Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Celastrol Inhibits the Proliferation and Decreases Drug Resistance of Cisplatin- Resistant Gastric Cancer SGC7901/DDP Cells

Author(s): Dongmei Zhan, Tengyang Ni, Haibo Wang, Mengying Lv, Masataka Sunagawa and Yanqing Liu*

Volume 22, Issue 2, 2022

Published on: 23 August, 2021

Page: [270 - 279] Pages: 10

DOI: 10.2174/1871520621666210528144006

Price: $65

Abstract

Background: This study aimed to determine the effect and mechanism of Celastrol inhibiting the proliferation and decreasing the drug resistance of cisplatin-resistant gastric cancer cells.

Objective: The objective of this study was to explore the effect and mechanism of Celastrol on proliferation and drug resistance of human gastric cancer cisplatin-resistant cells SGC7901/DDP.

Methods: The thiazole blue (MTT) method was used to detect the sensitivity of human gastric cancer cisplatinresistant cells SGC7901/DPP to cisplatin and Celastrol to determine the Drug Resistance Index (DRI). According to the half Inhibitory Concentration (IC50) value, the action of the concentration of the following experimental drugs was set to reduce the cytotoxicity. Annexin V-FITC/PI double staining method was used to detect the apoptosis of SGC7901/DDP cells induced by Celastrol. Western Blot was used to examine the expression levels of P-glycoprotein (P-gp), Multidrug Resistance Associated Protein 1 (MRP1), Breast Cancer Resistance Associated Protein (Breast Cancer Resistance)-relative protein (BCRP), and mechanistic Target of Rapamycin (mTOR) pathway-related proteins. Real-time fluorescence quantitative polymerase chain reaction (RT-qPCR) was used to detect the mRNA expression levels of P-gp, MRP1, and BCRP.

Results: (1) Compared with the control group (we set the untreated group as the control group), the proliferation of the SGC7901/DPP cells was significantly inhibited after treating with 0.1-6.4μmol/L Celastrol in a time- and concentration-dependent manner (P<0.05). The Drug Resistance Index (DRI) of the SGC7901/DPP cells to DDP was 5.64. (2) Compared with the control group, Celastrol could significantly inhibit the proliferation and induce the apoptosis of the SGC7901/DPP cells (P<0.05). (3) The mRNA and protein expression levels of P-gp, MRP1, and BCRP in the SGC7901/DPP cells were significantly higher than those in the SGC7901 cells. However, after treating with Celastrol, the expression levels of P-gp, MRP1, and BCRP in the SGC7901/DPP cells were significantly reduced (P<0.05). (4) Compared with the control group, the Celastrol treatment also reduced the expression of the mTOR signaling pathway-related proteins, suggesting that the mTOR signaling pathway may be involved in the process of Celastrol inhibiting the proliferation of the SGC7901/DDP cells and reducing their drug resistance. (5) Significantly, the combination of Celastrol and DDP reduced the expression of P-gp, MRP1, and BCRP in the SGC7901/DPP cells.

Conclusion: Celastrol can inhibit the proliferation of the SGC7901/DDP cells, induce their apoptosis, and reduce the expression of drug resistance genes, probably by inhibiting the expression of the proteins related to the mTOR signaling pathway.

Keywords: Gastric cancer, drug resistance, celastrol, mTOR signaling pathway, cisplatin, SGC7901.

Graphical Abstract
[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Venerito, M.; Vasapolli, R.; Rokkas, T.; Malfertheiner, P. Gastric cancer: epidemiology, prevention, and therapy. Helicobacter, 2018, 23(Suppl. 1)e12518
[http://dx.doi.org/10.1111/hel.12518] [PMID: 30203589]
[3]
Digklia, A.; Wagner, A.D. Advanced gastric cancer: Current treatment landscape and future perspectives. World J. Gastroenterol., 2016, 22(8), 2403-2414.
[http://dx.doi.org/10.3748/wjg.v22.i8.2403] [PMID: 26937129]
[4]
Li, Y.J.; Lei, Y.H.; Yao, N.; Wang, C.R.; Hu, N.; Ye, W.C.; Zhang, D.M.; Chen, Z.S. Autophagy and multidrug resistance in cancer. Chin. J. Cancer, 2017, 36(1), 52-62.
[http://dx.doi.org/10.1186/s40880-017-0219-2] [PMID: 28646911]
[5]
Aleksakhina, S.N.; Kashyap, A.; Imyanitov, E.N. Mechanisms of acquired tumor drug resistance. Biochim. Biophys. Acta Rev. Cancer, 2019, 1872(2)188310
[http://dx.doi.org/10.1016/j.bbcan.2019.188310] [PMID: 31442474]
[6]
Johnson, Z. L.; Chen, J. ATP binding enables substrate release from multidrug resistance protein 1. Cell, 2018, 172(1-2), 81-89.e10
[http://dx.doi.org/10.1111/hel.12518] [PMID: 29290467]
[7]
Choi, C.H. ABC transporters as multidrug resistance mechanisms and the development of chemosensitizers for their reversal. Cancer Cell Int., 2005, 5, 30-43.
[http://dx.doi.org/10.1186/1475-2867-5-30] [PMID: 16202168]
[8]
Choi, Y.H.; Yu, A.M. ABC transporters in multidrug resistance and pharmacokinetics, and strategies for drug development. Curr. Pharm. Des., 2014, 20(5), 793-807.
[http://dx.doi.org/10.2174/138161282005140214165212] [PMID: 23688078]
[9]
Wang, J.; Seebacher, N.; Shi, H.; Kan, Q.; Duan, Z. Novel strategies to prevent the development of multidrug resistance (MDR) in cancer. Oncotarget, 2017, 8(48), 84559-84571.
[http://dx.doi.org/10.18632/oncotarget.19187] [PMID: 29137448]
[10]
Venkatesha, S.H.; Astry, B.; Nanjundaiah, S.M.; Yu, H.; Moudgil, K.D. Suppression of autoimmune arthritis by Celastrus-derived Celastrol through modulation of pro-inflammatory chemokines. Bioorg. Med. Chem., 2012, 20(17), 5229-5234.
[http://dx.doi.org/10.1016/j.bmc.2012.06.050] [PMID: 22854193]
[11]
Ju, S.M.; Youn, G.S.; Cho, Y.S.; Choi, S.Y.; Park, J. Celastrol ameliorates cytokine toxicity and pro-inflammatory immune responses by suppressing NF-κB activation in RINm5F beta cells. BMB Rep., 2015, 48(3), 172-177.
[http://dx.doi.org/10.5483/BMBRep.2015.48.3.147] [PMID: 25059279]
[12]
Gu, L.; Bai, W.; Li, S.; Zhang, Y.; Han, Y.; Gu, Y.; Meng, G.; Xie, L.; Wang, J.; Xiao, Y.; Shan, L.; Zhou, S.; Wei, L.; Ferro, A.; Ji, Y. Celastrol prevents atherosclerosis via inhibiting LOX-1 and oxidative stress. PLoS One, 2013, 8(6)e65477
[http://dx.doi.org/10.1371/journal.pone.0065477] [PMID: 23799016]
[13]
Guo, D.; Zhang, W.; Yang, H.; Bi, J.; Xie, Y.; Cheng, B.; Wang, Y.; Chen, S. Celastrol induces necroptosis and ameliorates inflammation via targeting biglycan in human gastric carcinoma. Int. J. Mol. Sci., 2019, 20(22)E5716
[http://dx.doi.org/10.3390/ijms20225716] [PMID: 31739592]
[14]
Huang, W.; He, T.; Chai, C.; Yang, Y.; Zheng, Y.; Zhou, P.; Qiao, X.; Zhang, B.; Liu, Z.; Wang, J.; Shi, C.; Lei, L.; Gao, K.; Li, H.; Zhong, S.; Yao, L.; Huang, M.E.; Lei, M. Triptolide inhibits the proliferation of prostate cancer cells and down-regulates SUMO-specific protease 1 expression. PLoS One, 2012, 7(5)e37693
[http://dx.doi.org/10.1371/journal.pone.0037693] [PMID: 22666381]
[15]
Xu, L.N.; Zhao, N.; Chen, J.Y.; Ye, P.P.; Nan, X.W.; Zhou, H.H.; Jiang, Q.W.; Yang, Y.; Huang, J.R.; Yuan, M.L.; Xing, Z.H.; Wei, M.N.; Li, Y.; Shi, Z.; Yan, X.J. Celastrol inhibits the growth of ovarian cancer cells in vitro and in vivo. Front. Oncol., 2019, 9, 2.
[http://dx.doi.org/10.3389/fonc.2019.00002] [PMID: 30746340]
[16]
Xu, W.; Wang, S.; Chen, Q.; Zhang, Y.; Ni, P.; Wu, X.; Zhang, J.; Qiang, F.; Li, A.; Røe, O.D.; Xu, S.; Wang, M.; Zhang, R.; Zhou, J. TXNL1-XRCC1 pathway regulates cisplatin-induced cell death and contributes to resistance in human gastric cancer. Cell Death Dis., 2014, 5e1055
[http://dx.doi.org/10.1038/cddis.2014.27] [PMID: 24525731]
[17]
Vaidyanathan, A.; Sawers, L.; Gannon, A.L.; Chakravarty, P.; Scott, A.L.; Bray, S.E.; Ferguson, M.J.; Smith, G. ABCB1 (MDR1) induction defines a common resistance mechanism in paclitaxel- and olaparib-resistant ovarian cancer cells. Br. J. Cancer, 2016, 115(4), 431-441.
[http://dx.doi.org/10.1038/bjc.2016.203] [PMID: 27415012]
[18]
Gao, H.L.; Xia, Y.Z.; Zhang, Y.L.; Yang, L.; Kong, L.Y. Vielanin P enhances the cytotoxicity of doxorubicin via the inhibition of PI3K/Nrf2-stimulated MRP1 expression in MCF-7 and K562 DOX-resistant cell lines. Phytomedicine, 2019, 58152885
[http://dx.doi.org/10.1016/j.phymed.2019.152885] [PMID: 31009836]
[19]
Yang, S.; Jin, H.; Zhao, Z. Paracellular tightness and the functional expression of efflux transporters P-gp and BCRP in bEnd3 cells. Neurol. Res., 2018, 40(8), 644-649.
[http://dx.doi.org/10.1080/01616412.2018.1460701] [PMID: 29683403]
[20]
Green, M.R.; Sambrook, J. Analysis and normalization of real-time polymerase chain reaction (PCR) experimental data. Cold Spring Harb. Protoc., 2018, 2018(10)
[http://dx.doi.org/10.1101/pdb.top095000]] [PMID: 30275081]
[21]
Sun, C.Y.; Nie, J.; Huang, J.P.; Zheng, G.J.; Feng, B. Targeting STAT3 inhibition to reverse cisplatin resistance. Biomed. Pharmacother., 2019, 117109135
[http://dx.doi.org/10.1016/j.biopha.2019.109135] [PMID: 31226634]
[22]
Yuan, W.; Zhou, R.; Wang, J.; Han, J.; Yang, X.; Yu, H.; Lu, H.; Zhang, X.; Li, P.; Tao, J.; Wei, J.; Lu, Q.; Yang, H.; Gu, M. Circular RNA Cdr1as sensitizes bladder cancer to cisplatin by upregulating APAF1 expression through miR-1270 inhibition. Mol. Oncol., 2019, 13(7), 1559-1576.
[http://dx.doi.org/10.1002/1878-0261.12523] [PMID: 31131537]
[23]
Kosmidis, C.; Sapalidis, K.; Zarogoulidis, P.; Sardeli, C.; Koulouris, C.; Giannakidis, D.; Pavlidis, E.; Katsaounis, A.; Michalopoulos, N.; Mantalobas, S.; Koimtzis, G.; Alexandrou, V.; Tsiouda, T.; Amaniti, A.; Kesisoglou, I. Inhaled cisplatin for NSCLC: facts and results. Int. J. Mol. Sci., 2019, 20(8), 2005-2021.
[http://dx.doi.org/10.3390/ijms20082005] [PMID: 31022839]
[24]
Wang, J.; Xu, R.; Li, J.; Bai, Y.; Liu, T.; Jiao, S.; Dai, G.; Xu, J.; Liu, Y.; Fan, N.; Shu, Y.; Ba, Y.; Ma, D.; Qin, S.; Zheng, L.; Chen, W.; Shen, L. Randomized multicenter phase III study of a modified docetaxel and cisplatin plus fluorouracil regimen compared with cisplatin and fluorouracil as first-line therapy for advanced or locally recurrent gastric cancer. Gastric Cancer, 2016, 19(1), 234-244.
[http://dx.doi.org/10.1007/s10120-015-0457-4] [PMID: 25604851]
[25]
Wei, F.; Jiang, X.; Gao, H.Y.; Gao, S.H. Liquiritin induces apoptosis and autophagy in cisplatin (DDP)-resistant gastric cancer cells in vitro and xenograft nude mice in vivo. Int. J. Oncol., 2017, 51(5), 1383-1394.
[http://dx.doi.org/10.3892/ijo.2017.4134] [PMID: 29048624]
[26]
Liu, Y.; Liu, C.; Tan, T.; Li, S.; Tang, S.; Chen, X. Sinomenine sensitizes human gastric cancer cells to cisplatin through negative regulation of PI3K/AKT/Wnt signaling pathway. Anticancer Drugs, 2019, 30(10), 983-990.
[http://dx.doi.org/10.1097/CAD.0000000000000834] [PMID: 31609766]
[27]
Bieg, D.; Sypniewski, D.; Nowak, E.; Bednarek, I. Morin decreases galectin-3 expression and sensitizes ovarian cancer cells to cisplatin. Arch. Gynecol. Obstet., 2018, 298(6), 1181-1194.
[http://dx.doi.org/10.1007/s00404-018-4912-4] [PMID: 30267152]
[28]
Xing, F.; Sun, C.; Luo, N.; He, Y.; Chen, M.; Ding, S.; Liu, C.; Feng, L.; Cheng, Z. Wogonin increases cisplatin sensitivity in ovarian cancer cells through inhibition of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. Med. Sci. Monit., 2019, 25, 6007-6014.
[http://dx.doi.org/10.12659/MSM.913829] [PMID: 31402794]
[29]
Wang, H.; Luo, Y.; Qiao, T.; Wu, Z.; Huang, Z. Luteolin sensitizes the antitumor effect of cisplatin in drug-resistant ovarian cancer via induction of apoptosis and inhibition of cell migration and invasion. J. Ovarian Res., 2018, 11(1), 93-105.
[http://dx.doi.org/10.1186/s13048-018-0468-y] [PMID: 30454003]
[30]
Pan, H.; Kim, E.; Rankin, G.O.; Rojanasakul, Y.; Tu, Y.; Chen, Y.C. Theaflavin-3,3′-digallate enhances the inhibitory effect of cisplatin by regulating the copper transporter 1 and glutathione in human ovarian cancer cells. Int. J. Mol. Sci., 2018, 19(1), 117-129.
[http://dx.doi.org/10.3390/ijms19010117] [PMID: 29301278]
[31]
He, Z.; Xiao, X.; Li, S.; Guo, Y.; Huang, Q.; Shi, X.; Wang, X.; Liu, Y. Oridonin induces apoptosis and reverses drug resistance in cisplatin resistant human gastric cancer cells. Oncol. Lett., 2017, 14(2), 2499-2504.
[http://dx.doi.org/10.3892/ol.2017.6421] [PMID: 28781688]
[32]
Huang, G.; Hu, H.; Zhang, Y.; Zhu, Y.; Liu, J.; Tan, B.; Chen, T. Triptolide sensitizes cisplatin-resistant human epithelial ovarian cancer by inhibiting the phosphorylation of AKT. J. Cancer, 2019, 10(13), 3012-3020.
[PMID: 31281478]
[33]
Mohana, S.; Ganesan, M.; Rajendra Prasad, N.; Ananthakrishnan, D.; Velmurugan, D. Flavonoids modulate multidrug resistance through wnt signaling in P-glycoprotein overexpressing cell lines. BMC Cancer, 2018, 18(1), 1168-1192.
[http://dx.doi.org/10.1186/s12885-018-5103-1] [PMID: 30477461]
[34]
Cho, S.; Lu, M.; He, X.; Ee, P.L.; Bhat, U.; Schneider, E.; Miele, L.; Beck, W.T. Notch1 regulates the expression of the multidrug resistance gene ABCC1/MRP1 in cultured cancer cells. Proc. Natl. Acad. Sci. USA, 2011, 108(51), 20778-20783.
[http://dx.doi.org/10.1073/pnas.1019452108] [PMID: 22143792]
[35]
Shi, Z.; Tiwari, A.K.; Shukla, S.; Robey, R.W.; Singh, S.; Kim, I.W.; Bates, S.E.; Peng, X.; Abraham, I.; Ambudkar, S.V.; Talele, T.T.; Fu, L.W.; Chen, Z.S. Sildenafil reverses ABCB1- and ABCG2-mediated chemotherapeutic drug resistance. Cancer Res., 2011, 71(8), 3029-3041.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-3820] [PMID: 21402712]
[36]
Dinić, J.; Podolski-Renić, A.; Jovanović, M.; Musso, L.; Tsakovska, I.; Pajeva, I.; Dallavalle, S.; Pešić, M. Novel heat shock protein 90 inhibitors suppress p-glycoprotein activity and overcome multidrug resistance in cancer cells. Int. J. Mol. Sci., 2019, 20(18), 4575-4596.
[http://dx.doi.org/10.3390/ijms20184575] [PMID: 31527404]
[37]
Zhou, Y.; Chung, P.Y.; Ma, J.Y.; Lam, A.K.; Law, S.; Chan, K.W.; Chan, A.S.; Li, X.; Lam, K.H.; Chui, C.H.; Tang, J.C. Development of a novel quinoline derivative as a p-glycoprotein inhibitor to reverse multidrug resistance in cancer cells. Biology (Basel), 2019, 8(4), 75-93.
[http://dx.doi.org/10.3390/biology8040075] [PMID: 31581572]
[38]
Ling, S.; Li, J.; Shan, Q.; Dai, H.; Lu, D.; Wen, X.; Song, P.; Xie, H.; Zhou, L.; Liu, J.; Xu, X.; Zheng, S. USP22 mediates the multidrug resistance of hepatocellular carcinoma via the SIRT1/AKT/MRP1 signaling pathway. Mol. Oncol., 2017, 11(6), 682-695.
[http://dx.doi.org/10.1002/1878-0261.12067] [PMID: 28417539]
[39]
Yamazaki, R.; Nishiyama, Y.; Furuta, T.; Hatano, H.; Igarashi, Y.; Asakawa, N.; Kodaira, H.; Takahashi, H.; Aiyama, R.; Matsuzaki, T.; Yagi, N.; Sugimoto, Y. Novel acrylonitrile derivatives, YHO-13177 and YHO-13351, reverse BCRP/ABCG2-mediated drug resistance in vitro and in vivo. Mol. Cancer Ther., 2011, 10(7), 1252-1263.
[http://dx.doi.org/10.1158/1535-7163.MCT-10-0874] [PMID: 21566063]
[40]
Pópulo, H.; Lopes, J.M.; Soares, P. The mTOR signalling pathway in human cancer. Int. J. Mol. Sci., 2012, 13(2), 1886-1918.
[http://dx.doi.org/10.3390/ijms13021886] [PMID: 22408430]
[41]
Liang, Y.; Zhu, D.; Zhu, L.; Hou, Y.; Hou, L.; Huang, X.; Li, L.; Wang, Y.; Li, L.; Zou, H.; Wu, T.; Yao, M.; Wang, J.; Meng, X. Dichloroacetate Overcomes Oxaliplatin Chemoresistance in Colorectal Cancer through the miR- 543/PTEN/Akt/mTOR Pathway. J. Cancer 2019, 10(24), 6037-6074.
[http://dx.doi.org/10.7150/jca.34650] [PMID: 31762813]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy