Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Research Article

Synthesis and Characterisation of Super-Paramagnetic Iron Oxide Nanoparticles (SPIONs) for Minimising Aeromonas hydrophila Load from Freshwater

Author(s): Munish Kumar, Gyandeep Gupta, Tincy Varghese, Aruna M Shankregowda, Prem Prakash Srivastava, Shashi Bhushan, Satya Prakash Shukla, Gopal Krishna and Subodh Gupta*

Volume 18, Issue 2, 2022

Published on: 07 June, 2021

Page: [224 - 236] Pages: 13

DOI: 10.2174/1573413717666210531153107

Abstract

Background: The current study was conducted to prepare an efficient super-paramagnetic iron oxide nanoparticle (SPIONs) to remove Aeromonas hydrophila from water.

Methods: The nanoparticles were synthesized by the co-precipitation method and characterized by DLS, UV-Vis spectrophotometer, FT-IR, XRD, FEG-TEM, and VSM analysis.

Results and Discussion: The results showed that the synthesized SPIONs were having a size range of 8-12nm with magnetic property. Bacteria removal efficiency and antibacterial activity of SPIONs were assessed in sterile distilled water by adding different concentrations of SPIONs viz. 0, 6.25, 12.5, 25, 50, 100, 200, 500, and 1000μM with different initial bacterial loads viz. 1×103, 1×104, 1×105, 1×106, and 1×107 CFU mL−1 at different time intervals 15, 30, 45, and 60 min. At low bacterial load (1×103 to 1×105 CFU mL−1), 95 to 99.99% of bacteria were removed by low SPIONs concentration (6.25-100μM) by 15min which was increased up to 100% by 30min. However, at high bacterial load (1×106 to 1×107 CFU mL−1), more than 87 to 95% of bacteria were removed by the highest SPIONs concentration (1000μM) by 15min, which was increased above 93 to 99.99% by increasing the exposure time to 60min. At low bacterial load (1×103 to1×105 CFU mL−1), the effective concentration was 3.21 to 6.42μM at 15-60 min intervals. Meanwhile, the effective concentration at high bacterial load was 267.81 μM at 15min, which was decreased to 104.09 μM with increasing exposure time to 60min.

Conclusion: Based on the results, it is concluded that the antibacterial effect against A. hydrophila depends on the concentration as well as the exposure time of SPIONs. A low concentration of SPIONs is sufficient to remove 100% of bacterial load in lower exposure time and increasing concentration of SPIONs increases the antibacterial effect. However, further research requires to find the safe concentration of SPIONs for using it as a novel antibacterial agent for the treatment of aeromonads disease in aquaculture.

Keywords: SPIONs, co-precipitation, Aeromonas hydrophila, bacterial load, removal efficiency, aquaculture.

Graphical Abstract
[1]
Moustafa, M.T. Removal of pathogenic bacteria from wastewater using silver nanoparticles synthesized by two fungal species. Water Sci., 2017, 31(2), 164-176.
[2]
Siddique, S.; Chow, J.C.L. Application of nanomaterials in biomedical imaging and cancer therapy. Nanomaterials (Basel), 2020, 10(9), 1700.
[PMID: 32872399]
[3]
Homaeigohar, S. Water Treatment with New Nanomaterials. Water, 2020, 12, 1507.
[http://dx.doi.org/10.3390/w12051507]
[4]
Hussein, A.K.; Walunj, A.; Kolsi, L. Applications of nanotechnology to enhance the performance of the direct absorption solar collectors. J. Therm. Eng., 2016, 2(1), 529-540.
[5]
Hussein, A.K. Applications of nanotechnology to improve the performance of solar collectors–Recent advances and overview. Sust. Energ. Rev., 2016, 62, 767-792.
[6]
Rostami, S.; Sepehrirad, M.; Dezfulizadeh, A.; Hussein, A.K.; Shahsavar Goldanlou, A.; Shadloo, M.S. Exergy optimization of a solar collector in flat plate shape equipped with elliptical pipes filled with turbulent nanofluid flow: a study for thermal management. Water, 2020, 12(8), 2294.
[http://dx.doi.org/10.3390/w12082294]
[7]
Khosravi-Katuli, K.; Prato, E.; Lofrano, G.; Guida, M.; Vale, G.; Libralato, G. Effects of nanoparticles in species of aquaculture interest. Environ. Sci. Pollut. Res. Int., 2017, 24(21), 17326-17346.
[PMID: 28597390]
[8]
Ferosekhan, S.; Gupta, S.; Singh, R.A.; Rather, A.; Kumari, R.; Kothari, C. D.; Kumar Pal, A.; Balkrishna Jadhao, S. RNA-loaded chitosan nanoparticles for enhanced growth, immunostimulation and disease resistance in fish. Curr. Nanosci., 2014, 10(3), 453-464.
[9]
Kumari, R.; Gupta, S.; Singh, A.R.; Ferosekhan, S.; Kothari, D.C.; Pal, A.K.; Jadhao, S.B. Chitosan nanoencapsulated exogenous trypsin biomimics zymogen-like enzyme in fish gastrointestinal tract. PLoS One, 2013, 8(9), e74743.
[PMID: 24040333]
[10]
Bernela, M.; Kaur, P.; Ahuja, M.; Thakur, R. Nano-based delivery system for nutraceuticals: the potential future.Advances in Animal Biotechnology and its Applications; Springer: Singapore, 2018, pp. 103-117.
[11]
Yeh, Y.C.; Huang, T.H.; Yang, S.C.; Chen, C.C.; Fang, J.Y. Nano-based drug delivery or targeting to eradicate bacteria for infection mitigation: a review of recent advances. Front Chem., 2020, 8, 286.
[PMID: 32391321]
[12]
León-Buitimea, A.; Garza-Cárdenas, C.R.; Garza-Cervantes, J.A.; Lerma-Escalera, J.A.; Morones-Ramírez, J.R. The demand for new antibiotics: antimicrobial peptides, nanoparticles, and combinatorial therapies as future strategies in antibacterial agent design. Front. Microbiol., 2020, 11, 1669.
[PMID: 32793156]
[13]
Díez-Pascual, A.M. Recent Progress in Antimicrobial Nanomaterials. Nanomaterials (Basel), 2020, 10(11), 2315.
[http://dx.doi.org/10.3390/nano10112315] [PMID: 33238368]
[14]
Samayanpaulraj, V.; Velu, V.; Uthandakalaipandiyan, R. Determination of lethal dose of Aeromonas hydrophila Ah17 strain in snake head fish Channa striata. Microb. Pathog., 2019, 127, 7-11.
[PMID: 30496835]
[15]
Tavares-Dias, M.; Martins, M.L. An overall estimation of losses caused by diseases in the Brazilian fish farms. J. Parasit. Dis., 2017, 41(4), 913-918.
[PMID: 29114119]
[16]
Alfiansah, Y.R.; Hassenrück, C.; Kunzmann, A.; Taslihan, A.; Harder, J.; Gärdes, A. Bacterial abundance and community composition in pond water from shrimp aquaculture systems with different stocking densities. Front. Microbiol., 2018, 9, 2457.
[PMID: 30405548]
[17]
Zhou, T.; Yuan, Z.; Tan, S.; Jin, Y.; Yang, Y.; Shi, H.; Wang, W.; Niu, D.; Gao, L.; Jiang, W.; Gao, D.; Liu, Z. A review of molecular responses of catfish to bacterial diseases and abiotic stresses. Front. Physiol., 2018, 9, 1113.
[PMID: 30210354]
[18]
Ajayi, A.O.; Okoh, A.I. Bacteriological study of pond water for aquaculture purposes. J. Food Agric. Environ., 2014, 12, 1260-1265.
[19]
Baldissera, M.D.; Freitas Souza, C.; Dias, J.B.; Da Silva, A.S.; Baldisserotto, B. Caffeine supplementation in diet mitigates Aeromonas hydrophila-induced impairment of the gill phosphotransfer network in grass carp Ctenopharyngodon idella. Microb. Pathog., 2019, 136, 103710.
[PMID: 31493503]
[20]
Abdelhamed, H.; Ibrahim, I.; Baumgartner, W.; Lawrence, M.L.; Karsi, A. Characterization of histopathological and ultrastructural changes in channel catfish experimentally infected with virulent Aeromonas hydrophila. Front. Microbiol., 2017, 8, 1519.
[PMID: 28861049]
[21]
Mzula, A.; Wambura, P.N.; Mdegela, R.H.; Shirima, G.M. Current state of modern biotechnological-based Aeromonas hydrophila vaccines for aquaculture: a systematic review. BioMed Res. Int., 2019, 2019, 3768948.
[PMID: 31467887]
[22]
Chen, F.; Sun, J.; Han, Z.; Yang, X.; Xian, J.A.; Lv, A.; Hu, X.; Shi, H. Isolation, identification and characteristics of Aeromonas veronii from diseased Crucian carp (Carassius auratus gibelio). Front. Microbiol., 2019, 10, 2742.
[PMID: 32038507]
[23]
Elsheshtawy, A.; Yehia, N.; Elkemary, M.; Soliman, H. Direct detection of unamplified Aeromonas hydrophila DNA in clinical fish samples using gold nanoparticle probe-based assay. Aquaculture, 2019, 500, 451-457.
[24]
Aboyadak, I.M.; Ali, N.G.M.; Goda, A.M.A.S.; Aboelgalagel, W.H.; Salam, A. Molecular detection of Aeromonas hydrophila as the main cause of outbreak in tilapia farms in Egypt. J. Aquac. Mar. Biol., 2015, 2(5), 00045.
[25]
Hayatgheib, N.; Moreau, E.; Calvez, S.; Lepelletier, D.; Pouliquen, H. A review of functional feeds and the control of Aeromonas infections in freshwater fish. Aquac. Int., 2020, 1-41.
[26]
Laith, A.R.; Najiah, M. Aeromonas hydrophila: antimicrobial susceptibility and histopathology of isolates from diseased catfish, Clarias gariepinus (Burchell). J. Aquac. Res. Dev., 2014, 5(2), 215.
[27]
Ahlstrom, C.A.; Bonnedahl, J.; Woksepp, H.; Hernandez, J.; Olsen, B.; Ramey, A.M. Acquisition and dissemination of cephalosporin-resistant E. coli in migratory birds sampled at an Alaska landfill as inferred through genomic analysis. Sci. Rep., 2018, 8(1), 7361.
[PMID: 29743625]
[28]
Onwugamba, F.C.; Fitzgerald, J.R.; Rochon, K.; Guardabassi, L.; Alabi, A.; Kühne, S.; Grobusch, M.P.; Schaumburg, F. The role of ‘filth flies’ in the spread of antimicrobial resistance. Travel Med. Infect. Dis., 2018, 22, 8-17.
[PMID: 29482014]
[29]
Thornber, K.; Verner-Jeffreys, D.; Hinchliffe, S.; Rahman, M.M.; Bass, D.; Tyler, C.R. Evaluating antimicrobial resistance in the global shrimp industry. Rev. Aquacult., 2020, 12(2), 966-986.
[PMID: 32612676]
[30]
Bilen, S.; Elbeshti, H.T.A.G. A new potential therapeutic remedy against Aeromonas hydrophila infection in rainbow trout (Oncorhynchus mykiss) using tetra, Cotinus coggygria. J. Fish Dis., 2019, 42(10), 1369-1381.
[PMID: 31317560]
[31]
Capkin, E.; Terzi, E.; Altinok, I. Occurrence of antibiotic resistance genes in culturable bacteria isolated from Turkish trout farms and their local aquatic environment. Dis. Aquat. Organ., 2015, 114(2), 127-137.
[PMID: 25993887]
[32]
Terzi, E. Determination of antimicrobial resistance profiles of the bacteria isolated from cultured sturgeons. Menba Kastamonu Üniversitesi Su Ürünleri Fakültesi Dergisi, 2018, 4(2), 7-13.
[33]
Terzi, E.; Isler, H. Antibiotic resistance genes of Escherichia coli in coastal marine environment of Eastern Black Sea, Turkey. Fresenius Environ. Bull., 2019, 28, 1594-1601.
[34]
Jin, Y.; Liu, F.; Shan, C.; Tong, M.; Hou, Y. Efficient bacterial capture with amino acid modified magnetic nanoparticles. Water Res., 2014, 50, 124-134.
[PMID: 24370656]
[35]
Watts, J.E.M.; Schreier, H.J.; Lanska, L.; Hale, M.S. The rising tide of anti-microbial resistance in aquaculture: sources, sinks and solutions. Mar. Drugs, 2017, 15(6), 158.
[PMID: 28587172]
[36]
Margabandhu, M.; Sendhilnathan, S.; Maragathavalli, S.; Karthikeyan, V.; Annadurai, B. Glob. Synthesis characterisation and antibacterial activity of iron oxide nanoparticles. Glob. J. Bio Sci. Biotechnol., 2015, 4, 335.
[37]
Nivethitha, P.R.; Rachel, D.C.J. A study of antioxidant and antibacterial activity using honey mediated Chromium oxide nanoparticles and its characterization. Materials Today: Proceedings,
[38]
Arakha, M.; Pal, S.; Samantarrai, D.; Panigrahi, T.K.; Mallick, B.C.; Pramanik, K.; Mallick, B.; Jha, S. Antimicrobial activity of iron oxide nanoparticle upon modulation of nanoparticle-bacteria interface. Sci. Rep., 2015, 5, 14813.
[PMID: 26437582]
[39]
Dinali, R.; Ebrahiminezhad, A.; Manley-Harris, M.; Ghasemi, Y.; Berenjian, A. Iron oxide nanoparticles in modern microbiology and biotechnology. Crit. Rev. Microbiol., 2017, 43(4), 493-507.
[PMID: 28068855]
[40]
Li, Y.; Yang, D.; Wang, S.; Li, C.; Xue, B.; Yang, L.; Shen, Z.; Jin, M.; Wang, J.; Qiu, Z. The detailed bactericidal process of ferric oxide nanoparticles on E. coli. Molecules, 2018, 23(3), 606.
[PMID: 29518002]
[41]
Alavijeh, M.S.; Bani, M.S.; Rad, I.; Hatamie, S.; Zomorod, M.S.; Haghpanahi, M. Antibacterial properties of ferrimagnetic and superparamagnetic nanoparticles: a comparative study. J. Mech. Sci. Technol., 2021, 1-7.
[42]
Mahdy, S.A.; Raheed, Q.J.; Kalaichelvan, P.T. Antimicrobial activity of zero-valent iron nanoparticles. Int. J. Mod. Eng. Res., 2012, 2(1), 578-581.
[43]
Mohan, P.; Mala, R.; Kalaichelvan, P.T. Comparative antibacterial activity of magnetic iron oxide nanoparticles synthesized by biological and chemical methods against poultry feed pathogens. Mater. Res. Express, 2019, 6(11), 115077.
[44]
Vitta, Y.; Figueroa, M.; Calderon, M.; Ciangherotti, C. Synthesis of iron nanoparticles from aqueous extract of Eucalyptus robusta Sm and evaluation of antioxidant and antimicrobial activity. Mater. Sci. Technol., 2020, 3, 97-103.
[45]
Jiang, Y.; Gong, J.L.; Zeng, G.M.; Ou, X.M.; Chang, Y.N.; Deng, C.H.; Zhang, J.; Liu, H.Y.; Huang, S.Y. Magnetic chitosan-graphene oxide composite for anti-microbial and dye removal applications. Int. J. Biol. Macromol., 2016, 82, 702-710.
[PMID: 26582339]
[46]
Landage, K.S.; Arbade, G.K.; Khanna, P.; Bhongale, C.J. Biological approach to synthesize TiO2 nanoparticles using Staphylococcus aureus for antibacterial and anti-biofilm applications. J. Microbiol. Exp., 2020, 8(1), 36-43.
[47]
Sharma, V.K.; McDonald, T.J.; Kim, H.; Garg, V.K. Magnetic graphene-carbon nanotube iron nanocomposites as adsorbents and antibacterial agents for water purification. Adv. Colloid Interface Sci., 2015, 225, 229-240.
[PMID: 26498500]
[48]
Singh, H.; Du, J.; Singh, P.; Mavlonov, G.T.; Yi, T.H. Development of superparamagnetic iron oxide nanoparticles via direct conjugation with ginsenosides and its in-vitro study. J. Photochem. Photobiol. B, 2018, 185, 100-110.
[PMID: 29885646]
[49]
El-Boubbou, K.; Gruden, C.; Huang, X. Magnetic glyco-nanoparticles: a unique tool for rapid pathogen detection, decontamination, and strain differentiation. J. Am. Chem. Soc., 2007, 129(44), 13392-13393.
[PMID: 17929928]
[50]
Laurent, S.; Forge, D.; Port, M.; Roch, A.; Robic, C.; Vander Elst, L.; Muller, R.N. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev., 2008, 108(6), 2064-2110.
[PMID: 18543879]
[51]
Sjögren, C.E.; Johansson, C.; Naevestad, A.; Sontum, P.C.; Briley-Saebø, K.; Fahlvik, A.K. Crystal size and properties of superparamagnetic iron oxide (SPIO) particles. Magn. Reson. Imaging., 1997, 15(1), 55-67.
[PMID: 9084026]
[52]
Kulkarni, N.; Muddapur, U. Biosynthesis of metal nanoparticles: a review. J. Nanotechnol., 2014. Article ID 510246.
[53]
Samrot, A.V.; Justin, C.; Padmanaban, S.; Burman, U. A study on the effect of chemically synthesised magnetite nanoparticles on earthworm: Eudrilus eugeniae. Appl. Nanosci., 2017, 7, 17-23.
[54]
Samrot, A.V.; Shobana, N.; Sruthi, P.D.; Sahithya, C.S. Utilisation of chitosan-coated super-paramagnetic iron oxide nanoparticles for chromium removal. Appl. Water Sci., 2018, 8, 192.
[55]
Szpak, A.; Kania, G.; Skórka, T.; Tokarz, W.; Zapotoczny, S.; Nowakowska, M. Stable aqueous dispersion of superparamagnetic iron oxide nanoparticles protected by charged chitosan derivatives. J. Nanopart. Res., 2013, 15(1), 1372.
[PMID: 23420339]
[56]
Dulińska-Litewka, J.; Łazarczyk, A.; Hałubiec, P.; Szafrański, O.; Karnas, K.; Karewicz, A. Superparamagnetic iron oxide nanoparticles—current and prospective medical applications. Materials (Basel), 2019, 12(4), 617.
[PMID: 30791358]
[57]
Griffiths, D.; Bernt, W.; Hole, P.; Smith, J.; Malloy, A.; Carr, B. Zeta potential measurement of nanoparticles by nanoparticle tracking analysis (NTA). NSTI-Nanotech, 2011, 1, 4-7.
[58]
Hanaor, D.; Michelazzi, M.; Leonelli, C.; Sorrell, C.C. ‎ The effects of carboxylic acids on the aqueous dispersion and electrophoretic deposition of ZrO 2. J. Eur. Ceram. Soc., 2012, 32, 235-244.
[59]
Samrot, A.V.; Sahithya, C.S.; Selvarani, A. J.; Pachiyappan, S.; Kumar S, S. Surface-engineered super- paramagnetic iron oxide nanoparticles for chromium removal. Int. J. Nanomedicine, 2019, 14, 8105-8119.
[PMID: 31632021]
[60]
Justin, C.; Philip, S.A.; Samrot, A.V. Synthesis and characterization of superparamagnetic iron-oxide nanoparticles (SPIONs) and utilization of SPIONs in X-ray imaging. Appl. Nanosci., 2017, 7(7), 463-475.
[61]
Boulmedais, F.; Frisch, B.; Etienne, O.; Lavalle, P.; Picart, C.; Ogier, J.; Voegel, J.C.; Schaaf, P.; Egles, C. Polyelectrolyte multilayer films with pegylated polypeptides as a new type of anti-microbial protection for biomaterials. Biomaterials, 2004, 25(11), 2003-2011.
[PMID: 14741614]
[62]
Rabea, E.I.; Badawy, M.E.T.; Stevens, C.V.; Smagghe, G.; Steurbaut, W. Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules, 2003, 4(6), 1457-1465.
[PMID: 14606868]
[63]
Guittat, L.; Alberti, P.; Rosu, F.; Van Miert, S.; Thetiot, E.; Pieters, L.; Gabelica, V.; De Pauw, E.; Ottaviani, A.; Riou, J.F.; Mergny, J.L. Interactions of cryptolepine and neocryptolepine with unusual DNA structures. Biochimie, 2003, 85(5), 535-547.
[PMID: 12763313]
[64]
Horák, D.; Babič, M.; Macková, H.; Beneš, M.J. Preparation and properties of magnetic nano- and microsized particles for biological and environmental separations. J. Sep. Sci., 2007, 30(11), 1751-1772.
[PMID: 17623453]
[65]
Unsoy, G.; Yalcin, S.; Khodadust, R.; Gunduz, G.; Gunduz, U. Synthesis optimisation and characterisation of chitosan-coated iron oxide nanoparticles produced for biomedical applications. J. Nanopart. Res., 2012, 14(11), 964.
[66]
Mohammadi-Samani, S.; Miri, R.; Salmanpour, M.; Khalighian, N.; Sotoudeh, S.; Erfani, N. Preparation and assessment of chitosan-coated superparamagnetic Fe3O4 nanoparticles for controlled delivery of methotrexate. Res. Pharm. Sci., 2013, 8(1), 25-33.
[PMID: 24459473]
[67]
Li, S.; Zhang, T.; Tang, R.; Qiu, H.; Wang, C.; Zhou, Z. Solvothermal synthesis and characterisation of monodisperse super-paramagnetic iron oxide nanoparticles. J. Magn. Magn. Mater., 2015, 379, 226-231.
[68]
Karimzadeh, I.; Aghazadeh, M.; Doroudi, T.; Ganjali, M.R.; Kolivand, P.H. Super- paramagnetic iron oxide (Fe 3 O 4) nanoparticles coated with PEG/PEI for biomedical applications: A facile and scalable preparation route based on the cathodic electrochemical deposition method. Adv. Phys. Chem., 2017. Article ID 9437487.
[69]
Khedri, B.; Shahanipour, K.; Fatahian, S.; Jafary, F. Preparation of chitosan-coated Fe 3 O 4 nanoparticles and assessment of their effects on enzymatic antioxidant system as well as high-density lipoprotein/low-density lipoprotein lipoproteins on wistar rat. J. Biomed. Biotechnol. Res., 2018, 2, 68.
[70]
Eid, M.M.; El-Hallouty, S.M.; El-Manawaty, M.; Abdelzaher, F.H. Physicochemical Characterisation and Biocompatibility of SPION@ Plasmonic@ Chitosan Core-Shell Nanocomposite Biosynthesised from Fungus Species. J. Nanomater., 2019. Article ID 4024958.
[71]
Malakootikhah, J.; Rezayan, A.H.; Negahdari, B.; Nasseri, S.; Rastegar, H. Porous MnFe2O4@SiO2 magnetic glycopolymer: A multivalent nanostructure for efficient removal of bacteria from aqueous solution. Ecotoxicol. Environ. Saf., 2018, 166, 277-284.
[PMID: 30273851]
[72]
Lin, C.C.; Ho, J.M. Structural analysis and catalytic activity of Fe 3 O 4 nanoparticles prepared by a facile co-precipitation method in a rotating packed bed. Ceram. Int., 2014, 40, 10275-10282.
[73]
Zhou, S.; Li, Y.; Cui, F.; Jia, M.; Yang, X.; Wang, Y.; Xie, L.; Zhang, Q.; Hou, Z. Development of multifunctional folate-poly (ethylene glycol)-chitosan-coated Fe 3 O 4 nanoparticles for biomedical applications. Macromol. Res., 2014, 22, 58-66.
[74]
Saqib, S.; Munis, M.F.H.; Zaman, W.; Ullah, F.; Shah, S.N.; Ayaz, A.; Farooq, M.; Bahadur, S. Synthesis, characterization and use of iron oxide nano particles for antibacterial activity. Microsc. Res. Tech., 2019, 82(4), 415-420.
[PMID: 30565799]
[75]
Han, C.; Romero, N.; Fischer, S.; Dookran, J.; Berger, A.; Doiron, A.L. Recent developments in the use of nanoparticles for treatment of biofilms. Nanotechnol. Rev., 2017, 6(5), 383-404.
[76]
Arokiyaraj, S.; Saravanan, M.; Prakash, N.U.; Arasu, M.V.; Vijayakumar, B.; Vincent, S. Enhanced antibacterial activity of iron oxide magnetic nanoparticles treated with Argemone mexicana L. leaf extract: an in vitro study. Mater. Res. Bull., 2013, 48, 3323-3327.
[77]
Zhang, L.; Jiang, Y.; Ding, Y.; Povey, M.; York, D. Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). J. Nanopart. Res., 2007, 9, 479-489.
[78]
Dung, T.T.; Danh, T.M.; Hoa, L.T.M.; Chien, D.M.; Duc, N.H. Structural and magnetic properties of starch-coated magnetite nanoparticles. J. Exp. Nanosci., 2009, 4, 259-267.
[79]
Namanga, J.; Foba, J.; Ndinteh, D.T.; Yufanyi, D.M.; Krause, R.W.M. Synthesis and magnetic properties of a superparamagnetic nanocomposite “pectin-magnetite nanocomposite”. J. Nanomater., 2013. Article ID 137275, 1-8.
[80]
Mohapatra, S.; Pramanik, N.; Mukherjee, S.; Ghosh, S.K.; Pramanik, P. A simple synthesis of amine-derivatised superparamagnetic iron oxide nanoparticles for bioapplications. J. Mater. Sci., 2007, 42, 7566-7574.
[81]
Yavuz, C.T.; Mayo, J.T.; Yu, W.W.; Prakash, A.; Falkner, J.C.; Yean, S.; Cong, L.; Shipley, H.J.; Kan, A.; Tomson, M.; Natelson, D.; Colvin, V.L. Low-field magnetic separation of monodisperse Fe3O4 nanocrystals. Science, 2006, 314(5801), 964-967.
[PMID: 17095696]
[82]
Sosnovik, D.E.; Nahrendorf, M.; Weissleder, R. Magnetic nanoparticles for MR imaging: agents, techniques and cardiovascular applications. Basic Res. Cardiol., 2008, 103(2), 122-130.
[PMID: 18324368]
[83]
Stephen Inbaraj, B.; Tsai, T.Y.; Chen, B.H. Synthesis, characterization and antibacterial activity of superparamagnetic nanoparticles modified with glycol chitosan. Sci. Technol. Adv. Mater., 2012, 13(1), 015002.
[PMID: 27877469]
[84]
López, R.G.; Pineda, M.G.; Hurtado, G.; León, R.D.; Fernández, S.; Saade, H.; Bueno, D. Chitosan-coated magnetic nanoparticles prepared in one step by reverse microemulsion precipitation. Int. J. Mol. Sci., 2013, 14(10), 19636-19650.
[PMID: 24084716]
[85]
Gregorio-Jauregui, K.M.; Pineda, M.G.; Rivera-Salinas, J.E.; Hurtado, G.; Saade, H.; Martinez, J.L.; Ilyina, A.; López, R.G. One-step method for preparation of magnetic nanoparticles coated with chitosan. J. Nanomater., 2012. Article ID 813958.
[86]
Nonkumwong, J.; Ananta, S.; Jantaratana, P.; Phumying, S.; Maensiri, S.; Srisombat, L. Phase formation, morphology and magnetic properties of MgFe2O4 nanoparticles synthesised by hydrothermal technique. J. Magn. Magn. Mater., 2015, 381, 226-234.
[87]
Gabrielyan, L.; Hovhannisyan, A.; Gevorgyan, V.; Ananyan, M.; Trchounian, A. Antibacterial effects of iron oxide (Fe3O4) nanoparticles: distinguishing concentration-dependent effects with different bacterial cells growth and membrane-associated mechanisms. Appl. Microbiol. Biotechnol., 2019, 103(6), 2773-2782.
[PMID: 30706116]
[88]
Wang, L.; Hu, C.; Shao, L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int. J. Nanomedicine, 2017, 12, 1227-1249.
[PMID: 28243086]
[89]
Dos Santos Ramos, M.A.; Da Silva, P.B.; Spósito, L.; De Toledo, L.G.; Bonifácio, B.V.; Rodero, C.F.; Dos Santos, K.C.; Chorilli, M.; Bauab, T.M. Nanotechnology-based drug delivery systems for control of microbial biofilms: a review. Int. J. Nanomedicine, 2018, 13, 1179-1213.
[PMID: 29520143]
[90]
Tsakmakidis, I.A.; Samaras, T.; Anastasiadou, S.; Basioura, A.; Ntemka, A.; Michos, I.; Simeonidis, K.; Karagiannis, I.; Tsousis, G.; Angelakeris, M.; Boscos, C.M. Iron oxide nanoparticles as an alternative to antibiotics additive on extended boar semen. Nanomaterials (Basel), 2020, 10(8), 1568.
[PMID: 32784995]
[91]
de Toledo, L.A.S.; Rosseto, H.C.; Bruschi, M.L. Iron oxide magnetic nanoparticles as antimicrobials for therapeutics. Pharm. Dev. Technol., 2018, 23(4), 316-323.
[PMID: 28565928]
[92]
Irshad, R.; Tahir, K.; Li, B.; Ahmad, A.R.; Siddiqui, A.; Nazir, S. Antibacterial activity of biochemically capped iron oxide nanoparticles: A view towards green chemistry. J. Photochem. Photobiol. B, 2017, 170, 241-246.
[PMID: 28454048]
[93]
Lee, C.; Kim, J.Y.; Lee, W.I.; Nelson, K.L.; Yoon, J.; Sedlak, D.L. Bactericidal effect of zero-valent iron nanoparticles on Escherichia coli. Environ. Sci. Technol., 2008, 42(13), 4927-4933.
[PMID: 18678028]
[94]
Hsueh, Y.H.; Tsai, P.H.; Lin, K.S. pH-dependent antimicrobial properties of copper oxide nanoparticles in Staphylococcus aureus. Int. J. Mol. Sci., 2017, 18(4), 793.
[PMID: 28397766]
[95]
Feng, Q.L.; Wu, J.; Chen, G.Q.; Cui, F.Z.; Kim, T.N.; Kim, J.O. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J. Biomed. Mater. Res., 2000, 52(4), 662-668.
[PMID: 11033548]
[96]
Kim, T.H.; Kim, M.; Park, H.S.; Shin, U.S.; Gong, M.S.; Kim, H.W. Size-dependent cellular toxicity of silver nanoparticles. J. Biomed. Mater. Res. A, 2012, 100(4), 1033-1043.
[PMID: 22308013]
[97]
Mukha, I.P.; Eremenko, A.M.; Smirnova, N.P.; Mikhienkova, A.I.; Korchak, G.I.; Gorchev, V.F.; Chunikhin, A.Y. Anti-microbial activity of stable silver nanoparticles of a certain size. Appl. Biochem. Microbiol., 2013, 49, 199-206.
[98]
Cavassin, E.D.; de Figueiredo, L.F.P.; Otoch, J.P.; Seckler, M.M.; de Oliveira, R.A.; Franco, F.F.; Marangoni, V.S.; Zucolotto, V.; Levin, A.S.S.; Costa, S.F. Comparison of methods to detect the in vitro activity of silver nanoparticles (AgNP) against multidrug resistant bacteria. J. Nanobiotechnology, 2015, 13, 64.
[PMID: 26438142]
[99]
Dorobantu, L.S.; Fallone, C.; Noble, A.J.; Veinot, J.; Ma, G.; Goss, G.G.; Burrell, R.E. Toxicity of silver nanoparticles against bacteria, yeast, and algae. J. Nanopart. Res., 2015, 17, 172.
[100]
Slavin, Y.N.; Asnis, J.; Häfeli, U.O.; Bach, H. Metal nanoparticles: understanding the mechanisms behind antibacterial activity. J. Nanobiotechnology, 2017, 15(1), 65.
[PMID: 28974225]
[101]
Song, J.; Zhang, F.; Huang, Y.; Keller, A.A.; Tang, X.; Zhang, W.; Jia, W.; Santos, J. Highly efficient bacterial removal and disinfection by magnetic barium phosphate nanoflakes with embedded iron oxide nanoparticles. Environ. Sci. Nano, 2018, 5(6), 1341-1349.
[102]
Tran, N.; Mir, A.; Mallik, D.; Sinha, A.; Nayar, S.; Webster, T.J. Bactericidal effect of iron oxide nanoparticles on Staphylococcus aureus. Int. J. Nanomedicine, 2010, 5, 277-283.
[PMID: 20463943]
[103]
Bhuiyan, M.S.H.; Miah, M.Y.; Paul, S.C.; Aka, T.D.; Saha, O.; Rahaman, M.M.; Sharif, M.J.I.; Habiba, O.; Ashaduzzaman, M. Green synthesis of iron oxide nanoparticle using Carica papaya leaf extract: application for photocatalytic degradation of remazol yellow RR dye and antibacterial activity. Heliyon, 2020, 6(8), e04603.
[PMID: 32775754]
[104]
Chatterjee, S.; Bandyopadhyay, A.; Sarkar, K. Effect of iron oxide and gold nanoparticles on bacterial growth leading towards biological application. J. Nanobiotechnology, 2011, 9, 34.
[PMID: 21859494]
[105]
Seifi Mansour, S.; Ezzatzadeh, E.; Safarkar, R. In vitro evaluation of its antimicrobial effect of the synthesized Fe3O4 nanoparticles using Persea Americana extract as a green approach on two standard strains. Asian J. Green Chem., 2019, 3(3), 353-365.
[106]
Dong, H.; Huang, J.; Koepsel, R.R.; Ye, P.; Russell, A.J.; Matyjaszewski, K. Recyclable antibacterial magnetic nanoparticles grafted with quaternized poly(2-(dimethylamino)ethyl methacrylate) brushes. Biomacromolecules, 2011, 12(4), 1305-1311.
[PMID: 21384911]

© 2024 Bentham Science Publishers | Privacy Policy