of DNA topoisomerases: A molecular perspective. Nat. Rev. Mol. Cell Biol., 2002, 3(6), 430-440.
[http://dx.doi.org/10.1038/nrm831] [PMID: 12042765]
[122]
Wang, J.C. DNA topoisomerases. Annu. Rev. Biochem., 1996, 65, 635-692.
[http://dx.doi.org/10.1146/annurev.bi.65.070196.003223] [PMID: 8811192]
[123]
Forterre, P.; Gribaldo, S.; Gadelle, D.; Serre, M.C. Origin and evolution of DNA topoisomerases. Biochimie, 2007, 89(4), 427-446.
[http://dx.doi.org/10.1016/j.biochi.2006.12.009] [PMID: 17293019]
[124]
Bailly, C. Contemporary challenges in the design of topoisomerase II inhibitors for cancer chemotherapy. Chem. Rev., 2012, 112(7), 3611-3640.
[http://dx.doi.org/10.1021/cr200325f] [PMID: 22397403]
[125]
Goto, T.; Wang, J.C. Yeast DNA topoisomerase II. An ATP-dependent type II topoisomerase that catalyzes the catenation, decatenation, unknotting, and relaxation of double-stranded DNA rings. J. Biol. Chem., 1982, 257(10), 5866-5872.
[http://dx.doi.org/10.1016/S0021-9258(19)83859-0] [PMID: 6279616]
[126]
Pommier, Y. DNA topoisomerase I inhibitors: Chemistry, biology, and interfacial inhibition. Chem. Rev., 2009, 109(7), 2894-2902.
[http://dx.doi.org/10.1021/cr900097c] [PMID: 19476377]
[127]
McClendon, A.K.; Osheroff, N. DNA topoisomerase II, genotoxicity, and cancer.Mutat. Res-Fund Mol. M., 2007, 623, 83-97.,
[128]
Park, S.; Kadayat, T.M.; Jun, K.Y.; Thapa Magar, T.B.; Bist, G.; Shrestha, A.; Lee, E.S.; Kwon, Y. Novel 2-aryl-4-(4′-hydroxyphenyl)-5H-indeno[1,2-b]pyridines as potent DNA non-intercalative topoisomerase catalytic inhibitors. Eur. J. Med. Chem., 2017, 125, 14-28.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.019] [PMID: 27643560]
[129]
Lee, J.F.; Chang, T.Y.; Liu, Z.F.; Lee, N.Z.; Yeh, Y.H.; Chen, Y.S.; Chen, T.C.; Chou, H.S.; Li, T.K.; Lee, S.B.; Lin, M.H. Design, synthesis, and biological evaluation of heterotetracyclic quinolinone derivatives as anticancer agents targeting topoisomerases. Eur. J. Med. Chem., 2020, 190112074
[http://dx.doi.org/10.1016/j.ejmech.2020.112074] [PMID: 32045788]
[130]
Jin, G.; Xiao, F.; Li, Z.; Qi, X.; Zhao, L.; Sun, X. Design, synthesis, and dual evaluation of quinoline and quinolinium iodide salt derivatives as potential anticancer and antibacterial agents. ChemMedChem, 2020, 15(7), 600-609.
[http://dx.doi.org/10.1002/cmdc.202000002] [PMID: 32068948]
[131]
Florian, S.; Mitchison, T.J. Anti-microtubule drugs.The Mitotic Spindle; Humana Press: New York, 2016, pp. 403-421.
[http://dx.doi.org/10.1007/978-1-4939-3542-0_25]
[132]
Mitchison, T.J. Microtubule dynamics and kinetochore function in mitosis. Annu. Rev. Cell Biol., 1988, 4, 527-549.
[http://dx.doi.org/10.1146/annurev.cb.04.110188.002523] [PMID: 3058165]
[133]
Nitika, V.; Kapil, K. Microtubule targeting agents: A benchmark in cancer therapy. Curr. Drug Ther., 2013, 8, 189-196.
[http://dx.doi.org/10.2174/15748855113086660011]
[134]
Risinger, A.L.; Giles, F.J.; Mooberry, S.L. Microtubule dynamics as a target in oncology. Cancer Treat. Rev., 2009, 35(3), 255-261.
[http://dx.doi.org/10.1016/j.ctrv.2008.11.001] [PMID: 19117686]
[135]
Nepali, K.; Ojha, R.; Lee, H.Y.; Liou, J.P. Early investigational tubulin inhibitors as novel cancer therapeutics. Expert Opin. Investig. Drugs, 2016, 25(8), 917-936.
[http://dx.doi.org/10.1080/13543784.2016.1189901] [PMID: 27186892]
[136]
Mukhtar, E.; Adhami, V.M.; Mukhtar, H. Targeting microtubules by natural agents for cancer therapy. Mol. Cancer Ther., 2014, 13(2), 275-284.
[http://dx.doi.org/10.1158/1535-7163.MCT-13-0791] [PMID: 24435445]
[137]
Rohena, C.C.; Mooberry, S.L. Recent progress with microtubule stabilizers: New compounds, binding modes and cellular activities. Nat. Prod. Rep., 2014, 31(3), 335-355.
[http://dx.doi.org/10.1039/C3NP70092E] [PMID: 24481420]
[138]
Jian, X.E.; Yang, F.; Jiang, C.S.; You, W.W.; Zhao, P.L. Synthesis and biological evaluation of novel pyrazolo[3,4-b]pyridines as cis-restricted combretastatin A-4 analogues. Bioorg. Med. Chem. Lett., 2020, 30(8)127025
[http://dx.doi.org/10.1016/j.bmcl.2020.127025] [PMID: 32063430]
[139]
Mirzaei, S.; Hadizadeh, F.; Eisvand, F.; Mosaffa, F.; Ghodsi, R. Synthesis, structure-activity relationship and molecular docking studies of novel quinoline-chalcone hybrids as potential anticancer agents and tubulin inhibitors. J. Mol. Struct., 2020, 1202127310
[http://dx.doi.org/10.1016/j.molstruc.2019.127310]
[140]
Nebert, D.W.; Wikvall, K.; Miller, W.L. Human cytochromes P450 in health and disease. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2013, 368(1612)20120431
[http://dx.doi.org/10.1098/rstb.2012.0431] [PMID: 23297354]
[141]
Nelson, D.R.; Zeldin, D.C.; Hoffman, S.M.; Maltais, L.J.; Wain, H.M.; Nebert, D.W. Comparison of cytochrome P450 (CYP) genes from the mouse and human genomes, including nomenclature recommendations for genes, pseudogenes and alternative-splice variants. Pharmacogenetics, 2004, 14(1), 1-18.
[http://dx.doi.org/10.1097/00008571-200401000-00001] [PMID: 15128046]
[142]
Sutter, T.R.; Tang, Y.M.; Hayes, C.L.; Wo, Y.Y.; Jabs, E.W.; Li, X.; Yin, H.; Cody, C.W.; Greenlee, W.F. Complete cDNA sequence of a human dioxin-inducible mRNA identifies a new gene subfamily of cytochrome P450 that maps to chromosome 2. J. Biol. Chem., 1994, 269(18), 13092-13099.
[http://dx.doi.org/10.1016/S0021-9258(17)36803-5] [PMID: 8175734]
[143]
Butterweck, V.; Derendorf, H.; Gaus, W.; Nahrstedt, A.; Schulz, V.; Unger, M. Pharmacokinetic herb-drug interactions: Are preventive screenings necessary and appropriate? Planta Med., 2004, 70(9), 784-791.
[http://dx.doi.org/10.1055/s-2004-827223] [PMID: 15386186]
[144]
Wang, R.; Chen, Y.; Yang, B.; Yu, S.; Zhao, X.; Zhang, C.; Hao, C.; Zhao, D.; Cheng, M. Design, synthesis, biological evaluation and molecular modeling of novel 1H-pyrrolo[2,3-b]pyridine derivatives as potential anti-tumor agents. Bioorg. Chem., 2020, 94103474
[http://dx.doi.org/10.1016/j.bioorg.2019.103474] [PMID: 31859010]
[145]
Mohamed, S.A.; El-Kady, D.S.; Abd-Rabou, A.A.; Tantawy, M.A. AbdElhalim, M.M.; Elazabawy, S.R.; Abdallah, A.E.M.; Elmegeed, G.A. Synthesis of novel hybrid hetero-steroids: Molecular docking study augmented anti-proliferative properties against cancerous cells. Steroids, 2020, 154108527
[http://dx.doi.org/10.1016/j.steroids.2019.108527] [PMID: 31676306]
[146]
Vadukoot, A.K.; Sharma, S.; Aretz, C.D.; Kumar, S.; Gautam, N.; Alnouti, Y.; Aldrich, A.L.; Heim, C.E.; Kielian, T.; Hopkins, C.R. Synthesis and SAR Studies of 1H-Pyrrolo[2,3-b]pyridine-2-carboxamides as Phosphodiesterase 4B (PDE4B) Inhibitors. ACS Med. Chem. Lett., 2020, 11(10), 1848-1854.
[http://dx.doi.org/10.1021/acsmedchemlett.9b00369] [PMID: 33062163]
[147]
Lin, Y.; Li, Z.; Xu, C.; Xia, K.; Wu, S.; Hao, Y.; Yang, Q.; Ma, H.; Zheng, J.; Luo, L.; Zhu, F.; He, S.; Zhang, X. Design, synthesis, and evaluation of novel CXCR4 antagonists based on an aminoquinoline template. Bioorg. Chem., 2020, 99103824
[http://dx.doi.org/10.1016/j.bioorg.2020.103824] [PMID: 32334192]
[148]
Xi, J.J.; He, R.Y.; Zhang, J.K.; Cai, Z.B.; Zhuang, R.X.; Zhao, Y.M.; Shao, Y.D.; Pan, X.W.; Shi, T.T.; Dong, Z.J.; Liu, S.R.; Kong, L.M. Design, synthesis, and biological evaluation of novel 3-(thiophen-2-ylthio)pyridine derivatives as potential multitarget anticancer agents. Arch. Pharm. (Weinheim), 2019, 352(8)e1900024
[http://dx.doi.org/10.1002/ardp.201900024] [PMID: 31338897]
[149]
Gao, T.; Zhang, C.; Shi, X.; Guo, R.; Zhang, K.; Gu, J.; Li, L.; Li, S.; Zheng, Q.; Cui, M.; Cui, M.; Gao, X.; Liu, Y.; Wang, L. Targeting dihydrofolate reductase: Design, synthesis and biological evaluation of novel 6-substituted pyrrolo[2,3-d]pyrimidines as nonclassical antifolates and as potential antitumor agents. Eur. J. Med. Chem., 2019, 178, 329-340.
[http://dx.doi.org/10.1016/j.ejmech.2019.06.013] [PMID: 31200235]
[150]
Mizojiri, R.; Nii, N.; Asano, M.; Sasaki, M.; Satoh, Y.; Yamamoto, Y.; Sumi, H.; Maezaki, H. Design and synthesis of a novel 1H-pyrrolo[3,2-b]pyridine-3-carboxamide derivative as an orally available ACC1 inhibitor. Bioorg. Med. Chem., 2019, 27(12), 2521-2530.
[http://dx.doi.org/10.1016/j.bmc.2019.03.023] [PMID: 30879862]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy