[3]
Baldo, B.A. Enzymes approved for human therapy: Indications, mechanisms and adverse effects. BioDrugs. Clin. Immunotherap. Biopharm. Gene Ther., 2015, 29(1), 31-55.
[6]
Han, T.U.; Sam, R.; Sidransky, E. Small molecule chaperones for the treatment of gaucher disease and gba1-associated parkinson disease. Front. Cell Dev. Biol., 2020, 8, 271.
[19]
Deegan, P.B.; Cox, T.M. Imiglucerase in the treatment of Gaucher disease: A history and perspective. Drug Des. Devel. Ther., 2012, 6, 81-106.
[30]
Andersson, H.C.; Charrow, J.; Kaplan, P.; Mistry, P.; Pastores, G.M.; Prakash-Cheng, A.; Rosenbloom, B.E.; Scott, C.R.; Wappner, R.S.; Weinreb, N.J. Individualization of long-term enzyme replacement therapy for Gaucher disease. Genetics in medicine : Official journal of the American College of Medical Genetics,, 2005, 7(2), 105-110.
[31]
Pastores, G.M. Recombinant glucocerebrosidase (imiglucerase) as a therapy for Gaucher disease. BioDrugs : Clinical immunotherapeutics, biopharmaceuticals and gene therapy, 2010, 24(1), 41-47.
[42]
Sun, Y.; Liou, B.; Chu, Z.; Fannin, V.; Blackwood, R.; Peng, Y.; Grabowski, G.A.; Davis, H.W.; Qi, X. Systemic enzyme delivery by blood-brain barrier-penetrating SapC-DOPS nanovesicles for treatment of neuronopathic Gaucher disease. EBioMedicine, 2020, 55102735
[49]
Svarstad, E.; Marti, H.P. The Changing Landscape of Fabry Disease Clinical journal of the american society of nephrology, 2020. .CJN.09480819,
[62]
Kytidou, K.; Beenakker, T.J.M.; Westerhof, L.B.; Hokke, C.H.; Moolenaar, G.F.; Goosen, N.; Mirzaian, M.; Ferraz, M.J.; de Geus, M.; Kallemeijn, W.W.; Overkleeft, H.S.; Boot, R.G.; Schots, A.; Bosch, D.; Aerts, J. Human alpha galactosidases transiently produced in nicotiana benthamiana leaves: New insights in substrate specificities with relevance for fabry disease. Front. Plant Sci., 2017, 8, 1026.
[82]
Zhu, Y.; Jiang, J.L.; Gumlaw, N.K.; Zhang, J.; Bercury, S.D.; Ziegler, R.J.; Lee, K.; Kudo, M.; Canfield, W.M.; Edmunds, T.; Jiang, C.; Mattaliano, R.J.; Cheng, S.H. Glycoengineered acid alpha-glucosidase with improved efficacy at correcting the metabolic aberrations and motor function deficits in a mouse model of Pompe disease. Molecular therapy : The journal of the American Society of Gene Therapy, 2009, 17(6), 954-963.
[92]
Neufeld, E.F.; Muenzer, J. The online metabolic and molecular bases of inherited disease, 8; Scriver, C.; Beaudet, A.; Sly, W; Valle, D., Ed.; OMMBID, McGraw-Hill Medical: New York, NY, USA, 2001, pp. 3421-3452.
[95]
Davies, G.; Henrissat, B. Structures and mechanisms of glycosyl hydrolases. Structure (London, England : 1993),, 1995, 3(9), 853-859.
[99]
Wraith, E.J.; Hopwood, J.J.; Fuller, M.; Meikle, P.J.; Brooks, D.A. Laronidase treatment of mucopolysaccharidosis I. BioDrugs : Clinical immunotherapeutics, biopharmaceuticals and gene therapy 2005, 19(1), 1-7.
[104]
Taylor, M.; Khan, S.; Stapleton, M.; Wang, J.; Chen, J.; Wynn, R.; Yabe, H.; Chinen, Y.; Boelens, J.J.; Mason, R.W.; Kubaski, F.; Horovitz, D.D.G.; Barth, A.L.; Serafini, M.; Bernardo, M.E.; Kobayashi, H.; Orii, K.E.; Suzuki, Y.; Orii, T.; Tomatsu, S. Hematopoietic stem cell transplantation for mucopolysaccharidoses: Past, present, and future. Biology of blood and marrow transplantation. Journal of the American Society for Blood and Marrow Transplantation, 2019, 25(7), e226-e246.
[106]
Kubaski, F.; de Oliveira Poswar, F.; Michelin-Tirelli, K.; Matte, U.D.S.; Horovitz, D.D.; Barth, A.L.; Baldo, G.; Vairo, F.; Giugliani, R. Mucopolysaccharidosis Type I.Diagnostics (Basel, Switzerland); , 2020; 10, . (3)
[111]
Whiteman, D.A.; Kimura, A. Development of idursulfase therapy for mucopolysaccharidosis type II (Hunter syndrome): The past, the present and the future. Drug Des. Devel. Ther., 2017, 11, 2467-2480.
[115]
Giugliani, R.; Hwu, W.L.; Tylki-Szymanska, A.; Whiteman, D.A.; Pano, A. A multicenter, open-label study evaluating safety and clinical outcomes in children (1.4-7.5 years) with Hunter syndrome receiving idursulfase enzyme replacement therapy. Genetics in medicine : Official journal of the American College of Medical Genetics 2014, 16(6), 435-441.
[119]
Sawamoto, K.; Alméciga-Díaz, C.J.; Mackenzie, W.G.; Mason, R.W.; Orii, T.; Tomatsu, S. Mucopolysaccharidoses Update (2 Volume Set); Tomatsu, S.; Lavery, C.; Giugliani, R.; Harmatz, P.; Scarpa, M.; Węgrzyn, G; Orii, T., Ed.; Nova Science Publishers: New York, NY, USA, 2018, pp. 235-271.
[129]
Harmatz, P.; Shediac, R.; Mucopolysaccharidosis, V.I.; Mucopolysaccharidosis, V.I. Pathophysiology, diagnosis and treatment. Frontiers in bioscience (Landmark edition),, 2017, 22, 385-406.
[130]
Vairo, F.; Federhen, A.; Baldo, G.; Riegel, M.; Burin, M.; Leistner-Segal, S.; Giugliani, R. Diagnostic and treatment strategies in mucopolysaccharidosis VI. The application of clinical , 2015, 8, 245-255.
[135]
Giugliani, R.; Herber, S.; Lapagesse, L.; de Pinto, C.; Baldo, G. herapy for mucopolysaccharidosis VI: (Maroteaux-Lamy syndrome) present status and prospects. Pediatr. Endocrinol. Rev., 2014, 12(Suppl. 1), 152-158.
[144]
McCafferty, E.H.; Scott, L.J. Vestronidase Alfa: A Review in Mucopolysaccharidosis VII. BioDrugs : Clinical immunotherapeutics, biopharmaceuticals and gene therapy,, 2019, 33(2), 233-240.
[149]
Aguisanda, F.; Thorne, N.; Zheng, W. Targeting wolman disease and cholesteryl ester storage disease: Disease pathogenesis and therapeutic development. Curr. Chem. Genomics Transl. Med., 2017, 11, 1-18.
[153]
Pastores, G.M.; Hughes, D.A. Lysosomal acid lipase deficiency: Therapeutic options. Drug Des. Devel. Ther., 2020, 14, 591-601.
[160]
Malm, D.; Nilssen, Ø. Orphanet journal of rare diseases, Orphanet J. Rare Dis., 2008, 3, 21.
[161]
Nilssen, O.; Berg, T.; Rubenthiran, U.; Hansen, G.M.; Riise, H.M.F.; Tranebjaerg, L.; Malm, D.; Tollersrud, O.K. Alpha-mannosidosis - functional cloning of the alpha-mannosidase gene and identification of a mutation in affected siblings. Am. J. Hum. Genet., 1995, 57(4), 195-195.
[162]
Paciotti, S.; Codini, M.; Tasegian, A.; Ceccarini, M.R.; Cataldi, S.; Arcuri, C.; Fioretti, B.; Albi, E.; Beccari, T. Lysosomal alpha-mannosidase and alpha-mannosidosis. Frontiers in bioscience (Landmark edition), 2017, 22, 157-167.
[174]
Borgwardt, L.; Guffon, N.; Amraoui, Y.; Jones, S.A.; De Meirleir, L.; Lund, A.M.; Gil-Campos, M.; Van den Hout, J.M.P.; Tylki-Szymanska, A.; Geraci, S.; Ardigò, D.; Cattaneo, F.; Harmatz, P.; Phillips, D. Health related quality of life, disability, and pain in alpha mannosidosis:Long-term data of enzyme replacement therapy with velmanase alfa (human recombinant alpha mannosidase). J. Inborn Errors Metab. Screen., 2018, 6.
[198]
i Dali, C.; Lund, A.M. Annual clinical genetics meeting of the american college of medical genetics and genomics, Tampa, FL, USA 2009.
[199]
Schuster, T.; Mühlstein, A.; Yaghootfam, C.; Maksimenko, O.; Shipulo, E.; Gelperina, S.; Kreuter, J.; Gieselmann, V.; Matzner, U. Potential of surfactant-coated nanoparticles to improve brain delivery of arylsulfatase A. Journal of controlled release : Official journal of the Controlled Release Society, 2017, 253, 1-10.
[212]
McGovern, M.M.; Wasserstein, M.P.; Kirmse, B.; Duvall, W.L.; Schiano, T.; Thurberg, B.L.; Richards, S.; Cox, G.F. Novel first-dose adverse drug reactions during a phase I trial of olipudase alfa (recombinant human acid sphingomyelinase) in adults with Niemann-Pick disease type B (acid sphingomyelinase deficiency). Genetics in medicine : Official journal of the American College of Medical Genetics, 2016, 18(1), 34-40.
[216]
Muro, S.; Schuchman, E.H.; Muzykantov, V.R. Lysosomal enzyme delivery by ICAM-1-targeted nanocarriers bypassing glycosylation- and clathrin-dependent endocytosis. Molecular therapy : The journal of the American Society of Gene Therapy 2006, 13(1), 135-141.
[217]
Aldosari, M.H.; de Vries, R.P.; Rodriguez, L.R.; Hesen, N.A.; Beztsinna, N.; van Kuilenburg, A.B.P.; Hollak, C.E.M.; Schellekens, H.; Mastrobattista, E. iposometargeted recombinant human acid sphingomyelinase: Production, formulation, and in vitro evaluation. European journal of pharmaceutics and biopharmaceutics : Official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V, 2019, 137, 185-195.
[219]
Walter, J.E. Hematology, Immunology and Genetics (Third Edition); Ohls, R.K.; Maheshwari, A.; Christensen, R.D., Eds.; Elsevier: Philadelphia , 2019; pp. 173-193.
[220]
Ugochukwu, E.; Zhang, Y.; Hapka, E.; Yue, W.W.; Bray, J.E.; Muniz, J.; Burgess-Brown, N.; Chaikuad, A.; von Delft, F.; Bountra, C.; Arrowsmith, C.H.; Weigelt, J.; Edwards, A.; Kavanagh, K.L.; Oppermann, U. 2009. (SGC), S.G.C.
[237]
Booth, C.; Gaspar, H.B. Pegademase bovine (PEG-ADA) for the treatment of infants and children with severe combined immunodeficiency (SCID). Biologics : Targets & therapy,, 2009, 3, 349-358.
[251]
Cicalese, M.P.; Ferrua, F.; Castagnaro, L.; Rolfe, K.; De Boever, E.; Reinhardt, R.R.; Appleby, J.; Roncarolo, M.G.; Aiuti, A. Gene therapy for adenosine deaminase deficiency: A comprehensive evaluation of short- and medium-term safety. Molecular therapy : The journal of the American Society of Gene Therapy, 2018, 26(3), 917-931.
[293]
Dinnel, J.; Moore, B.L.; Skiver, B.M.; Bose, P. Rasburicase in the management of tumor lysis: An evidence-based review of its place in therapy. Core Evid., 2015, 10, 23-38.
[318]
Sacharow, S.; Papaleo, C.; Almeida, K.; Goodlett, B.; Kritzer, A.; Levy, H.; Martell, L.; Wessel, A.; Viau, K. First 1.5 years of pegvaliase clinic: Experiences and outcomes. Mol. Genet. Metab. Rep., 2020, 24.
[321]
Longo, N.; Dimmock, D.; Levy, H.; Viau, K.; Bausell, H.; Bilder, D.A.; Burton, B.; Gross, C.; Northrup, H.; Rohr, F.; Sacharow, S.; Sanchez-Valle, A.; Stuy, M.; Thomas, J.; Vockley, J.; Zori, R.; Harding, C.O. Evidence- and consensus- based recommendations for the use of pegvaliase in adults with phenylketonuria. Genetics in medicine : Official journal of the American College of Medical Genetics, 2019, 21(8), 1851-1867.
[324]
Richards, D.Y.; Winn, S.R.; Dudley, S.; Nygaard, S.; Mighell, T.L.; Grompe, M.; Harding, C.O. AAV-Mediated CRISPR/Cas9 gene editing in murine phenylketonuria. Mol. Ther. Methods Clin. Dev., 2020, 17, 234-245.
[327]
Scott, L.J. Asfotase alfa in perinatal/infantile-onset and juvenile-onset hypophosphatasia: A guide to its use in the USA. BioDrugs : Clinical immunotherapeutics, biopharmaceuticals and gene therapy, 2016, 30(1), 41-48.
[332]
Fedde, K.N.; Blair, L.; Silverstein, J.; Coburn, S.P.; Ryan, L.M.; Weinstein, R.S.; Waymire, K.; Narisawa, S.; Millán, J.L.; MacGregor, G.R.; Whyte, M.P. Alkaline phosphatase knock-out mice recapitulate the metabolic and skeletal defects of infantile hypophosphatasia. Journal of bone and mineral research : The official journal of the American Society for Bone and Mineral Research,, 1999, 14(12), 2015-2026.
[335]
Millán, J.L.; Narisawa, S.; Lemire, I.; Loisel, T.P.; Boileau, G.; Leonard, P.; Gramatikova, S.; Terkeltaub, R.; Camacho, N.P.; McKee, M.D.; Crine, P.; Whyte, M.P. Enzyme replacement therapy for murine hypophosphatasia. Journal of bone and mineral research : The official journal of the American Society for Bone and Mineral Research, 2008, 26(3), 777-787.
[339]
Nishizawa, H.; Sato, Y.; Ishikawa, M.; Arakawa, Y.; Iijima, M.; Akiyama, T.; Takano, K.; Watanabe, A.; Kosho, T. Marked motor function improvement in a 32-year-old woman with childhood-onset hypophosphatasia by asfotase alfa therapy: Evaluation based on standardized testing batteries used in Duchenne muscular dystrophy clinical trials. Mol. Genet. Metab. Rep., 2020, 25.