Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Current Frontiers

Development of Allosteric Modulators of Voltage-Gated Na+ Channels: A Novel Approach for an Old Target

Author(s): Nolan M. Dvorak, Paul A. Wadsworth, Pingyuan Wang, Jia Zhou and Fernanda Laezza*

Volume 21, Issue 10, 2021

Page: [841 - 848] Pages: 8

DOI: 10.2174/1568026621666210525105359

Price: $65

Abstract

Given their primacy in governing the action potential (AP) of excitable cells, voltage-gated Na+ (Nav) channels are important pharmacological targets of therapeutics for a diverse array of clinical indications. Despite historically being a traditional drug target, therapeutics targeting Nav channels lack isoform selectivity, giving rise to off-target side effects. To develop isoform-selective modulators of Nav channels with improved target-specificity, the identification and pharmacological targeting of allosteric sites that display structural divergence among Nav channel isoforms represents an attractive approach. Despite the high homology among Nav channel α subunit isoforms (Nav1.1-Nav1.9), there is considerable amino acid sequence divergence among their constituent C-terminal domains (CTD), which enables structurally and functionally specific protein: protein interactions (PPI) with auxiliary proteins. Although pharmacological targeting of such PPI interfaces between the CTDs of Nav channels and auxiliary proteins represents an innovate approach for developing isoform-selective modulators of Nav channels, appreciable modulation of PPIs using small molecules has conventionally been difficult to achieve. After briefly discussing the challenges of modulating PPIs using small molecules, this current frontier review that follows subsequently expounds on approaches for circumventing such difficulties in the context of developing small molecule modulators of PPIs between transmembrane ion channels and their auxiliary proteins. In addition to broadly discussing such approaches, the implementation of such approaches is specifically discussed in the context of developing small molecule modulators between the CTD of Nav channels and auxiliary proteins. Developing allosteric modulators of ion channels by targeting their PPI interfaces with auxiliary proteins represents an innovative and promising strategy in ion channel drug discovery that could expand the “druggable genome” and usher in first-in-class PPI-targeting therapeutics for a multitude of channelopathies.

Keywords: Sodium channels, Selectivity, Protein:protein interaction, Allosteric modulators, Channelopathies, Drug discovery.

Next »
Graphical Abstract
[1]
Catterall, W.A. Forty years of sodium channels: Structure, function, pharmacology, and epilepsy. Neurochem. Res., 2017, 42(9), 2495-2504.
[http://dx.doi.org/10.1007/s11064-017-2314-9] [PMID: 28589518]
[2]
Pitt, G.S.; Lee, S-Y. Current view on regulation of voltage-gated sodium channels by calcium and auxiliary proteins. Protein Sci., 2016, 25(9), 1573-1584.
[http://dx.doi.org/10.1002/pro.2960] [PMID: 27262167]
[3]
White, H.V.; Brown, S.T.; Bozza, T.C.; Raman, I.M. Effects of FGF14 and NaVβ4 deletion on transient and resurgent Na current in cerebellar purkinje neurons. J. Gen. Physiol., 2019, 151(11), 1300-1318.
[http://dx.doi.org/10.1085/jgp.201912390] [PMID: 31558566]
[4]
Lewis, A.H.; Raman, I.M. Resurgent current of voltage-gated Na(+) channels. J. Physiol., 2014, 592(22), 4825-4838.
[http://dx.doi.org/10.1113/jphysiol.2014.277582] [PMID: 25172941]
[5]
Wang, Q.; McEwen, D.G.; Ornitz, D.M. Subcellular and developmental expression of alternatively spliced forms of fibroblast growth factor 14. Mech. Dev., 2000, 90(2), 283-287.
[http://dx.doi.org/10.1016/S0925-4773(99)00241-5] [PMID: 10640713]
[6]
Gade, A.R.; Marx, S.O.; Pitt, G.S. An interaction between the III-IV linker and CTD in NaV1.5 confers regulation of inactivation by CaM and FHF. J. Gen. Physiol., 2020, 152(2), e201912434.
[http://dx.doi.org/10.1085/jgp.201912434] [PMID: 31865383]
[7]
Tseng, T-T.; McMahon, A.M.; Johnson, V.T.; Mangubat, E.Z.; Zahm, R.J.; Pacold, M.E.; Jakobsson, E. Sodium channel auxiliary subunits. J. Mol. Microbiol. Biotechnol., 2007, 12(3-4), 249-262.
[http://dx.doi.org/10.1159/000099646] [PMID: 17587873]
[8]
Goetz, R.; Dover, K.; Laezza, F.; Shtraizent, N.; Huang, X.; Tchetchik, D.; Eliseenkova, A.V.; Xu, C-F.; Neubert, T.A.; Ornitz, D.M.; Goldfarb, M.; Mohammadi, M. Crystal structure of a fibroblast growth factor homologous factor (FHF) defines a conserved surface on FHFs for binding and modulation of voltage-gated sodium channels. J. Biol. Chem., 2009, 284(26), 17883-17896.
[http://dx.doi.org/10.1074/jbc.M109.001842] [PMID: 19406745]
[9]
Goldfarb, M.; Schoorlemmer, J.; Williams, A.; Diwakar, S.; Wang, Q.; Huang, X.; Giza, J.; Tchetchik, D.; Kelley, K.; Vega, A.; Matthews, G.; Rossi, P.; Ornitz, D.M.; D’Angelo, E. Fibroblast growth factor homologous factors control neuronal excitability through modulation of voltage-gated sodium channels. Neuron, 2007, 55(3), 449-463.
[http://dx.doi.org/10.1016/j.neuron.2007.07.006] [PMID: 17678857]
[10]
Wang, C.; Wang, C.; Hoch, E.G.; Pitt, G.S. Identification of novel interaction sites that determine specificity between fibroblast growth factor homologous factors and voltage-gated sodium channels. J. Biol. Chem., 2011, 286(27), 24253-24263.
[http://dx.doi.org/10.1074/jbc.M111.245803] [PMID: 21566136]
[11]
Yan, H.; Wang, C.; Marx, S.O.; Pitt, G.S. Calmodulin limits pathogenic Na+ channel persistent current. J. Gen. Physiol., 2017, 149(2), 277-293.
[http://dx.doi.org/10.1085/jgp.201611721] [PMID: 28087622]
[12]
Laezza, F.; Lampert, A.; Kozel, M.A.; Gerber, B.R.; Rush, A.M.; Nerbonne, J.M.; Waxman, S.G.; Dib-Hajj, S.D.; Ornitz, D.M. FGF14 N-terminal splice variants differentially modulate Nav1.2 and Nav1.6-encoded sodium channels. Mol. Cell. Neurosci., 2009, 42(2), 90-101.
[http://dx.doi.org/10.1016/j.mcn.2009.05.007] [PMID: 19465131]
[13]
Laezza, F.; Gerber, B.R.; Lou, J-Y.; Kozel, M.A.; Hartman, H.; Craig, A.M.; Ornitz, D.M.; Nerbonne, J.M. The FGF14(F145S) mutation disrupts the interaction of FGF14 with voltage-gated Na+ channels and impairs neuronal excitability. J. Neurosci., 2007, 27(44), 12033-12044.
[http://dx.doi.org/10.1523/JNEUROSCI.2282-07.2007] [PMID: 17978045]
[14]
Lou, J-Y.; Laezza, F.; Gerber, B.R.; Xiao, M.; Yamada, K.A.; Hartmann, H.; Craig, A.M.; Nerbonne, J.M.; Ornitz, D.M. Fibroblast growth factor 14 is an intracellular modulator of voltage-gated sodium channels. J. Physiol., 2005, 569(Pt 1), 179-193.
[http://dx.doi.org/10.1113/jphysiol.2005.097220] [PMID: 16166153]
[15]
Effraim, P.R.; Huang, J.; Lampert, A.; Stamboulian, S.; Zhao, P.; Black, J.A.; Dib-Hajj, S.D.; Waxman, S.G. Fibroblast growth factor homologous factor 2 (FGF-13) associates with Nav1.7 in DRG neurons and alters its current properties in an isoform-dependent manner. Neurobiol Pain, 2019, 6, 100029.
[http://dx.doi.org/10.1016/j.ynpai.2019.100029] [PMID: 31223136]
[16]
Jones, S.; Thornton, J.M. Principles of protein-protein interactions. Proc. Natl. Acad. Sci. USA, 1996, 93(1), 13-20.
[http://dx.doi.org/10.1073/pnas.93.1.13] [PMID: 8552589]
[17]
Pelay-Gimeno, M.; Glas, A.; Koch, O.; Grossmann, T.N. Structure-based design of inhibitors of protein-protein interactions: Mimicking peptide binding epitopes. Angew. Chem. Int. Ed. Engl., 2015, 54(31), 8896-8927.
[http://dx.doi.org/10.1002/anie.201412070] [PMID: 26119925]
[18]
Arkin, M.R.; Wells, J.A. Small-molecule inhibitors of protein-protein interactions: Progressing towards the dream. Nat. Rev. Drug Discov., 2004, 3(4), 301-317.
[http://dx.doi.org/10.1038/nrd1343] [PMID: 15060526]
[19]
Wells, J.A. Systematic mutational analyses of protein-protein interfaces. Methods Enzymol., 1991, 202, 390-411.
[http://dx.doi.org/10.1016/0076-6879(91)02020-A] [PMID: 1723781]
[20]
Whitty, A.; Kumaravel, G. Between a rock and a hard place? Nat. Chem. Biol., 2006, 2(3), 112-118.
[http://dx.doi.org/10.1038/nchembio0306-112] [PMID: 16484997]
[21]
Koes, D.R.; Camacho, C.J. Small-molecule inhibitor starting points learned from protein-protein interaction inhibitor structure. Bioinformatics, 2012, 28(6), 784-791.
[http://dx.doi.org/10.1093/bioinformatics/btr717] [PMID: 22210869]
[22]
London, N.; Raveh, B.; Schueler-Furman, O. Druggable protein-protein interactions-from hot spots to hot segments. Curr. Opin. Chem. Biol., 2013, 17(6), 952-959.
[http://dx.doi.org/10.1016/j.cbpa.2013.10.011] [PMID: 24183815]
[23]
London, N.; Raveh, B.; Movshovitz-Attias, D.; Schueler-Furman, O. Can self-inhibitory peptides be derived from the interfaces of globular protein-protein interactions? Proteins, 2010, 78(15), 3140-3149.
[http://dx.doi.org/10.1002/prot.22785] [PMID: 20607702]
[24]
Koes, D. R.; Camacho, C. J. PocketQuery: Protein-protein interaction inhibitor starting points from protein-protein interaction structure. Nucleic Acids Res, 2012, 40(Web Server issue), W387-W392.
[25]
Lyskov, S.; Gray, J. J. The rosettadock server for local protein-protein docking. Nucleic Acids Res, 2008, 36(Web Server issue), W233-W238.
[http://dx.doi.org/10.1093/nar/gkn216]
[26]
Wang, Y.; Gallagher, E.; Jorgensen, C.; Troendle, E.P.; Hu, D.; Searson, P.C.; Ulmschneider, M.B. An experimentally validated approach to calculate the blood-brain barrier permeability of small molecules. Sci. Rep., 2019, 9(1), 6117.
[http://dx.doi.org/10.1038/s41598-019-42272-0] [PMID: 30992465]
[27]
Li, T.; Chen, J. Voltage-gated sodium channels in drug discovery. IntechOpen, 2018.
[http://dx.doi.org/10.5772/intechopen.78256]
[28]
Focken, T.; Burford, K.; Grimwood, M.E.; Zenova, A.; Andrez, J-C.; Gong, W.; Wilson, M.; Taron, M.; Decker, S.; Lofstrand, V.; Chowdhury, S.; Shuart, N.; Lin, S.; Goodchild, S.J.; Young, C.; Soriano, M.; Tari, P.K.; Waldbrook, M.; Nelkenbrecher, K.; Kwan, R.; Lindgren, A.; de Boer, G.; Lee, S.; Sojo, L.; DeVita, R.J.; Cohen, C.J.; Wesolowski, S.S.; Johnson, J.P., Jr; Dehnhardt, C.M.; Empfield, J.R. Identification of cns-penetrant aryl sulfonamides as isoform-selective Nav1.6 inhibitors with efficacy in mouse models of epilepsy. J. Med. Chem., 2019, 62(21), 9618-9641.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01032] [PMID: 31525968]
[29]
Catterall, W.A.; Swanson, T.M. Structural basis for pharmacology of voltage-gated sodium and calcium channels. Mol. Pharmacol., 2015, 88(1), 141-150.
[http://dx.doi.org/10.1124/mol.114.097659] [PMID: 25848093]
[30]
Catterall, W.A. From ionic currents to molecular mechanisms: The structure and function of voltage-gated sodium channels. Neuron, 2000, 26(1), 13-25.
[http://dx.doi.org/10.1016/S0896-6273(00)81133-2] [PMID: 10798388]
[31]
Changeux, J-P.; Christopoulos, A. Allosteric modulation as a unifying mechanism for receptor function and regulation. Cell, 2016, 166(5), 1084-1102.
[http://dx.doi.org/10.1016/j.cell.2016.08.015] [PMID: 27565340]
[32]
Fozzard, H.A.; Sheets, M.F.; Hanck, D.A. The sodium channel as a target for local anesthetic drugs. Front. Pharmacol., 2011, 2, 68-68.
[http://dx.doi.org/10.3389/fphar.2011.00068] [PMID: 22053156]
[33]
Lipkind, G.M.; Fozzard, H.A. Molecular model of anticonvulsant drug binding to the voltage-gated sodium channel inner pore. Mol. Pharmacol., 2010, 78(4), 631-638.
[http://dx.doi.org/10.1124/mol.110.064683] [PMID: 20643904]
[34]
Yang, L.; Dong, F.; Yang, Q.; Yang, P-F.; Wu, R.; Wu, Q-F.; Wu, D.; Li, C-L.; Zhong, Y-Q.; Lu, Y-J.; Cheng, X.; Xu, F.Q.; Chen, L.; Bao, L.; Zhang, X. FGF13 selectively regulates heat nociception by interacting with Nav1.7. Neuron, 2017, 93(4), 806-821.e9.
[http://dx.doi.org/10.1016/j.neuron.2017.01.009] [PMID: 28162808]
[35]
Liu Cj, ; Dib-Hajj, S.D.; Waxman, S.G. Fibroblast growth factor homologous factor 1B binds to the C terminus of the tetrodotoxin-resistant sodium channel rNav1.9a (NaN). J. Biol. Chem., 2001, 276(22), 18925-18933.
[http://dx.doi.org/10.1074/jbc.M101606200] [PMID: 11376006]
[36]
Liu, C.J.; Dib-Hajj, S.D.; Renganathan, M.; Cummins, T.R.; Waxman, S.G. Modulation of the cardiac sodium channel Nav1.5 by fibroblast growth factor homologous factor 1B. J. Biol. Chem., 2003, 278(2), 1029-1036.
[http://dx.doi.org/10.1074/jbc.M207074200] [PMID: 12401812]
[37]
Wittmack, E.K.; Rush, A.M.; Craner, M.J.; Goldfarb, M.; Waxman, S.G.; Dib-Hajj, S.D. Fibroblast growth factor homologous factor 2B: Association with Nav1.6 and selective colocalization at nodes of Ranvier of dorsal root axons. J. Neurosci., 2004, 24(30), 6765-6775.
[http://dx.doi.org/10.1523/JNEUROSCI.1628-04.2004] [PMID: 15282281]
[38]
Di Re, J.; Wadsworth, P.A.; Laezza, F. Intracellular fibroblast growth factor 14: Emerging risk factor for brain disorders. Front. Cell. Neurosci., 2017, 11, 103.
[http://dx.doi.org/10.3389/fncel.2017.00103] [PMID: 28469558]
[39]
Paucar, M.; Lundin, J.; Alshammari, T.; Bergendal, Å.; Lindefeldt, M.; Alshammari, M.; Solders, G.; Di Re, J.; Savitcheva, I.; Granberg, T.; Laezza, F.; Iwarsson, E.; Svenningsson, P. Broader phenotypic traits and widespread brain hypometabolism in spinocerebellar ataxia 27. J. Intern. Med., 2020, 288(1), 103-115.
[http://dx.doi.org/10.1111/joim.13052] [PMID: 32112487]
[40]
Ali, S.R.; Liu, Z.; Nenov, M.N.; Folorunso, O.; Singh, A.; Scala, F.; Chen, H.; James, T.F.; Alshammari, M.; Panova-Elektronova, N.I.; White, M.A.; Zhou, J.; Laezza, F. Functional modulation of voltage-gated sodium channels by a fgf14-based peptidomimetic. ACS Chem. Neurosci., 2018, 9(5), 976-987.
[http://dx.doi.org/10.1021/acschemneuro.7b00399] [PMID: 29359916]
[41]
Yan, H.; Pablo, J.L.; Wang, C.; Pitt, G.S. FGF14 modulates resurgent sodium current in mouse cerebellar Purkinje neurons. eLife, 2014, 3, e04193.
[http://dx.doi.org/10.7554/eLife.04193] [PMID: 25269146]
[42]
Ali, S.R.; Singh, A.K.; Laezza, F. Identification of amino acid residues in fibroblast growth factor 14 (fgf14) required for structure-function interactions with voltage-gated sodium channel nav1.6. J. Biol. Chem., 2016, 291(21), 11268-11284.
[http://dx.doi.org/10.1074/jbc.M115.703868] [PMID: 26994141]
[43]
Ali, S.; Shavkunov, A.; Panova, N.; Stoilova-McPhie, S.; Laezza, F. Modulation of the FGF14:FGF14 homodimer interaction through short peptide fragments. CNS Neurol. Disord. Drug Targets, 2014, 13(9), 1559-1570.
[http://dx.doi.org/10.2174/1871527313666141126103309] [PMID: 25426956]
[44]
Liu, Z.; Wadsworth, P.; Singh, A.K.; Chen, H.; Wang, P.; Folorunso, O.; Scaduto, P.; Ali, S.R.; Laezza, F.; Zhou, J. Identification of peptidomimetics as novel chemical probes modulating fibroblast growth factor 14 (FGF14) and voltage-gated sodium channel 1.6 (Nav1.6) protein-protein interactions. Bioorg. Med. Chem. Lett., 2019, 29(3), 413-419.
[http://dx.doi.org/10.1016/j.bmcl.2018.12.031] [PMID: 30587448]
[45]
Dvorak, N.M.; Wadsworth, P.A.; Wang, P.; Chen, H.; Zhou, J.; Laezza, F. Bidirectional modulation of the voltage-gated sodium (Nav1.6) channel by rationally designed peptidomimetics. Molecules, 2020, 25(15), 3365.
[http://dx.doi.org/10.3390/molecules25153365] [PMID: 32722255]
[46]
Wang, P.; Wadsworth, P.A.; Dvorak, N.M.; Singh, A.K.; Chen, H.; Liu, Z.; Zhou, R.; Holthauzen, L.M.F.; Zhou, J.; Laezza, F. Design, synthesis, and pharmacological evaluation of analogues derived from the plev tetrapeptide as protein-protein interaction modulators of voltage-gated sodium channel 1.6. J. Med. Chem., 2020, 63(20), 11522-11547.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00531] [PMID: 33054193]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy