Review Article

β淀粉样蛋白裂解酶1(BACE1)在阿尔茨海默病治疗中的概述:阐明其外源结合抗体和变构抑制剂

卷 29, 期 1, 2022

发表于: 08 June, 2021

页: [114 - 135] 页: 22

弟呕挨: 10.2174/0929867328666210608145357

价格: $65

摘要

经过几十年的鉴定,许多过去和正在进行的研究都集中在β淀粉样蛋白切割酶1(BACE1)作为治疗阿尔茨海默病(AD)的靶标的治疗作用上。尽管在3期临床试验中最初的BACE1抑制剂大大减少了AD患者β淀粉样蛋白相关斑块,但研究人员最终因缺乏效力而停止了测试。这种停产导致针对BACE1的药物开发和发现有限,尽管对痴呆症和AD疗法的需求很高。因此,必须详细描述BACE1治疗方案在神经系统疾病中的潜在生物学基础。在这里,我们强调了BACE1的生物活性,遗传特性和在神经退行性治疗中的作用。我们回顾了BACE1外源结合抗体和变构抑制剂开发作为AD疗法的研究贡献。该评价还涵盖了BACE1生物学功能、疾病相关机制以及淀粉样蛋白前体蛋白位点分裂的酶条件。基于本综述,我们建议进一步研究抗BACE1外显性抗体和BACE1变构抑制剂。非活性位点抑制可能是阿尔茨海默氏症神经系统疾病BACE1治疗的前进方向。

关键词: BACE1生物学性质,阿尔茨海默病,BACE1外显性抗体,BACE1底物,基因表达,变构抑制剂。

[1]
Ugbaja, S.C.; Sanusi, Z.K.; Appiah-Kubi, P.; Lawal, M.M.; Kumalo, H.M. Computational modelling of potent β-secretase (BACE1) inhibitors towards Alzheimer’s disease treatment. Biophys. Chem., 2021, 270106536
[http://dx.doi.org/10.1016/j.bpc.2020.106536] [PMID: 33387910]
[2]
Ugbaja, S.C.; Appiah-Kubi, P.; Lawal, M.M.; Gumede, N.S.; Kumalo, H.M. Unravelling the molecular basis of AM-6494 high potency at BACE1 in Alzheimer’s disease: An integrated dynamic interaction investigation. J. Biomol. Struct. Dyn., 2021, 1-13.
[http://dx.doi.org/10.1080/07391102.2020.1869099] [PMID: 33410374]
[3]
Neitzel, J.J. Enzyme catalysis: The serine proteases. Nature Education, 2010, 3(9), 21.
[4]
Tang, J.; Wong, R.N. Evolution in the structure and function of aspartic proteases. J. Cell. Biochem., 1987, 33(1), 53-63.
[http://dx.doi.org/10.1002/jcb.240330106] [PMID: 3546346]
[5]
Patel, S.; Homaei, A.; El-Seedi, H.R.; Akhtar, N. Cathepsins: Proteases that are vital for survival but can also be fatal. Biomed. Pharmacother., 2018, 105, 526-532.
[http://dx.doi.org/10.1016/j.biopha.2018.05.148] [PMID: 29885636]
[6]
Matsui, T.; Fujimura, Y.; Titani, K. Snake venom proteases affecting hemostasis and thrombosis. Biochimica et Biophysica Acta (BBA)-. Protein Structure and Molecular Enzymology, 2000, 1477(1-2), 146-156.
[http://dx.doi.org/10.1016/S0167-4838(99)00268-X]
[7]
Cole, S.L.; Vassar, R. The basic biology of BACE1: A key therapeutic target for Alzheimer’s disease. Curr. Genomics, 2007, 8(8), 509-530.
[http://dx.doi.org/10.2174/138920207783769512] [PMID: 19415126]
[8]
Greco, S.; Zaccagnini, G.; Fuschi, P.; Voellenkle, C.; Carrara, M.; Sadeghi, I.; Bearzi, C.; Maimone, B.; Castelvecchio, S.; Stellos, K.; Gaetano, C.; Menicanti, L.; Martelli, F. Increased BACE1-AS long noncoding RNA and β-amyloid levels in heart failure. Cardiovasc. Res., 2017, 113(5), 453-463.
[http://dx.doi.org/10.1093/cvr/cvx013] [PMID: 28158647]
[9]
Kumalo, H.; Soliman, M.E. Per-residue energy footprints-based pharmacophore modeling as an enhanced in silico approach in drug discovery: A case study on the identification of novel β-secretase1 (BACE1) inhibitors as anti-Alzheimer agents. Cell. Mol. Bioeng., 2016, 9(1), 175-189.
[http://dx.doi.org/10.1007/s12195-015-0421-8]
[10]
Hemming, M.L.; Elias, J.E.; Gygi, S.P.; Selkoe, D.J. Identification of β-secretase (BACE1) substrates using quantitative proteomics. PLoS One, 2009, 4(12)e8477
[http://dx.doi.org/10.1371/journal.pone.0008477] [PMID: 20041192]
[11]
Kumalo, H.M.; Bhakat, S.; Soliman, M.E. Investigation of flap flexibility of β-secretase using molecular dynamic simulations. J. Biomol. Struct. Dyn., 2016, 34(5), 1008-1019.
[http://dx.doi.org/10.1080/07391102.2015.1064831] [PMID: 26208540]
[12]
Dewachter, I.; Reversé, D.; Caluwaerts, N.; Ris, L.; Kuipéri, C.; Van den Haute, C.; Spittaels, K.; Umans, L.; Serneels, L.; Thiry, E.; Moechars, D.; Mercken, M.; Godaux, E.; Van Leuven, F. Neuronal deficiency of presenilin 1 inhibits amyloid plaque formation and corrects hippocampal long-term potentiation but not a cognitive defect of amyloid precursor protein [V717I] transgenic mice. J. Neurosci., 2002, 22(9), 3445-3453.
[http://dx.doi.org/10.1523/JNEUROSCI.22-09-03445.2002] [PMID: 11978821]
[13]
Hardy, J. A hundred years of Alzheimer’s disease research. Neuron, 2006, 52(1), 3-13.
[http://dx.doi.org/10.1016/j.neuron.2006.09.016] [PMID: 17015223]
[14]
Sanders, C.R. How γ-secretase hits a moving target. eLife, 2016, 5e20043
[http://dx.doi.org/10.7554/eLife.20043] [PMID: 27580373]
[15]
Sauder, J.M.; Arthur, J.W.; Dunbrack, R.L., Jr Modeling of substrate specificity of the Alzheimer’s disease amyloid precursor protein β-secretase. J. Mol. Biol., 2000, 300(2), 241-248.
[http://dx.doi.org/10.1006/jmbi.2000.3860] [PMID: 10873463]
[16]
Yan, R.; Bienkowski, M.J.; Shuck, M.E.; Miao, H.; Tory, M.C.; Pauley, A.M.; Brashier, J.R.; Stratman, N.C.; Mathews, W.R.; Buhl, A.E.; Carter, D.B.; Tomasselli, A.G.; Parodi, L.A.; Heinrikson, R.L.; Gurney, M.E. Membrane-anchored aspartyl protease with Alzheimer’s disease β-secretase activity. Nature, 1999, 402(6761), 533-537.
[http://dx.doi.org/10.1038/990107] [PMID: 10591213]
[17]
Lin, X.; Koelsch, G.; Wu, S.; Downs, D.; Dashti, A.; Tang, J. Human aspartic protease memapsin 2 cleaves the β-secretase site of β-amyloid precursor protein. Proc. Natl. Acad. Sci. USA, 2000, 97(4), 1456-1460.
[http://dx.doi.org/10.1073/pnas.97.4.1456] [PMID: 10677483]
[18]
Roher, A.E.; Lowenson, J.D.; Clarke, S.; Wolkow, C.; Wang, R.; Cotter, R.J.; Reardon, I.M.; Zürcher-Neely, H.A.; Heinrikson, R.L.; Ball, M.J. Structural alterations in the peptide backbone of beta-amyloid core protein may account for its deposition and stability in Alzheimer’s disease. J. Biol. Chem., 1993, 268(5), 3072-3083.
[http://dx.doi.org/10.1016/S0021-9258(18)53661-9] [PMID: 8428986]
[19]
Haass, C.; Schlossmacher, M.G.; Hung, A.Y.; Vigo-Pelfrey, C.; Mellon, A.; Ostaszewski, B.L.; Lieberburg, I.; Koo, E.H.; Schenk, D.; Teplow, D.B. Amyloid β-peptide is produced by cultured cells during normal metabolism. Nature, 1992, 359(6393), 322-325.
[http://dx.doi.org/10.1038/359322a0] [PMID: 1383826]
[20]
Citron, M.; Diehl, T.S.; Capell, A.; Haass, C.; Teplow, D.B.; Selkoe, D.J. Inhibition of amyloid β-protein production in neural cells by the serine protease inhibitor AEBSF. Neuron, 1996, 17(1), 171-179.
[http://dx.doi.org/10.1016/S0896-6273(00)80290-1] [PMID: 8755488]
[21]
Vassar, R.; Bennett, B.D.; Babu-Khan, S.; Kahn, S.; Mendiaz, E.A.; Denis, P.; Teplow, D.B.; Ross, S.; Amarante, P.; Loeloff, R.; Luo, Y.; Fisher, S.; Fuller, J.; Edenson, S.; Lile, J.; Jarosinski, M.A.; Biere, A.L.; Curran, E.; Burgess, T.; Louis, J.C.; Collins, F.; Treanor, J.; Rogers, G.; Citron, M. Beta-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science, 1999, 286(5440), 735-741.
[http://dx.doi.org/10.1126/science.286.5440.735] [PMID: 10531052]
[22]
Gouras, G.K.; Xu, H.; Jovanovic, J.N.; Buxbaum, J.D.; Wang, R.; Greengard, P.; Relkin, N.R.; Gandy, S. Generation and regulation of β-amyloid peptide variants by neurons. J. Neurochem., 1998, 71(5), 1920-1925.
[http://dx.doi.org/10.1046/j.1471-4159.1998.71051920.x] [PMID: 9798916]
[23]
Capell, A.; Steiner, H.; Willem, M.; Kaiser, H.; Meyer, C.; Walter, J.; Lammich, S.; Multhaup, G.; Haass, C. Maturation and pro-peptide cleavage of β-secretase. J. Biol. Chem., 2000, 275(40), 30849-30854.
[http://dx.doi.org/10.1074/jbc.M003202200] [PMID: 10801872]
[24]
Bennett, B.D.; Babu-Khan, S.; Loeloff, R.; Louis, J-C.; Curran, E.; Citron, M.; Vassar, R. Expression analysis of BACE2 in brain and peripheral tissues. J. Biol. Chem., 2000, 275(27), 20647-20651.
[http://dx.doi.org/10.1074/jbc.M002688200] [PMID: 10749877]
[25]
Creemers, J.W.; Ines Dominguez, D.; Plets, E.; Serneels, L.; Taylor, N.A.; Multhaup, G.; Craessaerts, K.; Annaert, W.; De Strooper, B. Processing of β-secretase by furin and other members of the proprotein convertase family. J. Biol. Chem., 2001, 276(6), 4211-4217.
[http://dx.doi.org/10.1074/jbc.M006947200] [PMID: 11071887]
[26]
Costantini, C.; Ko, M.H.; Jonas, M.C.; Puglielli, L. A reversible form of lysine acetylation in the ER and Golgi lumen controls the molecular stabilization of BACE1. Biochem. J., 2007, 407(3), 383-395.
[http://dx.doi.org/10.1042/BJ20070040] [PMID: 17425515]
[27]
Benjannet, S.; Elagoz, A.; Wickham, L.; Mamarbachi, M.; Munzer, J.S.; Basak, A.; Lazure, C.; Cromlish, J.A.; Sisodia, S.; Checler, F.; Chrétien, M.; Seidah, N.G. Post-translational processing of β-secretase (β-amyloid-converting enzyme) and its ectodomain shedding. The pro- and transmembrane/cytosolic domains affect its cellular activity and amyloid-β production. J. Biol. Chem., 2001, 276(14), 10879-10887.
[http://dx.doi.org/10.1074/jbc.M009899200] [PMID: 11152688]
[28]
Ehehalt, R.; Keller, P.; Haass, C.; Thiele, C.; Simons, K. Amyloidogenic processing of the Alzheimer β-amyloid precursor protein depends on lipid rafts. J. Cell Biol., 2003, 160(1), 113-123.
[http://dx.doi.org/10.1083/jcb.200207113] [PMID: 12515826]
[29]
Sheng, J.G.; Price, D.L.; Koliatsos, V.E. The β-amyloid-related proteins presenilin 1 and BACE1 are axonally transported to nerve terminals in the brain. Exp. Neurol., 2003, 184(2), 1053-1057.
[http://dx.doi.org/10.1016/j.expneurol.2003.08.018] [PMID: 14769400]
[30]
Koo, E.H.; Squazzo, S.L. Evidence that production and release of amyloid beta-protein involves the endocytic pathway. J. Biol. Chem., 1994, 269(26), 17386-17389.
[http://dx.doi.org/10.1016/S0021-9258(17)32449-3] [PMID: 8021238]
[31]
Haass, C.; Lemere, C.A.; Capell, A.; Citron, M.; Seubert, P.; Schenk, D.; Lannfelt, L.; Selkoe, D.J. The Swedish mutation causes early-onset Alzheimer’s disease by β-secretase cleavage within the secretory pathway. Nat. Med., 1995, 1(12), 1291-1296.
[http://dx.doi.org/10.1038/nm1295-1291] [PMID: 7489411]
[32]
Hussain, I.; Hawkins, J.; Shikotra, A.; Riddell, D.R.; Faller, A.; Dingwall, C. Characterization of the ectodomain shedding of the β-site amyloid precursor protein-cleaving enzyme 1 (BACE1). J. Biol. Chem., 2003, 278(38), 36264-36268.
[http://dx.doi.org/10.1074/jbc.M304186200] [PMID: 12857759]
[33]
Luo, Y.; Bolon, B.; Kahn, S.; Bennett, B.D.; Babu-Khan, S.; Denis, P.; Fan, W.; Kha, H.; Zhang, J.; Gong, Y.; Martin, L.; Louis, J.C.; Yan, Q.; Richards, W.G.; Citron, M.; Vassar, R. Mice deficient in BACE1, the Alzheimer’s β-secretase, have normal phenotype and abolished β-amyloid generation. Nat. Neurosci., 2001, 4(3), 231-232.
[http://dx.doi.org/10.1038/85059] [PMID: 11224535]
[34]
Agouridas, V.; El Mahdi, O.; Diemer, V.; Cargoët, M.; Monbaliu, J.M.; Melnyk, O. Native chemical ligation and extended methods: Mechanisms, catalysis, scope, and limitations. Chem. Rev., 2019, 119(12), 7328-7443.
[http://dx.doi.org/10.1021/acs.chemrev.8b00712] [PMID: 31050890]
[35]
Sharma, P.; Srivastava, P.; Seth, A.; Tripathi, P.N.; Banerjee, A.G.; Shrivastava, S.K. Comprehensive review of mechanisms of pathogenesis involved in Alzheimer’s disease and potential therapeutic strategies. Prog. Neurobiol., 2019, 174, 53-89.
[http://dx.doi.org/10.1016/j.pneurobio.2018.12.006] [PMID: 30599179]
[36]
Mouchlis, V.D.; Melagraki, G.; Zacharia, L.C.; Afantitis, A. Computer-Aided Drug Design of β-Secretase, γ-Secretase and Anti-Tau Inhibitors for the Discovery of Novel Alzheimer’s Therapeutics. Int. J. Mol. Sci., 2020, 21(3), 703.
[http://dx.doi.org/10.3390/ijms21030703] [PMID: 31973122]
[37]
Yu, H.; Saura, C.A.; Choi, S-Y.; Sun, L.D.; Yang, X.; Handler, M.; Kawarabayashi, T.; Younkin, L.; Fedeles, B.; Wilson, M.A.; Younkin, S.; Kandel, E.R.; Kirkwood, A.; Shen, J. APP processing and synaptic plasticity in presenilin-1 conditional knockout mice. Neuron, 2001, 31(5), 713-726.
[http://dx.doi.org/10.1016/S0896-6273(01)00417-2] [PMID: 11567612]
[38]
Kamenetz, F.; Tomita, T.; Hsieh, H.; Seabrook, G.; Borchelt, D.; Iwatsubo, T.; Sisodia, S.; Malinow, R. APP processing and synaptic function. Neuron, 2003, 37(6), 925-937.
[http://dx.doi.org/10.1016/S0896-6273(03)00124-7] [PMID: 12670422]
[39]
Plant, L.D.; Webster, N.J.; Boyle, J.P.; Ramsden, M.; Freir, D.B.; Peers, C.; Pearson, H.A. Amyloid β peptide as a physiological modulator of neuronal ‘A’-type K+ current. Neurobiol. Aging, 2006, 27(11), 1673-1683.
[http://dx.doi.org/10.1016/j.neurobiolaging.2005.09.038] [PMID: 16271805]
[40]
Li, Q.; Südhof, T.C. Cleavage of amyloid-β precursor protein and amyloid-β precursor-like protein by BACE 1. J. Biol. Chem., 2004, 279(11), 10542-10550.
[http://dx.doi.org/10.1074/jbc.M310001200] [PMID: 14699153]
[41]
Pastorino, L.; Ikin, A.F.; Lamprianou, S.; Vacaresse, N.; Revelli, J.P.; Platt, K.; Paganetti, P.; Mathews, P.M.; Harroch, S.; Buxbaum, J.D. BACE (β-secretase) modulates the processing of APLP2 in vivo. Mol. Cell. Neurosci., 2004, 25(4), 642-649.
[http://dx.doi.org/10.1016/j.mcn.2003.12.013] [PMID: 15080893]
[42]
Scheinfeld, M.H.; Ghersi, E.; Laky, K.; Fowlkes, B.J.; D’Adamio, L. Processing of β-amyloid precursor-like protein-1 and -2 by γ-secretase regulates transcription. J. Biol. Chem., 2002, 277(46), 44195-44201.
[http://dx.doi.org/10.1074/jbc.M208110200] [PMID: 12228233]
[43]
Pardossi-Piquard, R.; Petit, A.; Kawarai, T.; Sunyach, C.; Alves da Costa, C.; Vincent, B.; Ring, S.; D’Adamio, L.; Shen, J.; Müller, U.; St George Hyslop, P.; Checler, F. Presenilin-dependent transcriptional control of the Abeta-degrading enzyme neprilysin by intracellular domains of betaAPP and APLP. Neuron, 2005, 46(4), 541-554.
[http://dx.doi.org/10.1016/j.neuron.2005.04.008] [PMID: 15944124]
[44]
Lazarov, O.; Lee, M.; Peterson, D.A.; Sisodia, S.S. Evidence that synaptically released β-amyloid accumulates as extracellular deposits in the hippocampus of transgenic mice. J. Neurosci., 2002, 22(22), 9785-9793.
[http://dx.doi.org/10.1523/JNEUROSCI.22-22-09785.2002] [PMID: 12427834]
[45]
Wong, H-K.; Sakurai, T.; Oyama, F.; Kaneko, K.; Wada, K.; Miyazaki, H.; Kurosawa, M.; De Strooper, B.; Saftig, P.; Nukina, N. β Subunits of voltage-gated sodium channels are novel substrates of β-site amyloid precursor protein-cleaving enzyme (BACE1) and γ-secretase. J. Biol. Chem., 2005, 280(24), 23009-23017.
[http://dx.doi.org/10.1074/jbc.M414648200] [PMID: 15824102]
[46]
Kim, D.Y.; Carey, B.W.; Wang, H.; Ingano, L.A.; Binshtok, A.M.; Wertz, M.H.; Pettingell, W.H.; He, P.; Lee, V.M-Y.; Woolf, C.J.; Kovacs, D.M. BACE1 regulates voltage-gated sodium channels and neuronal activity. Nat. Cell Biol., 2007, 9(7), 755-764.
[http://dx.doi.org/10.1038/ncb1602] [PMID: 17576410]
[47]
Bacskai, B.J.; Xia, M.Q.; Strickland, D.K.; Rebeck, G.W.; Hyman, B.T. The endocytic receptor protein LRP also mediates neuronal calcium signaling via N-methyl-D-aspartate receptors. Proc. Natl. Acad. Sci. USA, 2000, 97(21), 11551-11556.
[http://dx.doi.org/10.1073/pnas.200238297] [PMID: 11016955]
[48]
Rosenberg, P.B. Clinical aspects of inflammation in Alzheimer’s disease. Int. Rev. Psychiatry, 2005, 17(6), 503-514.
[http://dx.doi.org/10.1080/02646830500382037] [PMID: 16401549]
[49]
Kuhn, P-H.; Marjaux, E.; Imhof, A.; De Strooper, B.; Haass, C.; Lichtenthaler, S.F. Regulated intramembrane proteolysis of the interleukin-1 receptor II by α-, β-, and γ-secretase. J. Biol. Chem., 2007, 282(16), 11982-11995.
[http://dx.doi.org/10.1074/jbc.M700356200] [PMID: 17307738]
[50]
Zhang, S.; Wang, Z.; Cai, F.; Zhang, M.; Wu, Y.; Zhang, J.; Song, W. BACE1 cleavage site selection critical for amyloidogenesis and Alzheimer’s pathogenesis. J. Neurosci., 2017, 37(29), 6915-6925.
[http://dx.doi.org/10.1523/JNEUROSCI.0340-17.2017] [PMID: 28626014]
[51]
Koelsch, G. BACE1 function and inhibition: Implications of intervention in the amyloid pathway of Alzheimer’s disease pathology. Molecules, 2017, 22(10), 1723.
[http://dx.doi.org/10.3390/molecules22101723] [PMID: 29027981]
[52]
Yan, R. Physiological Functions of the β-Site Amyloid Precursor Protein Cleaving Enzyme 1 and 2. Front. Mol. Neurosci., 2017, 10, 97.
[http://dx.doi.org/10.3389/fnmol.2017.00097] [PMID: 28469554]
[53]
Wong, P.; Cai, H.; Price, D. Google Patents, 2002.
[54]
Lange-Dohna, C.; Zeitschel, U.; Gaunitz, F.; Perez-Polo, J.R.; Bigl, V.; Rossner, S. Cloning and expression of the rat BACE1 promoter. J. Neurosci. Res., 2003, 73(1), 73-80.
[http://dx.doi.org/10.1002/jnr.10639] [PMID: 12815710]
[55]
Christensen, M.A.; Zhou, W.; Qing, H.; Lehman, A.; Philipsen, S.; Song, W. Transcriptional regulation of BACE1, the β-amyloid precursor protein β-secretase, by Sp1. Mol. Cell. Biol., 2004, 24(2), 865-874.
[http://dx.doi.org/10.1128/MCB.24.2.865-874.2004] [PMID: 14701757]
[56]
Murphy, T.; Yip, A.; Brayne, C.; Easton, D.; Evans, J.G.; Xuereb, J.; Cairns, N.; Esiri, M.M.; Rubinsztein, D.C. The BACE gene: Genomic structure and candidate gene study in late-onset Alzheimer’s disease. Neuroreport, 2001, 12(3), 631-634.
[http://dx.doi.org/10.1097/00001756-200103050-00040] [PMID: 11234778]
[57]
Kirschling, C.M.; Kölsch, H.; Frahnert, C.; Rao, M.L.; Maier, W.; Heun, R. Polymorphism in the BACE gene influences the risk for Alzheimer’s disease. Neuroreport, 2003, 14(9), 1243-1246.
[http://dx.doi.org/10.1097/00001756-200307010-00011] [PMID: 12824768]
[58]
Gold, G.; Blouin, J.L.; Herrmann, F.R.; Michon, A.; Mulligan, R.; Duriaux Saïl, G.; Bouras, C.; Giannakopoulos, P.; Antonarakis, S.E. Specific BACE1 genotypes provide additional risk for late-onset Alzheimer disease in APOE ε 4 carriers. Am. J. Med. Genet. B. Neuropsychiatr. Genet., 2003, 119B(1), 44-47.
[http://dx.doi.org/10.1002/ajmg.b.10010] [PMID: 12707937]
[59]
J.Holler, C.; P Murphy, M. BACE1: Expression, regulation, and therapeutic potential of the major Alzheimer’s disease beta-secretase. Curr. Enzym. Inhib., 2013, 9(1), 3-14.
[http://dx.doi.org/10.2174/1573408011309010003]
[60]
Coon, K.D.; Myers, A.J.; Craig, D.W.; Webster, J.A.; Pearson, J.V.; Lince, D.H.; Zismann, V.L.; Beach, T.G.; Leung, D.; Bryden, L.; Halperin, R.F.; Marlowe, L.; Kaleem, M.; Walker, D.G.; Ravid, R.; Heward, C.B.; Rogers, J.; Papassotiropoulos, A.; Reiman, E.M.; Hardy, J.; Stephan, D.A. A high-density whole-genome association study reveals that APOE is the major susceptibility gene for sporadic late-onset Alzheimer’s disease. J. Clin. Psychiatry, 2007, 68(4), 613-618.
[http://dx.doi.org/10.4088/JCP.v68n0419] [PMID: 17474819]
[61]
Sun, X.; He, G.; Qing, H.; Zhou, W.; Dobie, F.; Cai, F.; Staufenbiel, M.; Huang, L.E.; Song, W. Hypoxia facilitates Alzheimer’s disease pathogenesis by up-regulating BACE1 gene expression. Proc. Natl. Acad. Sci. USA, 2006, 103(49), 18727-18732.
[http://dx.doi.org/10.1073/pnas.0606298103] [PMID: 17121991]
[62]
Tamagno, E.; Bardini, P.; Guglielmotto, M.; Danni, O.; Tabaton, M. The various aggregation states of β-amyloid 1-42 mediate different effects on oxidative stress, neurodegeneration, and BACE-1 expression. Free Radic. Biol. Med., 2006, 41(2), 202-212.
[http://dx.doi.org/10.1016/j.freeradbiomed.2006.01.021] [PMID: 16814100]
[63]
Harkany, T.; Abrahám, I.; Timmerman, W.; Laskay, G.; Tóth, B.; Sasvári, M.; Kónya, C.; Sebens, J.B.; Korf, J.; Nyakas, C.; Zarándi, M.; Soós, K.; Penke, B.; Luiten, P.G. Beta-amyloid neurotoxicity is mediated by a glutamate-triggered excitotoxic cascade in rat nucleus basalis. Eur. J. Neurosci., 2000, 12(8), 2735-45.
[http://dx.doi.org/10.1046/j.1460-9568.2000.00164.x] [PMID: 10971616]
[64]
Blasko, I.; Beer, R.; Bigl, M.; Apelt, J.; Franz, G.; Rudzki, D.; Ransmayr, G.; Kampfl, A.; Schliebs, R. Experimental traumatic brain injury in rats stimulates the expression, production and activity of Alzheimer’s disease β-secretase (BACE-1). J. Neural Transm. (Vienna), 2004, 111(4), 523-536.
[http://dx.doi.org/10.1007/s00702-003-0095-6] [PMID: 15057522]
[65]
Akiyama, H.; Barger, S.; Barnum, S.; Bradt, B.; Bauer, J.; Cole, G.M.; Cooper, N.R.; Eikelenboom, P.; Emmerling, M.; Fiebich, B.L.; Finch, C.E.; Frautschy, S.; Griffin, W.S.; Hampel, H.; Hull, M.; Landreth, G.; Lue, L.; Mrak, R.; Mackenzie, I.R.; McGeer, P.L.; O’Banion, M.K.; Pachter, J.; Pasinetti, G.; Plata-Salaman, C.; Rogers, J.; Rydel, R.; Shen, Y.; Streit, W.; Strohmeyer, R.; Tooyoma, I.; Van Muiswinkel, F.L.; Veerhuis, R.; Walker, D.; Webster, S.; Wegrzyniak, B.; Wenk, G.; Wyss-Coray, T. Inflammation and Alzheimer’s disease. Neurobiol. Aging, 2000, 21(3), 383-421.
[http://dx.doi.org/10.1016/S0197-4580(00)00124-X] [PMID: 10858586]
[66]
Dominguez, D.; Tournoy, J.; Hartmann, D.; Huth, T.; Cryns, K.; Deforce, S.; Serneels, L.; Camacho, I.E.; Marjaux, E.; Craessaerts, K.; Roebroek, A.J.; Schwake, M.; D’Hooge, R.; Bach, P.; Kalinke, U.; Moechars, D.; Alzheimer, C.; Reiss, K.; Saftig, P.; De Strooper, B. Phenotypic and biochemical analyses of BACE1- and BACE2-deficient mice. J. Biol. Chem., 2005, 280(35), 30797-30806.
[http://dx.doi.org/10.1074/jbc.M505249200] [PMID: 15987683]
[67]
Ma, H.; Lesné, S.; Kotilinek, L.; Steidl-Nichols, J.V.; Sherman, M.; Younkin, L.; Younkin, S.; Forster, C.; Sergeant, N.; Delacourte, A.; Vassar, R.; Citron, M.; Kofuji, P.; Boland, L.M.; Ashe, K.H. Involvement of β-site APP cleaving enzyme 1 (BACE1) in amyloid precursor protein-mediated enhancement of memory and activity-dependent synaptic plasticity. Proc. Natl. Acad. Sci. USA, 2007, 104(19), 8167-8172.
[http://dx.doi.org/10.1073/pnas.0609521104] [PMID: 17470798]
[68]
Cheng, X.; He, P.; Lee, T.; Yao, H.; Li, R.; Shen, Y. High activities of BACE1 in brains with mild cognitive impairment. Am. J. Pathol., 2014, 184(1), 141-147.
[http://dx.doi.org/10.1016/j.ajpath.2013.10.002] [PMID: 24332014]
[69]
Hitt, B.; Riordan, S.M.; Kukreja, L.; Eimer, W.A.; Rajapaksha, T.W.; Vassar, R. β-Site amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1)-deficient mice exhibit a close homolog of L1 (CHL1) loss-of-function phenotype involving axon guidance defects. J. Biol. Chem., 2012, 287(46), 38408-38425.
[http://dx.doi.org/10.1074/jbc.M112.415505] [PMID: 22988240]
[70]
Zeng, Y.; Zhang, J.; Zhu, Y.; Zhang, J.; Shen, H.; Lu, J.; Pan, X.; Lin, N.; Dai, X.; Zhou, M.; Chen, X. Tripchlorolide improves cognitive deficits by reducing amyloid β and upregulating synapse-related proteins in a transgenic model of Alzheimer’s Disease. J. Neurochem., 2015, 133(1), 38-52.
[http://dx.doi.org/10.1111/jnc.13056] [PMID: 25661995]
[71]
Das, B.; Yan, R. A Close Look at BACE1 Inhibitors for Alzheimer’s Disease Treatment. CNS Drugs, 2019, 33(3), 251-263.
[http://dx.doi.org/10.1007/s40263-019-00613-7] [PMID: 30830576]
[72]
Selkoe, D.J.; Hardy, J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol. Med., 2016, 8(6), 595-608.
[http://dx.doi.org/10.15252/emmm.201606210] [PMID: 27025652]
[73]
Iraji, A.; Khoshneviszadeh, M.; Firuzi, O.; Khoshneviszadeh, M.; Edraki, N. Novel small molecule therapeutic agents for Alzheimer disease: Focusing on BACE1 and multi-target directed ligands. Bioorg. Chem., 2020, 97103649
[http://dx.doi.org/10.1016/j.bioorg.2020.103649] [PMID: 32101780]
[74]
Meli, A.C. The impact of cardiovascular diseases and new gene variants in swaying Alzheimer’s disease. Cardiovasc. Res., 2019, 115(11), e102-e104.
[http://dx.doi.org/10.1093/cvr/cvz196] [PMID: 31436832]
[75]
Hays, C.C.; Zlatar, Z.Z.; Wierenga, C.E. The utility of cerebral blood flow as a biomarker of preclinical Alzheimer’s disease. Cell. Mol. Neurobiol., 2016, 36(2), 167-179.
[http://dx.doi.org/10.1007/s10571-015-0261-z] [PMID: 26898552]
[76]
Shi, J.; Zheng, X.; Li, Y.; Zhang, Q.; Ying, S. Multimodal neuroimaging feature learning with multimodal stacked deep polynomial networks for diagnosis of Alzheimer’s disease. IEEE J. Biomed. Health Inform., 2018, 22(1), 173-183.
[http://dx.doi.org/10.1109/JBHI.2017.2655720] [PMID: 28113353]
[77]
Chen, X.; Jiang, X-M.; Zhao, L-J.; Sun, L-L.; Yan, M-L.; Tian, Y.; Zhang, S.; Duan, M-J.; Zhao, H-M.; Li, W-R.; Hao, Y.Y.; Wang, L.B.; Xiong, Q.J.; Ai, J. MicroRNA-195 prevents dendritic degeneration and neuron death in rats following chronic brain hypoperfusion. Cell Death Dis., 2017, 8(6), e2850-e2850.
[http://dx.doi.org/10.1038/cddis.2017.243] [PMID: 28569780]
[78]
Johnson, K.A.; Jones, K.; Holman, B.L.; Becker, J.A.; Spiers, P.A.; Satlin, A.; Albert, M.S. Preclinical prediction of Alzheimer’s disease using SPECT. Neurology, 1998, 50(6), 1563-1571.
[http://dx.doi.org/10.1212/WNL.50.6.1563] [PMID: 9633695]
[79]
Ferrucci, M.; Biagioni, F.; Ryskalin, L.; Limanaqi, F.; Gambardella, S.; Frati, A.; Fornai, F. Ambiguous effects of autophagy activation following hypoperfusion/ischemia. Int. J. Mol. Sci., 2018, 19(9), 2756.
[http://dx.doi.org/10.3390/ijms19092756] [PMID: 30217100]
[80]
Ito, M.; Tanaka, T.; Ishii, T.; Wakashima, T.; Fukui, K.; Nangaku, M. Prolyl hydroxylase inhibition protects the kidneys from ischemia via upregulation of glycogen storage. Kidney Int., 2020, 97(4), 687-701.
[http://dx.doi.org/10.1016/j.kint.2019.10.020] [PMID: 32033782]
[81]
Nagpure, B.V.; Bian, J-S. Hydrogen sulfide inhibits A2A adenosine receptor agonist induced β-amyloid production in SH-SY5Y neuroblastoma cells via a cAMP dependent pathway. PLoS One, 2014, 9(2)e88508
[http://dx.doi.org/10.1371/journal.pone.0088508] [PMID: 24523906]
[82]
Faivre, E.; Coelho, J.E.; Zornbach, K.; Malik, E.; Baqi, Y.; Schneider, M.; Cellai, L.; Carvalho, K.; Sebda, S.; Figeac, M.; Eddarkaoui, S.; Caillierez, R.; Chern, Y.; Heneka, M.; Sergeant, N.; Müller, C.E.; Halle, A.; Buée, L.; Lopes, L.V.; Blum, D. Beneficial effect of a selective adenosine A2A receptor antagonist in the APPswe/PS1dE9 mouse model of Alzheimer’s disease. Front. Mol. Neurosci., 2018, 11, 235.
[http://dx.doi.org/10.3389/fnmol.2018.00235] [PMID: 30050407]
[83]
Cummings, J.; Lee, G.; Mortsdorf, T.; Ritter, A.; Zhong, K. Alzheimer’s disease drug development pipeline: 2017. Alzheimers Dement. (N. Y.), 2017, 3(3), 367-384.
[http://dx.doi.org/10.1016/j.trci.2017.05.002] [PMID: 29067343]
[84]
Vassar, R. BACE1 inhibitor drugs in clinical trials for Alzheimer’s disease. Alzheimers Res. Ther., 2014, 6(9), 89.
[http://dx.doi.org/10.1186/s13195-014-0089-7] [PMID: 25621019]
[85]
Andrew, R.J.; Fernandez, C.G.; Stanley, M.; Jiang, H.; Nguyen, P.; Rice, R.C.; Buggia-Prévot, V.; De Rossi, P.; Vetrivel, K.S.; Lamb, R.; Argemi, A.; Allaert, E.S.; Rathbun, E.M.; Krause, S.V.; Wagner, S.L.; Parent, A.T.; Holtzman, D.M.; Thinakaran, G. Lack of BACE1 S-palmitoylation reduces amyloid burden and mitigates memory deficits in transgenic mouse models of Alzheimer’s disease. Proc. Natl. Acad. Sci. USA, 2017, 114(45), E9665-E9674.
[http://dx.doi.org/10.1073/pnas.1708568114] [PMID: 29078331]
[86]
Gowrishankar, S.; Wu, Y.; Ferguson, S.M. Impaired JIP3-dependent axonal lysosome transport promotes amyloid plaque pathology. J. Cell Biol., 2017, 216(10), 3291-3305.
[http://dx.doi.org/10.1083/jcb.201612148] [PMID: 28784610]
[87]
Walker, K.R.; Kang, E.L.; Whalen, M.J.; Shen, Y.; Tesco, G. Depletion of GGA1 and GGA3 mediates postinjury elevation of BACE1. J. Neurosci., 2012, 32(30), 10423-10437.
[http://dx.doi.org/10.1523/JNEUROSCI.5491-11.2012] [PMID: 22836275]
[88]
Bonifacino, J.S. The GGA proteins: Adaptors on the move. Nat. Rev. Mol. Cell Biol., 2004, 5(1), 23-32.
[http://dx.doi.org/10.1038/nrm1279] [PMID: 14708007]
[89]
Boddapati, S.; Levites, Y.; Sierks, M.R. Inhibiting β-secretase activity in Alzheimer’s disease cell models with single-chain antibodies specifically targeting APP. J. Mol. Biol., 2011, 405(2), 436-447.
[http://dx.doi.org/10.1016/j.jmb.2010.10.054] [PMID: 21073877]
[90]
Atwal, J.K.; Chen, Y.; Chiu, C.; Mortensen, D.L.; Meilandt, W.J.; Liu, Y.; Heise, C.E.; Hoyte, K.; Luk, W.; Lu, Y. A therapeutic antibody targeting BACE1 inhibits amyloid-β production in vivo. Science Translational Medicine, 2011, 3(84), 84ra43-84ra43..
[http://dx.doi.org/10.1126/scitranslmed.3002254]
[91]
Zhou, L.; Chávez-Gutiérrez, L.; Bockstael, K.; Sannerud, R.; Annaert, W.; May, P.C.; Karran, E.; De Strooper, B. Inhibition of β-secretase in vivo via antibody binding to unique loops (D and F) of BACE1. J. Biol. Chem., 2011, 286(10), 8677-8687.
[http://dx.doi.org/10.1074/jbc.M110.194860] [PMID: 21209097]
[92]
Wang, W.; Liu, Y.; Lazarus, R.A. Allosteric inhibition of BACE1 by an exosite-binding antibody. Curr. Opin. Struct. Biol., 2013, 23(6), 797-805.
[http://dx.doi.org/10.1016/j.sbi.2013.08.001] [PMID: 23998983]
[93]
Vassar, R. Developing Therapeutics for Alzheimer's Disease: Progress and Challenges, 2016.39-62.
[94]
Yu, Y.J.; Zhang, Y.; Kenrick, M.; Hoyte, K.; Luk, W.; Lu, Y.; Atwal, J.; Elliott, J.M.; Prabhu, S.; Watts, R.J. Boosting brain uptake of a therapeutic antibody by reducing its affinity for a transcytosis target. Science Translational Medicine, 2011, 3(84), 84ra44-84ra44.,
[http://dx.doi.org/10.1126/scitranslmed.3002230]
[95]
Kornacker, M.G.; Lai, Z.; Witmer, M.; Ma, J.; Hendrick, J.; Lee, V.G.; Riexinger, D.J.; Mapelli, C.; Metzler, W.; Copeland, R.A. An inhibitor binding pocket distinct from the catalytic active site on human β-APP cleaving enzyme. Biochemistry, 2005, 44(34), 11567-11573.
[http://dx.doi.org/10.1021/bi050932l] [PMID: 16114893]
[96]
Hong, L.; Koelsch, G.; Lin, X.; Wu, S.; Terzyan, S.; Ghosh, A.K.; Zhang, X.C.; Tang, J. Structure of the protease domain of memapsin 2 (β-secretase) complexed with inhibitor. Science, 2000, 290(5489), 150-153.
[http://dx.doi.org/10.1126/science.290.5489.150] [PMID: 11021803]
[97]
Kornacker, M.G.; Copeland, R.A.; Hendrick, J.; Lai, Z.; Mapelli, C.; Witmer, M.R.; Marcinkeviciene, J.; Metzler, W.; Lee, V.; Riexinger, D.J. Google Patents, 2008.
[98]
Moussa-Pacha, N.M.; Abdin, S.M.; Omar, H.A.; Alniss, H.; Al-Tel, T.H. BACE1 inhibitors: Current status and future directions in treating Alzheimer’s disease. Med. Res. Rev., 2020, 40(1), 339-384.
[http://dx.doi.org/10.1002/med.21622] [PMID: 31347728]
[99]
Xie, J.; Liang, R.; Wang, Y.; Huang, J.; Cao, X.; Niu, B. Progress in target drug molecules for Alzheimer’s disease. Curr. Top. Med. Chem., 2020, 20(1), 4-36.
[http://dx.doi.org/10.2174/1568026619666191203113745] [PMID: 31797761]
[100]
Das, S.; Sengupta, S.; Chakraborty, S. Scope of β-Secretase (BACE1)-Targeted Therapy in Alzheimer’s Disease: Emphasizing the Flavonoid Based Natural Scaffold for BACE1 Inhibition. ACS Chem. Neurosci., 2020, 11(21), 3510-3522.
[http://dx.doi.org/10.1021/acschemneuro.0c00579] [PMID: 33073981]
[101]
Lopez-Font, I.; Boix, C.P.; Zetterberg, H.; Blennow, K.; Sáez-Valero, J. Characterization of Cerebrospinal Fluid BACE1 Species. Mol. Neurobiol., 2019, 56(12), 8603-8616.
[http://dx.doi.org/10.1007/s12035-019-01677-8] [PMID: 31290061]
[102]
Pettus, L.H.; Bourbeau, M.P.; Bradley, J.; Bartberger, M.D.; Chen, K.; Hickman, D.; Johnson, M.; Liu, Q.; Manning, J.R.; Nanez, A.; Siegmund, A.C.; Wen, P.H.; Whittington, D.A.; Allen, J.R.; Wood, S. Discovery of AM-6494: A Potent and Orally Efficacious β-Site Amyloid Precursor Protein Cleaving Enzyme 1 (BACE1) Inhibitor with in Vivo Selectivity over BACE2. J. Med. Chem., 2020, 63(5), 2263-2281.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01034] [PMID: 31589043]
[103]
Egan, M.F.; Kost, J.; Tariot, P.N.; Aisen, P.S.; Cummings, J.L.; Vellas, B.; Sur, C.; Mukai, Y.; Voss, T.; Furtek, C.; Mahoney, E.; Harper Mozley, L.; Vandenberghe, R.; Mo, Y.; Michelson, D. Randomized trial of verubecestat for mild-to-moderate Alzheimer’s disease. N. Engl. J. Med., 2018, 378(18), 1691-1703.
[http://dx.doi.org/10.1056/NEJMoa1706441] [PMID: 29719179]
[104]
Vandenberghe, R.; Riviere, M.E.; Caputo, A.; Sovago, J.; Maguire, R.P.; Farlow, M.; Marotta, G.; Sanchez-Valle, R.; Scheltens, P.; Ryan, J.M.; Graf, A. Active Aβ immunotherapy CAD106 in Alzheimer’s disease: A phase 2b study. Alzheimers Dement. (N. Y.), 2016, 3(1), 10-22.
[http://dx.doi.org/10.1016/j.trci.2016.12.003] [PMID: 29067316]
[105]
Hsiao, C.C.; Rombouts, F.; Gijsen, H.J.M. New evolutions in the BACE1 inhibitor field from 2014 to 2018. Bioorg. Med. Chem. Lett., 2019, 29(6), 761-777.
[http://dx.doi.org/10.1016/j.bmcl.2018.12.049] [PMID: 30709653]
[106]
Baig, M.H.; Ahmad, K.; Rabbani, G.; Danishuddin, M.; Choi, I. Computer Aided Drug Design and its Application to the Development of Potential Drugs for Neurodegenerative Disorders. Curr. Neuropharmacol., 2018, 16(6), 740-748.
[http://dx.doi.org/10.2174/1570159X15666171016163510] [PMID: 29046156]
[107]
Gutierrez, L.J.; Angelina, E.; Gyebrovszki, A.; Fülöp, L.; Peruchena, N.; Baldoni, H.A.; Penke, B.; Enriz, R.D. New small-size peptides modulators of the exosite of BACE1 obtained from a structure-based design. J. Biomol. Struct. Dyn., 2017, 35(2), 413-426.
[http://dx.doi.org/10.1080/07391102.2016.1145143] [PMID: 26813690]
[108]
Clarivate analytics. Available from:. https://clarivate.com/ products/web-of-science/
[109]
Peters-Libeu, C.; Campagna, J.; Mitsumori, M.; Poksay, K.S.; Spilman, P.; Sabogal, A.; Bredesen, D.E.; John, V. sAβPPα is a Potent Endogenous Inhibitor of BACE1. J. Alzheimers Dis., 2015, 47(3), 545-555.
[http://dx.doi.org/10.3233/JAD-150282] [PMID: 26401691]
[110]
Campagna, J.; Vadivel, K.; Jagodzinska, B.; Jun, M.; Bilousova, T.; Spilman, P.; John, V. Evaluation of an Allosteric BACE Inhibitor Peptide to Identify Mimetics that Can Interact with the Loop F Region of the Enzyme and Prevent APP Cleavage. J. Mol. Biol., 2018, 430(11), 1566-1576.
[http://dx.doi.org/10.1016/j.jmb.2018.04.002] [PMID: 29649434]
[111]
Young, L.W. PCT Search Report for App. PCT Search Report for App. No. PCT/US, 2010, 8(10435), 1-2..
[112]
Singer, O.; Marr, R.A.; Rockenstein, E.; Crews, L.; Coufal, N.G.; Gage, F.H.; Verma, I.M.; Masliah, E. Targeting BACE1 with siRNAs ameliorates Alzheimer disease neuropathology in a transgenic model. Nat. Neurosci., 2005, 8(10), 1343-1349.
[http://dx.doi.org/10.1038/nn1531] [PMID: 16136043]
[113]
Dorresteijn, B.; Rotman, M.; Faber, D.; Schravesande, R.; Suidgeest, E.; van der Weerd, L.; van der Maarel, S.M.; Verrips, C.T.; El Khattabi, M. Camelid heavy chain only antibody fragment domain against β-site of amyloid precursor protein cleaving enzyme 1 inhibits β-secretase activity in vitro and in vivo. FEBS J., 2015, 282(18), 3618-3631.
[http://dx.doi.org/10.1111/febs.13367] [PMID: 26147692]
[114]
Ryu, G.; Park, S.H.; Kim, E.S.; Choi, B.W.; Ryu, S.Y.; Lee, B.H. Cholinesterase inhibitory activity of two farnesylacetone derivatives from the brown alga Sargassum sagamianum. Arch. Pharm. Res., 2003, 26(10), 796-799.
[http://dx.doi.org/10.1007/BF02980022] [PMID: 14609125]
[115]
Choi, B.W.; Ryu, G.; Park, S.H.; Kim, E.S.; Shin, J.; Roh, S.S.; Shin, H.C.; Lee, B.H. Anticholinesterase activity of plastoquinones from Sargassum sagamianum: Lead compounds for Alzheimer’s disease therapy. Phytother. Res., 2007, 21(5), 423-426.
[http://dx.doi.org/10.1002/ptr.2090] [PMID: 17236179]
[116]
Seong, S.H.; Ali, M.Y.; Kim, H.R.; Jung, H.A.; Choi, J.S. BACE1 inhibitory activity and molecular docking analysis of meroterpenoids from Sargassum serratifolium. Bioorg. Med. Chem., 2017, 25(15), 3964-3970.
[http://dx.doi.org/10.1016/j.bmc.2017.05.033] [PMID: 28576634]
[117]
Youn, K.; Yun, E.Y.; Lee, J.; Kim, J.Y.; Hwang, J.S.; Jeong, W.S.; Jun, M. Oleic acid and linoleic acid from Tenebrio molitor larvae inhibit BACE1 activity in vitro: Molecular docking studies. J. Med. Food, 2014, 17(2), 284-289.
[http://dx.doi.org/10.1089/jmf.2013.2968] [PMID: 24548007]
[118]
Youn, K.; Lee, J.; Yun, E.Y.; Ho, C.T.; Karwe, M.V.; Jeong, W.S.; Jun, M. Biological evaluation and in silico docking study of gamma-linolenic acid as a potential BACE1 inhibitor. J. Funct. Foods, 2014, 10, 187-191.
[http://dx.doi.org/10.1016/j.jff.2014.06.005]
[119]
Youn, K.; Park, J.H.; Lee, J.; Jeong, W.S.; Ho, C.T.; Jun, M. The Identification of Biochanin A as a Potent and Selective β-Site App-Cleaving Enzyme 1 (BACE1) Inhibitor. Nutrients, 2016, 8(10)E637
[http://dx.doi.org/10.3390/nu8100637] [PMID: 27754406]
[120]
Youn, K.; Park, J.H.; Lee, S.; Lee, S.; Lee, J.; Yun, E.Y.; Jeong, W.S.; Jun, M. BACE1 Inhibition by Genistein: Biological Evaluation, Kinetic Analysis, and Molecular Docking Simulation. J. Med. Food, 2018, 21(4), 416-420.
[http://dx.doi.org/10.1089/jmf.2017.4068] [PMID: 29444415]
[121]
Ruderisch, N.; Schlatter, D.; Kuglstatter, A.; Guba, W.; Huber, S.; Cusulin, C.; Benz, J.; Rufer, A.C.; Hoernschemeyer, J.; Schweitzer, C.; Bülau, T.; Gärtner, A.; Hoffmann, E.; Niewoehner, J.; Patsch, C.; Baumann, K.; Loetscher, H.; Kitas, E.; Freskgård, P.O. Potent and Selective BACE-1 Peptide Inhibitors Lower Brain Aβ Levels Mediated by Brain Shuttle Transport. EBioMedicine, 2017, 24, 76-92.
[http://dx.doi.org/10.1016/j.ebiom.2017.09.004] [PMID: 28923680]
[122]
Rombouts, F.J.R.; Alexander, R.; Cleiren, E.; De Groot, A.; Carpentier, M.; Dijkmans, J.; Fierens, K.; Masure, S.; Moechars, D.; Palomino-Schätzlein, M.; Pineda-Lucena, A.; Trabanco, A.A.; Van Glabbeek, D.; Vos, A.; Tresadern, G. Fragment Binding to β-Secretase 1 without Catalytic Aspartate Interactions Identified via Orthogonal Screening Approaches. ACS Omega, 2017, 2(2), 685-697.
[http://dx.doi.org/10.1021/acsomega.6b00482] [PMID: 28626832]
[123]
Gasse, C.; Zaarour, M.; Noppen, S.; Abramov, M.; Marlière, P.; Liekens, S.; De Strooper, B.; Herdewijn, P. Modulation of BACE1 Activity by Chemically Modified Aptamers. ChemBioChem, 2018, 19(7), 754-763.
[http://dx.doi.org/10.1002/cbic.201700461] [PMID: 29327496]
[124]
Harris, R.C.; Tsai, C.C.; Ellis, C.R.; Shen, J. Proton-Coupled Conformational Allostery Modulates the Inhibitor Selectivity for β-Secretase. J. Phys. Chem. Lett., 2017, 8(19), 4832-4837.
[http://dx.doi.org/10.1021/acs.jpclett.7b02309] [PMID: 28927275]
[125]
Shimizu, H.; Tosaki, A.; Kaneko, K.; Hisano, T.; Sakurai, T.; Nukina, N. Crystal structure of an active form of BACE1, an enzyme responsible for amyloid β protein production. Mol. Cell. Biol., 2008, 28(11), 3663-3671.
[http://dx.doi.org/10.1128/MCB.02185-07] [PMID: 18378702]
[126]
Cardinali, D.P. Melatonin: Clinical Perspectives in Neurodegeneration. Front. Endocrinol. (Lausanne), 2019, 10(480), 480.
[http://dx.doi.org/10.3389/fendo.2019.00480] [PMID: 31379746]
[127]
Panyatip, P.; Tadtong, S.; Sousa, E.; Puthongking, P. BACE1 inhibitor, neuroprotective, and neuritogenic activities of melatonin derivatives. Sci. Pharm., 2020, 88(4), 1-13.
[http://dx.doi.org/10.3390/scipharm88040058]
[128]
Juliano, J.P.; Small, D.H.; Aguilar, M.I. Peptidomimetic modulators of BACE1. Aust. J. Chem., 2020, 73(4), 366-376.
[http://dx.doi.org/10.1071/CH19594]
[129]
Gutierrez, L.J.; Enriz, R.D.; Baldoni, H.A. Structural and thermodynamic characteristics of the exosite binding pocket on the human BACE1: A molecular modeling approach. J. Phys. Chem. A, 2010, 114(37), 10261-10269.
[http://dx.doi.org/10.1021/jp104983a] [PMID: 20806954]
[130]
Gutiérrez, L.J.; Andujar, S.A.; Enriz, R.D.; Baldoni, H.A. Structural and functional insights into the anti-BACE1 Fab fragment that recognizes the BACE1 exosite. J. Biomol. Struct. Dyn., 2014, 32(9), 1421-1433.
[http://dx.doi.org/10.1080/07391102.2013.821024] [PMID: 23879547]
[131]
Butler, C.R.; Brodney, M.A.; Beck, E.M.; Barreiro, G.; Nolan, C.E.; Pan, F.; Vajdos, F.; Parris, K.; Varghese, A.H.; Helal, C.J.; Lira, R.; Doran, S.D.; Riddell, D.R.; Buzon, L.M.; Dutra, J.K.; Martinez-Alsina, L.A.; Ogilvie, K.; Murray, J.C.; Young, J.M.; Atchison, K.; Robshaw, A.; Gonzales, C.; Wang, J.; Zhang, Y.; O’Neill, B.T. Discovery of a series of efficient, centrally efficacious BACE1 inhibitors through structure-based drug design. J. Med. Chem., 2015, 58(6), 2678-2702.
[http://dx.doi.org/10.1021/jm501833t] [PMID: 25695670]
[132]
Di Pietro, O.; Juárez-Jiménez, J.; Muñoz-Torrero, D.; Laughton, C.A.; Luque, F.J. Unveiling a novel transient druggable pocket in BACE-1 through molecular simulations: Conformational analysis and binding mode of multisite inhibitors. PLoS One, 2017, 12(5)e0177683
[http://dx.doi.org/10.1371/journal.pone.0177683] [PMID: 28505196]
[133]
Viayna, E.; Sola, I.; Bartolini, M.; De Simone, A.; Tapia-Rojas, C.; Serrano, F.G.; Sabaté, R.; Juárez-Jiménez, J.; Pérez, B.; Luque, F.J.; Andrisano, V.; Clos, M.V.; Inestrosa, N.C.; Muñoz-Torrero, D. Synthesis and multitarget biological profiling of a novel family of rhein derivatives as disease-modifying anti-Alzheimer agents. J. Med. Chem., 2014, 57(6), 2549-2567.
[http://dx.doi.org/10.1021/jm401824w] [PMID: 24568372]
[134]
Chen, J.; Wang, J.; Yin, B.; Pang, L.; Wang, W.; Zhu, W. Molecular Mechanism of Binding Selectivity of Inhibitors toward BACE1 and BACE2 Revealed by Multiple Short Molecular Dynamics Simulations and Free-Energy Predictions. ACS Chem. Neurosci., 2019, 10(10), 4303-4318.
[http://dx.doi.org/10.1021/acschemneuro.9b00348] [PMID: 31545898]
[135]
Iserloh, U.; Wu, Y.; Cumming, J.N.; Pan, J.; Wang, L.Y.; Stamford, A.W.; Kennedy, M.E.; Kuvelkar, R.; Chen, X.; Parker, E.M.; Strickland, C.; Voigt, J. Potent pyrrolidine- and piperidine-based BACE-1 inhibitors. Bioorg. Med. Chem. Lett., 2008, 18(1), 414-417.
[http://dx.doi.org/10.1016/j.bmcl.2007.10.116] [PMID: 18023580]
[136]
Chen, J.; Yin, B.; Wang, W.; Sun, H. Effects of Disulfide Bonds on Binding of Inhibitors to β-Amyloid Cleaving Enzyme 1 Decoded by Multiple Replica Accelerated Molecular Dynamics Simulations. ACS Chem. Neurosci., 2020, 11(12), 1811-1826.
[http://dx.doi.org/10.1021/acschemneuro.0c00234] [PMID: 32459964]
[137]
Kumar, S.; Chowdhury, S.; Kumar, S. In silico repurposing of antipsychotic drugs for Alzheimer’s disease. BMC Neurosci., 2017, 18(1), 76.
[http://dx.doi.org/10.1186/s12868-017-0394-8] [PMID: 29078760]
[138]
May, P.C.; Willis, B.A.; Lowe, S.L.; Dean, R.A.; Monk, S.A.; Cocke, P.J.; Audia, J.E.; Boggs, L.N.; Borders, A.R.; Brier, R.A.; Calligaro, D.O.; Day, T.A.; Ereshefsky, L.; Erickson, J.A.; Gevorkyan, H.; Gonzales, C.R.; James, D.E.; Jhee, S.S.; Komjathy, S.F.; Li, L.; Lindstrom, T.D.; Mathes, B.M.; Martényi, F.; Sheehan, S.M.; Stout, S.L.; Timm, D.E.; Vaught, G.M.; Watson, B.M.; Winneroski, L.L.; Yang, Z.; Mergott, D.J. The potent BACE1 inhibitor LY2886721 elicits robust central Aβ pharmacodynamic responses in mice, dogs, and humans. J. Neurosci., 2015, 35(3), 1199-1210.
[http://dx.doi.org/10.1523/JNEUROSCI.4129-14.2015] [PMID: 25609634]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy