Generic placeholder image

Current Cancer Therapy Reviews

Editor-in-Chief

ISSN (Print): 1573-3947
ISSN (Online): 1875-6301

Review Article

Therapeutic Application of Melatonin in the Treatment of Melanoma: A Review

Author(s): Iman Fatemi, Ehsan Dehdashtian, Mohammad H. Pourhanifeh, Saeed Mehrzadi and Azam Hosseinzadeh*

Volume 17, Issue 4, 2021

Published on: 10 June, 2021

Page: [283 - 291] Pages: 9

DOI: 10.2174/1573394717666210526140950

Price: $65

Abstract

Melanoma is an aggressive type of skin cancer, which is responsible for more deaths than nonmelanoma skin cancers. Therapeutic strategies include targeted therapy, biochemotherapy, immunotherapy, photodynamic therapy, chemotherapy, and surgical resection. Depending on the clinical stage, single or combination therapy may be used to prevent and treat cancer. Due to resistance development during treatment courses, the efficacy of mentioned therapies can be reduced. In addition to resistance, these treatments have serious side effects for melanoma patients. According to available reports, melatonin, a pineal indolamine with a wide spectrum of biological potentials, has anticancer features. Furthermore, melatonin could protect against chemotherapy- and radiation- induced adverse events and can sensitize cancer cells to therapy. The present review discusses the therapeutic application of melatonin in the treatment of melanoma. This review was carried out in PubMed, Web of Science, and Scopus databases comprising the date of publication period from January 1976 to March 2021.

Keywords: Melanoma, melatonin, skin cancer, apoptosis, inflammation, oxidative stress.

Graphical Abstract
[1]
Erdei E, Torres SM. A new understanding in the epidemiology of melanoma. Expert Rev Anticancer Ther 2010; 10(11): 1811-23.
[http://dx.doi.org/10.1586/era.10.170] [PMID: 21080806]
[2]
Erdmann F, Lortet-Tieulent J, Schüz J, et al. International trends in the incidence of malignant melanoma 1953-2008-are recent generations at higher or lower risk? Int J Cancer 2013; 132(2): 385-400.
[http://dx.doi.org/10.1002/ijc.27616] [PMID: 22532371]
[3]
Langley A, Levesque L, Baetz T, Asai Y. Brief report: Increase in melanoma incidence in Ontario. J Cutan Med Surg 2018; 22(5): 476-8.
[http://dx.doi.org/10.1177/1203475418773360] [PMID: 29716393]
[4]
Russo A, Ficili B, Candido S, et al. Emerging targeted therapies for melanoma treatment (review). Int J Oncol 2014; 45(2): 516-24.
[http://dx.doi.org/10.3892/ijo.2014.2481] [PMID: 24899250]
[5]
Akabane H, Sullivan RJ. The future of molecular analysis in melanoma: Diagnostics to direct molecularly targeted therapy. Am J Clin Dermatol 2016; 17(1): 1-10.
[http://dx.doi.org/10.1007/s40257-015-0159-z] [PMID: 26518880]
[6]
Miller AJ, Mihm MC Jr. Melanoma. N Engl J Med 2006; 355(1): 51-65.
[http://dx.doi.org/10.1056/NEJMra052166] [PMID: 16822996]
[7]
Macchi MM, Bruce JN. Human pineal physiology and functional significance of melatonin. Front Neuroendocrinol 2004; 25(3-4): 177-95.
[http://dx.doi.org/10.1016/j.yfrne.2004.08.001] [PMID: 15589268]
[8]
Hosseinzadeh A, Kamrava SK, Moore BCJ, et al. Molecular aspects of melatonin treatment in tinnitus: A review. Curr Drug Targets 2019; 20(11): 1112-28.
[http://dx.doi.org/10.2174/1389450120666190319162147] [PMID: 30892162]
[9]
Skwarlo-Sonta K. Melatonin in immunity: Comparative aspects. Neuroendocrinol Lett 2002; 23(Suppl. 1): 61-6.
[PMID: 12019354]
[10]
Mehrzadi S, Hemati K, Reiter RJ, Hosseinzadeh A. Mitochondrial dysfunction in age-related macular degeneration: Melatonin as a potential treatment. Expert Opin Ther Targets 2020; 24(4): 359-78.
[http://dx.doi.org/10.1080/14728222.2020.1737015] [PMID: 32116056]
[11]
Mehrzadi MH, Hosseinzadeh A, Juybari KB, Mehrzadi S. Melatonin and urological cancers: A new therapeutic approach. Cancer Cell Int 2020; 20(1): 444.
[http://dx.doi.org/10.1186/s12935-020-01531-1] [PMID: 32943992]
[12]
Ordoñez R, Carbajo-Pescador S, Prieto-Dominguez N, García- Palomo A, González-Gallego J, Mauriz JL. Inhibition of matrix metalloproteinase-9 and nuclear factor kappa B contribute to melatonin prevention of motility and invasiveness in HepG2 liver cancer cells. J Pineal Res 2014; 56(1): 20-30.
[http://dx.doi.org/10.1111/jpi.12092] [PMID: 24117795]
[13]
Pourhanifeh MH, Mahdavinia M, Reiter RJ, Asemi Z. Potential use of melatonin in skin cancer treatment: A review of current biological evidence. J Cell Physiol 2019; 234(8): 12142-8.
[http://dx.doi.org/10.1002/jcp.28129] [PMID: 30618091]
[14]
Kanitakis J. Anatomy, histology and immunohistochemistry of normal human skin. Eur J Dermatol 2002; 12(4): 390-9.
[PMID: 12095893]
[15]
Koh HK, Geller AC, Miller DR, Grossbart TA, Lew RA. Prevention and early detection strategies for melanoma and skin cancer. Current status. Arch Dermatol 1996; 132(4): 436-43.
[http://dx.doi.org/10.1001/archderm.1996.03890280098014] [PMID: 8629848]
[16]
Lin JY, Fisher DE. Melanocyte biology and skin pigmentation. Nature 2007; 445(7130): 843-50.
[http://dx.doi.org/10.1038/nature05660] [PMID: 17314970]
[17]
Lawrence MS, Stojanov P, Polak P, et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 2013; 499(7457): 214-8.
[http://dx.doi.org/10.1038/nature12213] [PMID: 23770567]
[18]
Sample A, He YY. Mechanisms and prevention of UV-induced melanoma. Photodermatol Photoimmunol Photomed 2018; 34(1): 13-24.
[http://dx.doi.org/10.1111/phpp.12329] [PMID: 28703311]
[19]
Viros A, Sanchez-Laorden B, Pedersen M, et al. Ultraviolet radiation accelerates BRAF-driven melanomagenesis by targeting TP53. Nature 2014; 511(7510): 478-82.
[http://dx.doi.org/10.1038/nature13298] [PMID: 24919155]
[20]
Hodis E, Watson IR, Kryukov GV, et al. A landscape of driver mutations in melanoma. Cell 2012; 150(2): 251-63.
[http://dx.doi.org/10.1016/j.cell.2012.06.024] [PMID: 22817889]
[21]
Melamed RD, Aydin IT, Rajan GS, et al. Genomic characterization of dysplastic nevi unveils implications for diagnosis of melanoma. J Invest Dermatol 2017; 137(4): 905-9.
[http://dx.doi.org/10.1016/j.jid.2016.11.017] [PMID: 27890785]
[22]
Luo C, Sheng J, Hu MG, et al. Loss of ARF sensitizes transgenic BRAFV600E mice to UV-induced melanoma via suppression of XPC. Cancer Res 2013; 73(14): 4337-48.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-4454] [PMID: 23650282]
[23]
Xia J, Jia P, Hutchinson KE, et al. A meta-analysis of somatic mutations from next generation sequencing of 241 melanomas: A road map for the study of genes with potential clinical relevance. Mol Cancer Ther 2014; 13(7): 1918-28.
[http://dx.doi.org/10.1158/1535-7163.MCT-13-0804] [PMID: 24755198]
[24]
Bradford PT, Goldstein AM, Tamura D, et al. Cancer and neurologic degeneration in xeroderma pigmentosum: Long term follow-up characterises the role of DNA repair. J Med Genet 2011; 48(3): 168-76.
[http://dx.doi.org/10.1136/jmg.2010.083022] [PMID: 21097776]
[25]
Budden T, Davey RJ, Vilain RE, et al. Repair of UVB-induced DNA damage is reduced in melanoma due to low XPC and global genome repair. Oncotarget 2016; 7(38): 60940-53.
[http://dx.doi.org/10.18632/oncotarget.10902] [PMID: 27487145]
[26]
Shah P, He YY. Molecular regulation of UV-induced DNA repair. Photochem Photobiol 2015; 91(2): 254-64.
[http://dx.doi.org/10.1111/php.12406] [PMID: 25534312]
[27]
Xie X, White EP, Mehnert JM. Coordinate autophagy and mTOR pathway inhibition enhances cell death in melanoma. PLoS One 2013; 8(1): e55096.
[http://dx.doi.org/10.1371/journal.pone.0055096] [PMID: 23383069]
[28]
Ma X-H, Piao S, Wang D, et al. Measurements of tumor cell autophagy predict invasiveness, resistance to chemotherapy, and survival in melanoma. Clin Cancer Res 2011; 17(10): 3478-89.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-2372] [PMID: 21325076]
[29]
Lazova R, Camp RL, Klump V, Siddiqui SF, Amaravadi RK, Pawelek JM. Punctate LC3B expression is a common feature of solid tumors and associated with proliferation, metastasis, and poor outcome. Clin Cancer Res 2012; 18(2): 370-9.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-1282] [PMID: 22080440]
[30]
Rebecca VW, Massaro RR, Fedorenko IV, et al. Inhibition of autophagy enhances the effects of the AKT inhibitor MK-2206 when combined with paclitaxel and carboplatin in BRAF wild-type melanoma. Pigment Cell Melanoma Res 2014; 27(3): 465-78.
[http://dx.doi.org/10.1111/pcmr.12227] [PMID: 24490764]
[31]
Corazzari M, Rapino F, Ciccosanti F, et al. Oncogenic BRAF induces chronic ER stress condition resulting in increased basal autophagy and apoptotic resistance of cutaneous melanoma. Cell Death Differ 2015; 22(6): 946-58.
[http://dx.doi.org/10.1038/cdd.2014.183] [PMID: 25361077]
[32]
Maddodi N, Huang W, Havighurst T, Kim K, Longley BJ, Setaluri V. Induction of autophagy and inhibition of melanoma growth In vitro and in vivo by hyperactivation of oncogenic BRAF. J Invest Dermatol 2010; 130(6): 1657-67.
[http://dx.doi.org/10.1038/jid.2010.26] [PMID: 20182446]
[33]
Xie X, Koh JY, Price S, White E, Mehnert JM. Atg7 overcomes senescence and promotes growth of BrafV600E-driven melanoma. Cancer Discov 2015; 5(4): 410-23.
[http://dx.doi.org/10.1158/2159-8290.CD-14-1473] [PMID: 25673642]
[34]
Zhao Y, Wang W, Min I, et al. BRAF V600E-dependent role of autophagy in uveal melanoma. J Cancer Res Clin Oncol 2017; 143(3): 447-55.
[http://dx.doi.org/10.1007/s00432-016-2317-y] [PMID: 27928645]
[35]
Tang DY, Ellis RA, Lovat PE. Prognostic impact of autophagy biomarkers for cutaneous melanoma. Front Oncol 2016; 6: 236.
[http://dx.doi.org/10.3389/fonc.2016.00236] [PMID: 27882308]
[36]
Liu H, He Z, von Rütte T, Yousefi S, Hunger RE, Simon H-U. Down-regulation of autophagy-related protein 5 (ATG5) contributes to the pathogenesis of early-stage cutaneous melanoma. Sci Trans Med 2013; 5(202): 202ra123-.
[37]
Miracco C, Cevenini G, Franchi A, et al. Beclin 1 and LC3 autophagic gene expression in cutaneous melanocytic lesions. Hum Pathol 2010; 41(4): 503-12.
[http://dx.doi.org/10.1016/j.humpath.2009.09.004] [PMID: 20004946]
[38]
Sivridis E, Koukourakis MI, Mendrinos SE, et al. Beclin-1 and LC3A expression in cutaneous malignant melanomas: A biphasic survival pattern for beclin-1. Melanoma Res 2011; 21(3): 188-95.
[http://dx.doi.org/10.1097/CMR.0b013e328346612c] [PMID: 21537144]
[39]
Zaidi MR, Davis S, Noonan FP, et al. Interferon-γ links ultraviolet radiation to melanomagenesis in mice. Nature 2011; 469(7331): 548-53.
[http://dx.doi.org/10.1038/nature09666] [PMID: 21248750]
[40]
Wolnicka-Glubisz A, Damsker J, Constant S, Corn S, De Fabo E, Noonan F. Deficient inflammatory response to UV radiation in neonatal mice. J Leukoc Biol 2007; 81(6): 1352-61.
[http://dx.doi.org/10.1189/jlb.1206729] [PMID: 17369492]
[41]
Bald T, Quast T, Landsberg J, et al. Ultraviolet-radiation-induced inflammation promotes angiotropism and metastasis in melanoma. Nature 2014; 507(7490): 109-13.
[http://dx.doi.org/10.1038/nature13111] [PMID: 24572365]
[42]
Senft D, Sorolla A, Dewing A, et al. ATF2 alters melanocyte response and macrophage recruitment in UV-irradiated neonatal mouse skin. Pigment Cell Melanoma Res 2015; 28(4): 481-4.
[http://dx.doi.org/10.1111/pcmr.12382] [PMID: 25963442]
[43]
Handoko HY, Rodero MP, Boyle GM, et al. UVB-induced melanocyte proliferation in neonatal mice driven by CCR2-independent recruitment of Ly6c(low)MHCII(hi) macrophages. J Invest Dermatol 2013; 133(7): 1803-12.
[http://dx.doi.org/10.1038/jid.2013.9] [PMID: 23321920]
[44]
Nasti TH, Cochran JB, Vachhani RV, et al. IL-23 inhibits melanoma development by augmenting DNA repair and modulating T cell subpopulations. J Immunol 2017; 198(2): 950-61.
[http://dx.doi.org/10.4049/jimmunol.1601455] [PMID: 28003381]
[45]
Coleman DJ, Garcia G, Hyter S, et al. Retinoid-X-receptors (α/β) in melanocytes modulate innate immune responses and differentially regulate cell survival following UV irradiation. PLoS Genet 2014; 10(5): e1004321.
[http://dx.doi.org/10.1371/journal.pgen.1004321] [PMID: 24810760]
[46]
Wittgen HG, van Kempen LC. Reactive oxygen species in melanoma and its therapeutic implications. Melanoma Res 2007; 17(6): 400-9.
[http://dx.doi.org/10.1097/CMR.0b013e3282f1d312] [PMID: 17992124]
[47]
Obrador E, Liu-Smith F, Dellinger RW, Salvador R, Meyskens FL, Estrela JM. Oxidative stress and antioxidants in the pathophysiology of malignant melanoma. Biol Chem 2019; 400(5): 589-612.
[http://dx.doi.org/10.1515/hsz-2018-0327] [PMID: 30352021]
[48]
Meierjohann S. Oxidative stress in melanocyte senescence and melanoma transformation. Eur J Cell Biol 2014; 93(1-2): 36-41.
[http://dx.doi.org/10.1016/j.ejcb.2013.11.005] [PMID: 24342719]
[49]
Denat L, Kadekaro AL, Marrot L, Leachman SA, Abdel-Malek ZA. Melanocytes as instigators and victims of oxidative stress. J Invest Dermatol 2014; 134(6): 1512-8.
[http://dx.doi.org/10.1038/jid.2014.65] [PMID: 24573173]
[50]
Landi MT, Bauer J, Pfeiffer RM, et al. MC1R germline variants confer risk for BRAF-mutant melanoma. Science 2006; 313(5786): 521-2.
[http://dx.doi.org/10.1126/science.1127515] [PMID: 16809487]
[51]
Jenkins NC, Liu T, Cassidy P, et al. The p16(INK4A) tumor suppressor regulates cellular oxidative stress. Oncogene 2011; 30(3): 265-74.
[http://dx.doi.org/10.1038/onc.2010.419] [PMID: 20838381]
[52]
Reichrath J. Reichrath, Albright Sunlight, vitamin D and skin cancer. Springer 2008.
[http://dx.doi.org/10.1007/978-0-387-77574-6]
[53]
Pourhanifeh MH, Mehrzadi S, Kamali M, Hosseinzadeh A. Melatonin and gastrointestinal cancers: Current evidence based on underlying signaling pathways. Eur J Pharmacol 2020; 886: 173471.
[http://dx.doi.org/10.1016/j.ejphar.2020.173471] [PMID: 32877658]
[54]
Hemati K, Amini Kadijani A, Sayehmiri F, et al. Melatonin in the treatment of fibromyalgia symptoms: A systematic review. Complement Ther Clin Pract 2020; 38: 101072.
[http://dx.doi.org/10.1016/j.ctcp.2019.101072] [PMID: 31783341]
[55]
Daryani A, Montazeri M, Pagheh AS, et al. The potential use of melatonin to treat protozoan parasitic infections: A review. Biomed Pharmacother 2018; 97: 948-57.
[http://dx.doi.org/10.1016/j.biopha.2017.11.007] [PMID: 29136773]
[56]
Mehrzadi S, Karimi MY, Fatemi A, Reiter RJ, Hosseinzadeh A. SARS-CoV-2 and other coronaviruses negatively influence mitochondrial quality control: Beneficial effects of melatonin. Pharmacol Ther 2021; 224: 107825.
[http://dx.doi.org/10.1016/j.pharmthera.2021.107825] [PMID: 33662449]
[57]
Shahriari M, Mehrzadi S, Naseripour M, et al. Beneficial effects of melatonin and atorvastatin on retinopathy in streptozocin-induced diabetic rats. Curr Drug Ther 2020; 15(4): 396-403.
[http://dx.doi.org/10.2174/1574885514666191204104925]
[58]
Dehdashtian E, Pourhanifeh MH, Hemati K, Mehrzadi S, Hosseinzadeh A. Therapeutic application of nutraceuticals in diabetic nephropathy: Current evidence and future implications. Diabetes Metab Res Rev 2020; 36(8): e3336.
[http://dx.doi.org/10.1002/dmrr.3336] [PMID: 32415805]
[59]
Hemati K, Pourhanifeh MH, Dehdashtian E, et al. Melatonin and morphine: Potential beneficial effects of co-use. Fundam Clin Pharmacol 2021; 35(1): 25-39.
[http://dx.doi.org/10.1111/fcp.12566] [PMID: 32415694]
[60]
Pourhanifeh MH, Dehdashtian E, Hosseinzadeh A, Sezavar SH, Mehrzadi S. Clinical application of melatonin in the treatment of cardiovascular diseases: Current Evidence and new insights into the cardioprotective and cardiotherapeutic properties. Cardiovasc Drugs Ther 2020. [Epub ahead of print
[http://dx.doi.org/10.1007/s10557-020-07052-3] [PMID: 32926271]
[61]
Giglia-Mari G, Zotter A, Vermeulen W. DNA damage response. Cold Spring Harb Perspect Biol 2011; 3(1): a000745.
[http://dx.doi.org/10.1101/cshperspect.a000745] [PMID: 20980439]
[62]
Reinhardt HC, Schumacher B. The p53 network: Cellular and systemic DNA damage responses in aging and cancer. Trends Genet 2012; 28(3): 128-36.
[http://dx.doi.org/10.1016/j.tig.2011.12.002] [PMID: 22265392]
[63]
Farhood B, Goradel NH, Mortezaee K, Khanlarkhani N, Najafi M, Sahebkar A. Melatonin and cancer: From the promotion of genomic stability to use in cancer treatment. J Cell Physiol 2019; 234(5): 5613-27.
[http://dx.doi.org/10.1002/jcp.27391] [PMID: 30238978]
[64]
Majidinia M, Sadeghpour A, Mehrzadi S, Reiter RJ, Khatami N, Yousefi B. Melatonin: A pleiotropic molecule that modulates DNA damage response and repair pathways. J Pineal Res 2017; 63(1): e12416.
[http://dx.doi.org/10.1111/jpi.12416] [PMID: 28439991]
[65]
Santoro R, Marani M, Blandino G, Muti P, Strano S. Melatonin triggers p53Ser phosphorylation and prevents DNA damage accumulation. Oncogene 2012; 31(24): 2931-42.
[http://dx.doi.org/10.1038/onc.2011.469] [PMID: 22002314]
[66]
Kim CH, Yoo Y-M. Melatonin induces apoptotic cell death via p53 in LNCaP cells. Korean J Physiol Pharmacol 2010; 14(6): 365-9.
[http://dx.doi.org/10.4196/kjpp.2010.14.6.365] [PMID: 21311676]
[67]
Kim KJ, Choi JS, Kang I, Kim KW, Jeong CH, Jeong JW. Melatonin suppresses tumor progression by reducing angiogenesis stimulated by HIF-1 in a mouse tumor model. J Pineal Res 2013; 54(3): 264-70.
[http://dx.doi.org/10.1111/j.1600-079X.2012.01030.x] [PMID: 22924616]
[68]
Li W, Fan M, Chen Y, et al. Melatonin induces cell apoptosis in AGS cells through the activation of JNK and P38 MAPK and the suppression of nuclear factor-kappa B: A novel therapeutic implication for gastric cancer. Cell Physiol Biochem 2015; 37(6): 2323-38.
[http://dx.doi.org/10.1159/000438587] [PMID: 26645893]
[69]
Pourhanifeh MH, Mehrzadi S, Hosseinzadeh A. Melatonin and regulation of miRNAs: Novel targeted therapy for cancerous and noncancerous disease. Epigenomics 2021; 13(1): 65-81.
[http://dx.doi.org/10.2217/epi-2020-0241] [PMID: 33350862]
[70]
Gatti G, Lucini V, Dugnani S, et al. Antiproliferative and pro-apoptotic activity of melatonin analogues on melanoma and breast cancer cells. Oncotarget 2017; 8(40): 68338-53.
[http://dx.doi.org/10.18632/oncotarget.20124] [PMID: 28978121]
[71]
Galluzzi L, Kepp O, Kroemer G. Caspase-3 and prostaglandins signal for tumor regrowth in cancer therapy. Oncogene 2012; 31(23): 2805-8.
[http://dx.doi.org/10.1038/onc.2011.459] [PMID: 21963852]
[72]
Donato AL, Huang Q, Liu X, Li F, Zimmerman MA, Li C-Y. Caspase 3 promotes surviving melanoma tumor cell growth after cytotoxic therapy. J Invest Dermatol 2014; 134(6): 1686-92.
[http://dx.doi.org/10.1038/jid.2014.18] [PMID: 24434746]
[73]
Huang Q, Li F, Liu X, et al. Caspase 3-mediated stimulation of tumor cell repopulation during cancer radiotherapy. Nat Med 2011; 17(7): 860-6.
[http://dx.doi.org/10.1038/nm.2385] [PMID: 21725296]
[74]
Woo SM, Min KJ, Kwon TK. Melatonin-mediated Bim up-regulation and cyclooxygenase-2 (COX-2) down-regulation enhances tunicamycin-induced apoptosis in MDA-MB-231 cells. J Pineal Res 2015; 58(3): 310-20.
[http://dx.doi.org/10.1111/jpi.12217] [PMID: 25711465]
[75]
Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature 2000; 407(6801): 249-57.
[76]
Hicklin DJ, Ellis LM. Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol 2005; 23(5): 1011-27.
[http://dx.doi.org/10.1200/JCO.2005.06.081] [PMID: 15585754]
[77]
Pourhanifeh MH, Hosseinzadeh A, Dehdashtian E, Hemati K, Mehrzadi S. Melatonin: New insights on its therapeutic properties in diabetic complications. Diabetol Metab Syndr 2020; 12: 30.
[http://dx.doi.org/10.1186/s13098-020-00537-z] [PMID: 32280378]
[78]
Lissoni P, Rovelli F, Malugani F, Bucovec R, Conti A, Maestroni GJ. Anti-angiogenic activity of melatonin in advanced cancer patients. Neuroendocrinol Lett 2001; 22(1): 45-7.
[PMID: 11335879]
[79]
Juybari KB, Hosseinzadeh A, Ghaznavi H, et al. Melatonin as a modulator of degenerative and regenerative signaling pathways in injured retinal ganglion cells. Curr Pharm Des 2019; 25(28): 3057-73.
[http://dx.doi.org/10.2174/1381612825666190829151314] [PMID: 31465274]
[80]
Jardim-Perassi BV, Arbab AS, Ferreira LC, et al. Effect of melatonin on tumor growth and angiogenesis in xenograft model of breast cancer. PLoS One 2014; 9(1): e85311.
[http://dx.doi.org/10.1371/journal.pone.0085311] [PMID: 24416386]
[81]
Soybir G, Topuzlu C, Odabaş O, Dolay K, Bilir A, Köksoy F. The effects of melatonin on angiogenesis and wound healing. Surg Today 2003; 33(12): 896-901.
[http://dx.doi.org/10.1007/s00595-003-2621-3] [PMID: 14669079]
[82]
Słominski A, Moellmann G, Kuklinska E, Bomirski A, Pawelek J. Positive regulation of melanin pigmentation by two key substrates of the melanogenic pathway, L-tyrosine and L-dopa. J Cell Sci 1988; 89(Pt 3): 287-96.
[PMID: 3143738]
[83]
Kleszczyński K, Kim TK, Bilska B, et al. Melatonin exerts oncostatic capacity and decreases melanogenesis in human MNT-1 melanoma cells. J Pineal Res 2019; 67(4): e12610.
[http://dx.doi.org/10.1111/jpi.12610] [PMID: 31532834]
[84]
Valverde P, Benedito E, Solano F, Oaknin S, Lozano JA, García-Borrón JC. Melatonin antagonizes alpha-melanocyte-stimulating hormone enhancement of melanogenesis in mouse melanoma cells by blocking the hormone-induced accumulation of the c locus tyrosinase. Eur J Biochem 1995; 232(1): 257-63.
[http://dx.doi.org/10.1111/j.1432-1033.1995.tb20807.x] [PMID: 7556159]
[85]
Cabrera J, Negrín G, Estévez F, Loro J, Reiter RJ, Quintana J. Melatonin decreases cell proliferation and induces melanogenesis in human melanoma SK-MEL-1 cells. J Pineal Res 2010; 49(1): 45-54.
[http://dx.doi.org/10.1111/j.1600-079X.2010.00765.x] [PMID: 20459460]
[86]
Slominski A, Pruski D. Melatonin inhibits proliferation and melanogenesis in rodent melanoma cells. Exp Cell Res 1993; 206(2): 189-94.
[http://dx.doi.org/10.1006/excr.1993.1137] [PMID: 8500544]
[87]
Fell VL, Schild-Poulter C. The Ku heterodimer: Function in DNA repair and beyond. Mutat Res Rev Mutat Res 2015; 763: 15-29.
[http://dx.doi.org/10.1016/j.mrrev.2014.06.002] [PMID: 25795113]
[88]
Liu T, Jin L, Chen M, et al. Ku80 promotes melanoma growth and regulates antitumor effect of melatonin by targeting HIF1-α dependent PDK-1 signaling pathway. Redox Biol 2019; 25: 101197.
[http://dx.doi.org/10.1016/j.redox.2019.101197] [PMID: 31023624]
[89]
Kleszczyński K, Bilska B, Stegemann A, et al. Melatonin and its metabolites ameliorate UVR-induced mitochondrial oxidative stress in human MNT-1 melanoma cells. Int J Mol Sci 2018; 19(12): E3786.
[http://dx.doi.org/10.3390/ijms19123786] [PMID: 30487387]
[90]
Izykowska I, Gebarowska E, Cegielski M, et al. Effect of melatonin on melanoma cells subjected to UVA and UVB radiation in In vitro studies. in vivo (Athens, Greece) 2009; 23(5): 733-8.
[PMID: 19779108]
[91]
Kim TK, Lin Z, Tidwell WJ, Li W, Slominski AT. Melatonin and its metabolites accumulate in the human epidermis in vivo and inhibit proliferation and tyrosinase activity in epidermal melanocytes In vitro. Mol Cell Endocrinol 2015; 404: 1-8.
[http://dx.doi.org/10.1016/j.mce.2014.07.024] [PMID: 25168391]
[92]
Ying SW, Niles LP, Crocker C. Human malignant melanoma cells express high-affinity receptors for melatonin: Antiproliferative effects of melatonin and 6-chloromelatonin. Eur J Pharmacol 1993; 246(2): 89-96.
[http://dx.doi.org/10.1016/0922-4106(93)90084-M] [PMID: 8397097]
[93]
Bonmati-Carrion MA, Alvarez-Sánchez N, Hardeland R, Madrid JA, Rol MA. A comparison of B16 melanoma cells and 3T3 fibroblasts concerning cell viability and ROS production in the presence of melatonin, tested over a wide range of concentrations. Int J Mol Sci 2013; 14(2): 3901-20.
[http://dx.doi.org/10.3390/ijms14023901] [PMID: 23434670]
[94]
Yerneni LK, Jayaraman S. Pharmacological action of high doses of melatonin on B16 murine melanoma cells depends on cell number at time of exposure. Melanoma Res 2003; 13(2): 113-7.
[http://dx.doi.org/10.1097/00008390-200304000-00002] [PMID: 12690293]
[95]
Cos S, Garcia-Bolado A, Sánchez-Barceló EJ. Direct antiproliferative effects of melatonin on two metastatic cell sublines of mouse melanoma (B16BL6 and PG19). Melanoma Res 2001; 11(2): 197-201.
[http://dx.doi.org/10.1097/00008390-200104000-00016] [PMID: 11333131]
[96]
El-Domeiri AA, Das Gupta TK. The influence of pineal ablation and administration of melatonin on growth and spread of hamster melanoma. J Surg Oncol 1976; 8(3): 197-205.
[http://dx.doi.org/10.1002/jso.2930080303] [PMID: 933542]
[97]
Narita T, Kudo H. Effect of melatonin on B16 melanoma growth in athymic mice. Cancer Res 1985; 45(9): 4175-7.
[PMID: 4028009]
[98]
Otálora BB, Madrid JA, Alvarez N, Vicente V, Rol MA. Effects of exogenous melatonin and circadian synchronization on tumor progression in melanoma-bearing C57BL6 mice. J Pineal Res 2008; 44(3): 307-15.
[http://dx.doi.org/10.1111/j.1600-079X.2007.00531.x] [PMID: 18339126]
[99]
Fischer TW, Slominski A, Zmijewski MA, Reiter RJ, Paus R. Melatonin as a major skin protectant: From free radical scavenging to DNA damage repair. Exp Dermatol 2008; 17(9): 713-30.
[http://dx.doi.org/10.1111/j.1600-0625.2008.00767.x] [PMID: 18643846]
[100]
Kadekaro AL, Andrade LN, Floeter-Winter LM, et al. MT-1 melatonin receptor expression increases the antiproliferative effect of melatonin on S-91 murine melanoma cells. J Pineal Res 2004; 36(3): 204-11.
[http://dx.doi.org/10.1111/j.1600-079X.2004.00119.x] [PMID: 15009512]
[101]
Fischer TW, Zmijewski MA, Zbytek B, et al. Oncostatic effects of the indole melatonin and expression of its cytosolic and nuclear receptors in cultured human melanoma cell lines. Int J Oncol 2006; 29(3): 665-72.
[http://dx.doi.org/10.3892/ijo.29.3.665] [PMID: 16865283]
[102]
Gonzalez R, Sanchez A, Ferguson JA, et al. Melatonin therapy of advanced human malignant melanoma. Melanoma Res 1991; 1(4): 237-43.
[http://dx.doi.org/10.1097/00008390-199111000-00003] [PMID: 1823632]
[103]
Davies H, Bignell GR, Cox C, et al. Mutations of the BRAF gene in human cancer. Nature 2002; 417(6892): 949-54.
[http://dx.doi.org/10.1038/nature00766] [PMID: 12068308]
[104]
Hao J, Fan W, Li Y, et al. Melatonin synergizes BRAF-targeting agent vemurafenib in melanoma treatment by inhibiting iNOS/hTERT signaling and cancer-stem cell traits. J Exp Clin Cancer Res 2019; 38(1): 48.
[http://dx.doi.org/10.1186/s13046-019-1036-z] [PMID: 30717768]
[105]
Novik AV, Protsenko SA, Baldueva IA, et al. The first results of assessment of clinical efficacy of melatonin and metformin in patients with disseminated skin melanoma receiving dacarbazine as first-line systemic therapy. Vopr Onkol 2016; 62(2): 324-9.
[PMID: 30462431]
[106]
Lissoni P, Vaghi M, Ardizzoia A, et al. A phase II study of chemoneuroimmunotherapy with platinum, subcutaneous low-dose interleukin-2 and the pineal neurohormone melatonin (P.I.M.) as a second-line therapy in metastatic melanoma patients progressing on dacarbazine plus interferon-alpha. in vivo (Athens, Greece) 2002; 16(2): 93-6.
[PMID: 12073777]
[107]
Yi C, Zhang Y, Yu Z, et al. Melatonin enhances the anti-tumor effect of fisetin by inhibiting COX-2/iNOS and NF-κB/p300 signaling pathways. PLoS One 2014; 9(7): e99943.
[http://dx.doi.org/10.1371/journal.pone.0099943] [PMID: 25000190]
[108]
Kim HS, Kim TJ, Yoo YM. Melatonin combined with endoplasmic reticulum stress induces cell death via the PI3K/Akt/mTOR pathway in B16F10 melanoma cells. PLoS One 2014; 9(3): e92627.
[http://dx.doi.org/10.1371/journal.pone.0092627] [PMID: 24647338]
[109]
Martins Longaretti L, Luciano JA, Strapazzon G, et al. Anti-genotoxic and anti-mutagenic effects of melatonin supplementation in a mouse model of melanoma. Drug Chem Toxicol 2020; 2020: 1-8.
[http://dx.doi.org/10.1080/01480545.2020.1726380] [PMID: 32063063]
[110]
Alvarez-Artime A, Cernuda-Cernuda R, Francisco-Artime-Naveda , et al. Melatonin-induced cytoskeleton reorganization leads to inhibition of melanoma cancer cell proliferation. Int J Mol Sci 2020; 21(2): E548.
[http://dx.doi.org/10.3390/ijms21020548] [PMID: 31952224]
[111]
Perdomo J, Quintana C, González I, et al. Melatonin induces melanogenesis in human SK-MEL-1 melanoma cells involving Glycogen Synthase Kinase-3 and reactive oxygen species. Int J Mol Sci 2020; 21(14): E4970.
[http://dx.doi.org/10.3390/ijms21144970] [PMID: 32674468]
[112]
Bilska B, Schedel F, Piotrowska A, et al. Mitochondrial function is controlled by melatonin and its metabolites In vitro in human melanoma cells. J Pineal Res 2021; 70(3): e12728.
[http://dx.doi.org/10.1111/jpi.12728] [PMID: 33650175]
[113]
Kleszczyński K, Böhm M. Can melatonin and its metabolites boost the efficacy of targeted therapy in patients with advanced melanoma? Exp Dermatol 2020; 29(9): 860-3.
[http://dx.doi.org/10.1111/exd.14144] [PMID: 32632950]
[114]
Lissoni P, Brivio O, Brivio F, et al. Adjuvant therapy with the pineal hormone melatonin in patients with lymph node relapse due to malignant melanoma. J Pineal Res 1996; 21(4): 239-42.
[http://dx.doi.org/10.1111/j.1600-079X.1996.tb00292.x] [PMID: 8989723]
[115]
Helton RA, Harrison WA, Kelley K, Kane MA. Melatonin interactions with cultured murine B16 melanoma cells. Melanoma Res 1993; 3(6): 403-13.
[http://dx.doi.org/10.1097/00008390-199311000-00003] [PMID: 8161880]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy