Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Synthesis, Characterization, Applications, and Toxicity of Green Synthesized Nanoparticles

Author(s): João Marcos Pereira Galúcio, Sorrel Godinho Barbosa de Souza, Arthur Abinader Vasconcelos, Alan Kelbis Oliveira Lima, Kauê Santana da Costa*, Hugo de Campos Braga and Paulo Sérgio Taube*

Volume 23, Issue 3, 2022

Published on: 29 July, 2021

Page: [420 - 443] Pages: 24

DOI: 10.2174/1389201022666210521102307

Price: $65

Abstract

Nanotechnology is a cutting-edge area with numerous industrial applications. Nanoparticles are structures that have dimensions ranging from 1 – 100 nm, which significantly exhibit different mechanical, optical, electrical, and chemical properties when compared with their larger counterparts. Synthetic routes that use natural sources, such as plant extracts, honey, and microorganisms, are environmentally friendly and low-cost methods that can be used to obtain nanoparticles. These methods of synthesis generate products that are more stable and less toxic than those obtained using conventional methods. Nanoparticles formed by titanium dioxide, zinc oxide, silver, gold, and copper, as well as cellulose nanocrystals, are among the nanostructures obtained by green synthesis that have shown interesting applications in several technological industries. Several analytical techniques have also been used to analyze the size, morphology, hydrodynamics, diameter, and chemical functional groups involved in the stabilization of the nanoparticles as well as to quantify and evaluate their formation. Despite their pharmaceutical, biotechnological, cosmetic, and food applications, studies have detected their harmful effects on human health and the environment, and thus, caution must be taken in uses involving living organisms. The present review aims to present an overview of the applications, the structural properties, and the green synthesis methods that are used to obtain nanoparticles, and special attention is given to those obtained from metal ions. The review also presents the analytical methods used to analyze, quantify, and characterize these nanostructures.

Keywords: Metal nanoparticles, green synthesis, toxicity, analytical methods, nanomaterials, nanostructures.

Graphical Abstract
[1]
Magro, M.; Venerando, A.; Macone, A.; Canettieri, G.; Agostinelli, E.; Vianello, F. Nanotechnology-based strategies to develop new anticancer therapies. Biomolecules, 2020, 10(5), 735.
[http://dx.doi.org/10.3390/biom10050735] [PMID: 32397196]
[2]
Zhang, Q.; Cao, G. Nanostructured photoelectrodes for dye-sensitized solar cells. Nano Today, 2011, 6, 91-109.
[http://dx.doi.org/10.1016/j.nantod.2010.12.007]
[3]
Tripathi, S.; Sanjeevi, R.; Anuradha, J.; Chauhan, D.S.; Rathoure, A.K. Nano-bioremediation: nanotechnology and bioremediation; Biostimulation Remediation Technologies for Groundwater Contaminants, 2018, pp. 202-219.
[4]
Rana, A.; Yadav, K.; Jagadevan, S. A comprehensive review on green synthesis of nature-inspired metal nanoparticles: mechanism, application and toxicity. J. Clean. Prod., 2020, 272122880
[http://dx.doi.org/10.1016/j.jclepro.2020.122880]
[5]
Ye, J.; Helmi, S.; Teske, J.; Seidel, R. Fabrication of metal nanostructures with programmable length and patterns using a modular dna platform. Nano Lett., 2019, 19(4), 2707-2714.
[http://dx.doi.org/10.1021/acs.nanolett.9b00740] [PMID: 30887810]
[6]
Mahesh, K.V.; Singh, S.K.; Gulati, M. A comparative study of top-down and bottom-up approaches for the preparation of nanosuspensions of glipizide. Powder Technol., 2014, 256, 436-449.
[http://dx.doi.org/10.1016/j.powtec.2014.02.011]
[7]
Balasooriya, E.R.; Jayasinghe, C.D.; Jayawardena, U.A.; Ruwanthika, R.W.D.; De Silva, R.M.; Udagama, P.V.; Mendis de Silva, R.; Udagama, P.V. Honey mediated green synthesis of nanoparticles: new era of safe nanotechnology. J. Nanomater., 2017, 2017, 1-10.
[http://dx.doi.org/10.1155/2017/5919836]
[8]
Ahmad, S.; Munir, S.; Zeb, N.; Ullah, A.; Khan, B.; Ali, J.; Bilal, M.; Omer, M.; Alamzeb, M.; Salman, S.M.; Ali, S. Green nanotechnology: a review on green synthesis of silver nanoparticles - an ecofriendly approach. Int. J. Nanomedicine, 2019, 14, 5087-5107.
[http://dx.doi.org/10.2147/IJN.S200254] [PMID: 31371949]
[9]
Mohammadlou, M.; Maghsoudi, H.; Jafarizadeh-Malmiri, H. A review on green silver nanoparticles based on plants: synthesis, potential applications and eco-friendly approach. Int. Food Res. J., 2016, 23, 446-463.
[10]
Hussain, I.; Singh, N.B.; Singh, A.; Singh, H.; Singh, S.C. Green synthesis of nanoparticles and its potential application. Biotechnol. Lett., 2016, 38(4), 545-560.
[http://dx.doi.org/10.1007/s10529-015-2026-7] [PMID: 26721237]
[11]
Loo, S.C.J.; Moore, T.; Banik, B.; Alexis, F. Biomedical applications of hydroxyapatite nanoparticles. Curr. Pharm. Biotechnol., 2010, 11(4), 333-342.
[http://dx.doi.org/10.2174/138920110791233343] [PMID: 20199383]
[12]
Reverberi, A.P.; Vocciante, M.; Lunghi, E.; Pietrelli, L.; Fabiano, B. New trends in the synthesis of nanoparticles by green methods. Chem. Eng. Trans., 2017, 61, 667-672.
[13]
Liu, T.; Baek, D.R.; Kim, J.S.; Joo, S-W.; Lim, J.K. Green synthesis of silver nanoparticles with size distribution depending on reducing species in glycerol at ambient pH and temperatures. ACS Omega, 2020, 5(26), 16246-16254.
[http://dx.doi.org/10.1021/acsomega.0c02066] [PMID: 32656447]
[14]
Rasheed, T.; Bilal, M.; Iqbal, H.M.N.; Li, C. Green biosynthesis of silver nanoparticles using leaves extract of Artemisia vulgaris and their potential biomedical applications. Colloids Surf. B Biointerfaces, 2017, 158, 408-415.
[http://dx.doi.org/10.1016/j.colsurfb.2017.07.020] [PMID: 28719862]
[15]
Iravani, S. Green synthesis of metal nanoparticles using plants. Green Chem., 2011, 13, 2638-2650.
[http://dx.doi.org/10.1039/c1gc15386b]
[16]
Varadavenkatesan, T.; Selvaraj, R.; Vinayagam, R. Phyto-synthesis of silver nanoparticles from mussaenda erythrophylla leaf extract and their application in catalytic degradation of methyl orange dye. J. Mol. Liq., 2016, 221, 1063-1070.
[http://dx.doi.org/10.1016/j.molliq.2016.06.064]
[17]
Bankalgi, S.C.; Londonkar, R.L.; Madire, U.; Tukappa, N.K.A. Biosynthesis, characterization and antibacterial effect of phenolics-coated silver nanoparticles using cassia javanica l. J. Cluster Sci., 2016, 27, 1485-1497.
[http://dx.doi.org/10.1007/s10876-016-1016-9]
[18]
Swathi, N.; Sandhiya, D.; Rajeshkumar, S.; Lakshmi, T. Green synthesis of titanium dioxide nanoparticles using cassia fistula and its antibacterial activity. Int. J. Res. Pharm. Sci., 2019, 10, 856-860.
[http://dx.doi.org/10.26452/ijrps.v10i2.261]
[19]
Nasrollahzadeh, M.; Atarod, M.; Sajjadi, M.; Sajadi, S.M.; Issaabadi, Z. Plant-mediated green synthesis of nanostructures: mechanisms, characterization, and applications. Interface Science and Technology, 2019, 28, 199-322.
[20]
Li, Y.; Chen, S.M. The electrochemical properties of acetaminophen on bare glassy carbon electrode. Int. J. Electrochem. Sci., 2012, 7, 2175-2187.
[21]
Tomaszewska, E.; Soliwoda, K.; Kadziola, K.; Tkacz-Szczesna, B.; Celichowski, G.; Cichomski, M.; Szmaja, W.; Grobelny, J. Detection limits of dls and uv-vis spectroscopy in characterization of polydisperse nanoparticles colloids. J. Nanomater, 2013, 2013,
[http://dx.doi.org/10.1155/2013/313081]
[22]
Rao, L.M.; Savithramma, N. Biological synthesis of silver nanoparticles using svensonia hyderabadensis leaf extract and evaluation of their antimicrobial efficacy. J. Pharm. Sci. Res., 2011, 3, 1117-1121.
[23]
Philip, D.; Unni, C.; Aromal, S.A.; Vidhu, V.K. Murraya Koenigii leaf-assisted rapid green synthesis of silver and gold nanoparticles. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2011, 78(2), 899-904.
[http://dx.doi.org/10.1016/j.saa.2010.12.060] [PMID: 21215687]
[24]
Sapsford, K.E.; Tyner, K.M.; Dair, B.J.; Deschamps, J.R.; Medintz, I.L. Analyzing nanomaterial bioconjugates: a review of current and emerging purification and characterization techniques. Anal. Chem., 2011, 83(12), 4453-4488.
[http://dx.doi.org/10.1021/ac200853a] [PMID: 21545140]
[25]
Jans, H.; Liu, X.; Austin, L.; Maes, G.; Huo, Q. Dynamic light scattering as a powerful tool for gold nanoparticle bioconjugation and biomolecular binding studies. Anal. Chem., 2009, 81(22), 9425-9432.
[http://dx.doi.org/10.1021/ac901822w] [PMID: 19803497]
[26]
Khlebtsov, B.N.; Khlebtsov, N.G. On the measurement of gold nanoparticle sizes by the dynamic light scattering method. Colloid J., 2011, 73, 118-127.
[http://dx.doi.org/10.1134/S1061933X11010078]
[27]
Kou, T.; Jin, C.; Zhang, C.; Sun, J.; Zhang, Z. Nanoporous core-shell Cu@Cu2O nanocomposites with superior photocatalytic properties towards the degradation of methyl orange. RSC Advances, 2012, 2, 12636-12643.
[http://dx.doi.org/10.1039/c2ra21821f]
[28]
Patty, P.J.; Frisken, B.J. Direct determination of the number-weighted mean radius and polydispersity from dynamic light-scattering data. Appl. Opt., 2006, 45(10), 2209-2216.
[http://dx.doi.org/10.1364/AO.45.002209] [PMID: 16607986]
[29]
Pansare, A.V.; Kulal, D.K.; Shedge, A.A.; Patil, V.R. hsDNA groove binding, photocatalytic activity, and in vitro breast and colon cancer cell reducing function of greener SeNPs. Dalton Trans., 2016, 45(30), 12144-12155.
[http://dx.doi.org/10.1039/C6DT01457G] [PMID: 27402164]
[30]
Dieckmann, Y.; Cölfen, H.; Hofmann, H.; Petri-Fink, A. Particle size distribution measurements of manganese-doped ZnS nanoparticles. Anal. Chem., 2009, 81(10), 3889-3895.
[http://dx.doi.org/10.1021/ac900043y] [PMID: 19374425]
[31]
Popov, K.I.; Oshchepkov, M.S.; Shabanova, N.A.; Dikareva, Y.M.; Larchenko, V.E.; Koltinova, E.Y. DLS study of a phosphonate induced gypsum scale inhibition mechanism using indifferent nanodispersions as the standards for light scattering intensity comparison. Int. J. Corros. Scale Inhib., 2018, 7, 9-24.
[32]
Tantra, R.; Schulze, P.; Quincey, P. Effect of nanoparticle concentration on zeta-potential measurement results and reproducibility. Particuology, 2010, 8, 279-285.
[http://dx.doi.org/10.1016/j.partic.2010.01.003]
[33]
Roy, S.; Das, T. Plant mediated green synthesis of silver nanoparticles-a review. Int. J. Plant Biol. Res., 2015, 3, 1044-1055.
[34]
Schwegmann, H.; Feitz, A.J.; Frimmel, F.H. Influence of the zeta potential on the sorption and toxicity of iron oxide nanoparticles on S. cerevisiae and E. coli. J. Colloid Interface Sci., 2010, 347(1), 43-48.
[http://dx.doi.org/10.1016/j.jcis.2010.02.028] [PMID: 20381054]
[35]
Rabe, M.; Verdes, D.; Seeger, S. Understanding protein adsorption phenomena at solid surfaces. Adv. Colloid Interface Sci., 2011, 162(1-2), 87-106.
[http://dx.doi.org/10.1016/j.cis.2010.12.007] [PMID: 21295764]
[36]
Lin, P.C.; Lin, S.; Wang, P.C.; Sridhar, R. Techniques for physicochemical characterization of nanomaterials. Biotechnol. Adv., 2014, 32(4), 711-726.
[http://dx.doi.org/10.1016/j.biotechadv.2013.11.006] [PMID: 24252561]
[37]
Waseda, Y.; Matsubara, E.; Shinoda, K. X-Ray Diffraction crystallography: Introduction, examples and solved problems, 2011th ed.; Springer: Berlin, Germany, 2011;
[http://dx.doi.org/10.1007/978-3-642-16635-8]
[38]
Varberg, T.D.; Skakuj, K. X-Ray diffraction of intermetallic compounds: a physical chemistry laboratory experiment. J. Chem. Educ., 2015, 92, 1095-1097.
[http://dx.doi.org/10.1021/ed500804b]
[39]
Hall, B.D.; Zanchet, D.; Ugarte, D. Estimating nanoparticle size from diffraction measurements. J. Appl. Cryst., 2000, 33, 1335-1341.
[http://dx.doi.org/10.1107/S0021889800010888]
[40]
Fissan, H.; Ristig, S.; Kaminski, H.; Asbach, C.; Epple, M. Comparison of different characterization methods for nanoparticle dispersions before and after aerosolization. Anal. Methods, 2014, 6, 7324-7334.
[http://dx.doi.org/10.1039/C4AY01203H]
[41]
Hall, J.B.; Dobrovolskaia, M.A.; Patri, A.K.; McNeil, S.E. Characterization of nanoparticles for therapeutics. Nanomedicine (Lond.), 2007, 2(6), 789-803.
[http://dx.doi.org/10.2217/17435889.2.6.789] [PMID: 18095846]
[42]
Shameli, K.; Bin Ahmad, M.; Jaffar Al-Mulla, E.A.; Ibrahim, N.A.; Shabanzadeh, P.; Rustaiyan, A.; Abdollahi, Y.; Bagheri, S.; Abdolmohammadi, S.; Usman, M.S.; Zidan, M. Green biosynthesis of silver nanoparticles using Callicarpa maingayi stem bark extraction. Molecules, 2012, 17(7), 8506-8517.
[http://dx.doi.org/10.3390/molecules17078506] [PMID: 22801364]
[43]
Sadeghi, B.; Gholamhoseinpoor, F. A study on the stability and green synthesis of silver nanoparticles using Ziziphora tenuior (Zt) extract at room temperature. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 134, 310-315.
[http://dx.doi.org/10.1016/j.saa.2014.06.046] [PMID: 25022503]
[44]
Ajitha, B.; Reddy, Y.A.; Reddy, P.S. Biogenic nano-scale silver particles by Tephrosia purpurea leaf extract and their inborn antimicrobial activity. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2014, 121, 164-172.
[http://dx.doi.org/10.1016/j.saa.2013.10.077] [PMID: 24239759]
[45]
Klein, T.; Buhr, E.; Georg Frase, C. TSEM: A review of scanning electron microscopy in transmission mode and its applications. Adv. Imaging Electron Phys., 2012, 171, 297-356.
[http://dx.doi.org/10.1016/B978-0-12-394297-5.00006-4]
[46]
Suzuki, E. High-resolution scanning electron microscopy of immunogold-labelled cells by the use of thin plasma coating of osmium. J. Microsc., 2002, 208(Pt 3), 153-157.
[http://dx.doi.org/10.1046/j.1365-2818.2002.01082.x] [PMID: 12460446]
[47]
Stokes, D.J. Principles and practice of variable pressure/environmental scanning electron microscopy; VP-ESEM, 2008.
[48]
Mondal, N.K.; Chowdhury, A.; Dey, U.; Mukhopadhya, P.; Chatterjee, S.; Das, K.; Datta, J.K. Green Synthesis of Silver Nanoparticles and Its Application for Mosquito Control. Asian Pac. J. Trop. Dis., 2014, 4, S204-S210.
[http://dx.doi.org/10.1016/S2222-1808(14)60440-0]
[49]
Pyrz, W.D.; Buttrey, D.J. Particle size determination using TEM: a discussion of image acquisition and analysis for the novice microscopist. Langmuir, 2008, 24(20), 11350-11360.
[http://dx.doi.org/10.1021/la801367j] [PMID: 18729338]
[50]
Ghosh, S.; Patil, S.; Ahire, M.; Kitture, R.; Kale, S.; Pardesi, K.; Cameotra, S.S.; Bellare, J.; Dhavale, D.D.; Jabgunde, A.; Chopade, B.A. Synthesis of silver nanoparticles using Dioscorea bulbifera tuber extract and evaluation of its synergistic potential in combination with antimicrobial agents. Int. J. Nanomedicine, 2012, 7, 483-496.
[PMID: 22334779]
[51]
Joshi, M.; Bhattacharyya, A.; Ali, S.W. Characterization techniques for nanotechnology applications in textiles. Indian J. Fibre Text. Res., 2008, 33, 304-317.
[52]
Carter, C.B.; Williams, D.B. Transmission electron microscopy: diffraction, imaging, and spectrometry., 2016.
[http://dx.doi.org/10.1007/978-3-319-26651-0]
[53]
Braun, G.; Pavel, I.; Morrill, A.R.; Seferos, D.S.; Bazan, G.C.; Reich, N.O.; Moskovits, M. Chemically patterned microspheres for controlled nanoparticle assembly in the construction of SERS hot spots. J. Am. Chem. Soc., 2007, 129(25), 7760-7761.
[http://dx.doi.org/10.1021/ja072533e] [PMID: 17539645]
[54]
Tomonaga, K.; Takada, M.; Ichihara, T.; Kuroda, Y. Apoptosis in helicobacter pylori gastritis and residual gastritis after distal gastrectomy; , 2003, Vol. 50, .
[55]
Tanaka, N. Present Status and Future Prospects of Spherical Aberration Corrected TEM/STEM for Study of Nanomaterials. Science and Technology of Advanced Materials, 2008, Vol. 9,
[56]
Asoro, M.A.; Kovar, D.; Ferreira, P.J. In situ transmission electron microscopy observations of sublimation in silver nanoparticles. ACS Nano, 2013, 7(9), 7844-7852.
[http://dx.doi.org/10.1021/nn402771j] [PMID: 23941466]
[57]
Meng, Y.; Yao, C.; Xue, S.; Yang, H. Application of Fourier transform infrared (FT-IR) spectroscopy in determination of microalgal compositions. Bioresour. Technol., 2014, 151, 347-354.
[http://dx.doi.org/10.1016/j.biortech.2013.10.064] [PMID: 24262844]
[58]
Baraton, M.-I. Surface analysis of semiconducting nanoparticles by ftir spectroscopy., 2002, 165-187.
[http://dx.doi.org/10.1007/0-306-47609-6_6]
[59]
Perevedentseva, E.V.F.Y. S.; T.H., S.; Y.C., L.; C.L., C.; Karmenyan, A. V; Priezzhev, A. V; Lugovtsov, A.E. Laser-optical investigation of the effect of diamond nanoparticles on the structure and functional properties of proteins. Quantum Electron., 2011, 40, 1089-1093.
[http://dx.doi.org/10.1070/QE2010v040n12ABEH014507]
[60]
Shang, L.; Wang, Y.; Jiang, J.; Dong, S. pH-dependent protein conformational changes in albumin:gold nanoparticle bioconjugates: a spectroscopic study. Langmuir, 2007, 23(5), 2714-2721.
[http://dx.doi.org/10.1021/la062064e] [PMID: 17249699]
[61]
Strasser, P.; Koh, S.; Anniyev, T.; Greeley, J.; More, K.; Yu, C.; Liu, Z.; Kaya, S.; Nordlund, D.; Ogasawara, H.; Toney, M.F.; Nilsson, A. Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts. Nat. Chem., 2010, 2(6), 454-460.
[http://dx.doi.org/10.1038/nchem.623] [PMID: 20489713]
[62]
Kora, A.J.; Sashidhar, R.B.; Arunachalam, J. Aqueous extract of gum olibanum (boswellia serrata): a reductant and stabilizer for the biosynthesis of antibacterial silver nanoparticles. Process Biochem., 2012, 47, 1516-1520.
[http://dx.doi.org/10.1016/j.procbio.2012.06.004]
[63]
Morasso, C.; Mehn, D.; Vanna, R.; Bedoni, M.; Forvi, E.; Colombo, M.; Prosperi, D.; Gramatica, F. One-Step synthesis of star-like gold nanoparticles for surface enhanced raman spectroscopy. Mater. Chem. Phys., 2014, 143, 1215-1221.
[http://dx.doi.org/10.1016/j.matchemphys.2013.11.024]
[64]
Jaworska, A.; Malek, K. A comparison between adsorption mechanism of tricyclic antidepressants on silver nanoparticles and binding modes on receptors. Surface-enhanced Raman spectroscopy studies. J. Colloid Interface Sci., 2014, 431, 117-124.
[http://dx.doi.org/10.1016/j.jcis.2014.05.060] [PMID: 24996020]
[65]
Beckhoff, B. Kanngießer, habil. B.; Langhoff, N.; Wedell, R.; Wolff, H. Handbook of Practical X-Ray Fluorescence Analysis; Kanngießer, habil. B.; Langhoff, N.; Wedell, R.; Wolff, H. Eds.; Springer Berlin Heidelberg:; Berlin, Heidelberg, 2006.
[66]
Degueldre, C.; Favarger, P.Y.; Wold, S. Gold colloid analysis by inductively coupled plasma-mass spectrometry in a single particle mode. Anal. Chim. Acta, 2006, 555, 263-268.
[http://dx.doi.org/10.1016/j.aca.2005.09.021]
[67]
Mermet, J.M. Is it still possible, necessary and beneficial to perform research in icp-atomic emission spectrometry? J. Anal. At. Spectrom., 2005, 20, 11-16.
[http://dx.doi.org/10.1039/b416511j]
[68]
Song, J.Y.; Jang, H.K.; Kim, B.S. Biological synthesis of gold nanoparticles using magnolia kobus and diopyros kaki leaf extracts. Process Biochem., 2009, 44, 1133-1138.
[http://dx.doi.org/10.1016/j.procbio.2009.06.005]
[69]
Laborda, F.; Jiménez-Lamana, J.; Bolea, E.; Castillo, J.R. Critical considerations for the determination of nanoparticle number concentrations, size and number size distributions by single particle ICP-MS. J. Anal. At. Spectrom., 2013, 28, 1220-1232.
[http://dx.doi.org/10.1039/c3ja50100k]
[70]
Tuoriniemi, J.; Cornelis, G.; Hassellöv, M. Size discrimination and detection capabilities of single-particle ICPMS for environmental analysis of silver nanoparticles. Anal. Chem., 2012, 84(9), 3965-3972.
[http://dx.doi.org/10.1021/ac203005r] [PMID: 22483433]
[71]
Kim, S.; Choi, J.E.; Choi, J.; Chung, K.H.; Park, K.; Yi, J.; Ryu, D.Y. Oxidative stress-dependent toxicity of silver nanoparticles in human hepatoma cells. Toxicol. In Vitro, 2009, 23(6), 1076-1084.
[http://dx.doi.org/10.1016/j.tiv.2009.06.001] [PMID: 19508889]
[72]
Pal, S.; Tak, Y.K.; Song, J.M. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol., 2007, 73(6), 1712-1720.
[http://dx.doi.org/10.1128/AEM.02218-06] [PMID: 17261510]
[73]
Krishnaswamy, K.; Orsat, V. Insight into the nanodielectric properties of gold nanoparticles synthesized from maple leaf and pine needle extracts. Ind. Crops Prod., 2015, 66, 131-136.
[http://dx.doi.org/10.1016/j.indcrop.2014.12.048]
[74]
Rossi, L.M.; Fiorio, J.L.; Garcia, M.A.S.; Ferraz, C.P. Role and fate of capping ligands in colloidally prepared metal nanoparticle. Catalysts, 2018, 47, 5889-5915.
[75]
Manna, A.; Imae, T.; Aoi, K.; Okada, M.; Yogo, T. Synthesis of dendrimer-passivated noble metal nanoparticles in a polar medium: comparison of size between silver and gold particles. Chem. Mater., 2001, 13, 1674-1681.
[http://dx.doi.org/10.1021/cm000416b]
[76]
Desimoni, E.; Brunetti, B. X-Ray photoelectron spectroscopic characterization of chemically modified electrodes used as chemical sensors and biosensors: a review. Chemosensors (Basel), 2015, 3, 70-117.
[http://dx.doi.org/10.3390/chemosensors3020070]
[77]
Ray, S.; Shard, A.G. Quantitative analysis of adsorbed proteins by X-ray photoelectron spectroscopy. Anal. Chem., 2011, 83(22), 8659-8666.
[http://dx.doi.org/10.1021/ac202110x] [PMID: 21961934]
[78]
Dimiev, A.M.; Eigler, S. Graphene Oxide: Fundamentals and Applications 2016.,
[http://dx.doi.org/10.1002/9781119069447]
[79]
Acosta, E.J.; Gonzalez, S.O.; Simanek, E.E. Synthesis, characterization, and application of melamine-based dendrimers supported on silica gel. J. Polym. Sci. A Polym. Chem., 2005, 43, 168-177.
[http://dx.doi.org/10.1002/pola.20493]
[80]
Gautam, S.P.; Gupta, A.K.; Agrawal, S.; Sureka, S. Spectroscopic characterization of dendrimers. Int. J. Pharm. Pharm. Sci., 2012, 4, 77-80.
[81]
Ashida, T.; Miura, K.; Nomoto, T.; Yagi, S.; Sumida, H.; Kutluk, G.; Soda, K.; Namatame, H.; Taniguchi, M. synthesis and characterization of rh(pvp) nanoparticles studied by xps and NEXAFS. Surf. Sci., 2007, 601, 3898-3901.
[http://dx.doi.org/10.1016/j.susc.2007.04.151]
[82]
Jasuja, N.D.; Gupta, D.K.; Reza, M.; Joshi, S.C. Green Synthesis of AgNPs Stabilized with biowaste and their antimicrobial activities. Braz. J. Microbiol., 2015, 45(4), 1325-1332.
[http://dx.doi.org/10.1590/S1517-83822014000400024] [PMID: 25763037]
[83]
Hamouda, R.A.; Abd El-Mongy, M.; Eid, K.F. Comparative study between two red algae for biosynthesis silver nanoparticles capping by SDS: Insights of characterization and antibacterial activity. Microb. Pathog., 2019, 129, 224-232.
[http://dx.doi.org/10.1016/j.micpath.2019.02.016] [PMID: 30769027]
[84]
Santhoshkumar, T.; Rahuman, A.A.; Jayaseelan, C.; Rajakumar, G.; Marimuthu, S.; Kirthi, A.V.; Velayutham, K.; Thomas, J.; Venkatesan, J.; Kim, S.K. Green synthesis of titanium dioxide nanoparticles using Psidium guajava extract and its antibacterial and antioxidant properties. Asian Pac. J. Trop. Med., 2014, 7(12), 968-976.
[http://dx.doi.org/10.1016/S1995-7645(14)60171-1] [PMID: 25479626]
[85]
Taghavizadeh Yazdi, M.E.; Modarres, M.; Amiri, M.S.; Darroudi, M. Phyto-synthesis of silver nanoparticles using aerial extract of salvia leriifolia benth and evaluation of their antibacterial and photo-catalytic properties. Res. Chem. Intermed., 2019, 45, 1105-1116.
[http://dx.doi.org/10.1007/s11164-018-3666-8]
[86]
Krychowiak, M.; Grinholc, M.; Banasiuk, R.; Krauze-Baranowska, M.; Głód, D.; Kawiak, A.; Królicka, A. Combination of silver nanoparticles and Drosera binata extract as a possible alternative for antibiotic treatment of burn wound infections caused by resistant Staphylococcus aureus. PLoS One, 2014, 9(12)e115727
[http://dx.doi.org/10.1371/journal.pone.0115727] [PMID: 25551660]
[87]
Shobana, S.; Veena, S.; Sameer, S.S.M.; Swarnalakshmi, K.; Vishal, L.A. Green synthesis of silver nanoparticles using artocarpus hirsutus seed extract and its antibacterial activity. Curr. Pharm. Biotechnol., 2020, 21(10), 980-989.
[http://dx.doi.org/10.2174/1389201021666200107115849] [PMID: 31914911]
[88]
Hemlata; Meena, P.R.; Singh, A.P.; Tejavath, K.K. Biosynthesis of silver nanoparticles using cucumis prophetarum aqueous leaf extract and their antibacterial and antiproliferative activity against cancer cell lines. ACS Omega, 2020, 5(10), 5520-5528.
[http://dx.doi.org/10.1021/acsomega.0c00155] [PMID: 32201844]
[89]
Ahmad, M.Z.; Akhter, S.; Jain, G.K.; Rahman, M.; Pathan, S.A.; Ahmad, F.J.; Khar, R.K. Metallic nanoparticles: technology overview & drug delivery applications in oncology. Expert Opin. Drug Deliv., 2010, 7(8), 927-942.
[http://dx.doi.org/10.1517/17425247.2010.498473] [PMID: 20645671]
[90]
Bardania, H.; Mahmoudi, R.; Bagheri, H.; Salehpour, Z.; Fouani, M.H.; Darabian, B.; Khoramrooz, S.S.; Mousavizadeh, A.; Kowsari, M.; Moosavifard, S.E.; Christiansen, G.; Javeshghani, D.; Alipour, M.; Akrami, M. Facile preparation of a novel biogenic silver-loaded Nanofilm with intrinsic anti-bacterial and oxidant scavenging activities for wound healing. Sci. Rep., 2020, 10(1), 6129.
[http://dx.doi.org/10.1038/s41598-020-63032-5] [PMID: 32273549]
[91]
Loo, Y.Y.; Rukayadi, Y.; Nor-Khaizura, M.A.R.; Kuan, C.H.; Chieng, B.W.; Nishibuchi, M.; Radu, S. In vitro antimicrobial activity of green synthesized silver nanoparticles against selected gram-negative foodborne pathogens. Front. Microbiol., 2018, 9, 1555.
[http://dx.doi.org/10.3389/fmicb.2018.01555] [PMID: 30061871]
[92]
Nazer, S.; Andleeb, S.; Ali, S.; Gulzar, N.; Iqbal, T.; Khan, M.A.R.; Raza, A. Synergistic antibacterial efficacy of biogenic synthesized silver nanoparticles using ajuga bractosa with standard antibiotics: a study against bacterial pathogens. Curr. Pharm. Biotechnol., 2020, 21(3), 206-218.
[http://dx.doi.org/10.2174/1389201020666191001123219] [PMID: 31573882]
[93]
Arora, N.; Thangavelu, K.; Karanikolos, G.N. Bimetallic nanoparticles for antimicrobial applications. Front Chem., 2020, 8, 412.
[http://dx.doi.org/10.3389/fchem.2020.00412] [PMID: 32671014]
[94]
Panácek, A.; Kolár, M.; Vecerová, R.; Prucek, R.; Soukupová, J.; Kryštof, V.; Hamal, P.; Zbořil, R.; Kvítek, L. Antifungal activity of silver nanoparticles against Candida spp. Biomaterials, 2009, 30(31), 6333-6340.
[http://dx.doi.org/10.1016/j.biomaterials.2009.07.065] [PMID: 19698988]
[95]
Adeyemi, O.S.; Molefe, N.I.; Awakan, O.J.; Nwonuma, C.O.; Alejolowo, O.O.; Olaolu, T.; Maimako, R.F.; Suganuma, K.; Han, Y.; Kato, K. Metal nanoparticles restrict the growth of protozoan parasites.Artif. Cells Nanomed. Biotechnol., 2018, 46(sup3), S86- S94.,
[http://dx.doi.org/10.1080/21691401.2018.1489267] [PMID: 30033773]
[96]
Martínez-Zapata, D.; Santamaria, R. The damage of the Watson-Crick base pairs by nickel nanoparticles: A first-principles molecular dynamics study. Comput. Biol. Chem., 2020, 87107262
[http://dx.doi.org/10.1016/j.compbiolchem.2020.107262] [PMID: 32623022]
[97]
Wen, H.; Dan, M.; Yang, Y.; Lyu, J.; Shao, A.; Cheng, X.; Chen, L.; Xu, L. Acute toxicity and genotoxicity of silver nanoparticle in rats. PLoS One, 2017, 12(9)e0185554
[http://dx.doi.org/10.1371/journal.pone.0185554] [PMID: 28953974]
[98]
Kaiser, J.P.; Roesslein, M.; Diener, L.; Wick, P. Human health risk of ingested nanoparticles that are added as multifunctional agents to paints: an in vitro study. PLoS One, 2013, 8(12)e83215
[http://dx.doi.org/10.1371/journal.pone.0083215] [PMID: 24358264]
[99]
Choi, J.S.; Kim, R.O.; Yoon, S.; Kim, W.K. Developmental Toxicity of Zinc Oxide Nanoparticles to Zebrafish (Danio rerio): A Transcriptomic Analysis. PLoS One, 2016, 11(8)e0160763
[http://dx.doi.org/10.1371/journal.pone.0160763] [PMID: 27504894]
[100]
Canesi, L.; Ciacci, C.; Balbi, T. Interactive effects of nanoparticles with other contaminants in aquatic organisms: Friend or foe? Mar. Environ. Res., 2015, 111, 128-134.
[http://dx.doi.org/10.1016/j.marenvres.2015.03.010] [PMID: 25842999]
[101]
Ottoni, C.A.; Lima Neto, M.C.; Léo, P.; Ortolan, B.D.; Barbieri, E.; De Souza, A.O. Environmental impact of biogenic silver nanoparticles in soil and aquatic organisms. Chemosphere, 2020, 239124698
[http://dx.doi.org/10.1016/j.chemosphere.2019.124698] [PMID: 31493753]
[102]
Khosravi-Katuli, K.; Prato, E.; Lofrano, G.; Guida, M.; Vale, G.; Libralato, G. Effects of nanoparticles in species of aquaculture interest. Environ. Sci. Pollut. Res. Int., 2017, 24(21), 17326-17346.
[http://dx.doi.org/10.1007/s11356-017-9360-3] [PMID: 28597390]
[103]
Rastogi, A.; Zivcak, M.; Sytar, O.; Kalaji, H.M.; He, X.; Mbarki, S.; Brestic, M. Impact of Metal and Metal Oxide Nanoparticles on Plant: A Critical Review. Front Chem., 2017, 5, 78.
[http://dx.doi.org/10.3389/fchem.2017.00078] [PMID: 29075626]
[104]
Carnovale, C.; Bryant, G.; Shukla, R.; Bansal, V. Identifying trends in gold nanoparticle toxicity and uptake: size, shape, capping ligand, and biological corona. ACS Omega, 2019, 4, 242-256.
[http://dx.doi.org/10.1021/acsomega.8b03227]
[105]
Sun, H.; Jiang, C.; Wu, L.; Bai, X.; Zhai, S. Cytotoxicity-related bioeffects induced by nanoparticles: the role of surface chemistry. Front. Bioeng. Biotechnol., 2019, 7, 414.
[http://dx.doi.org/10.3389/fbioe.2019.00414] [PMID: 31921818]
[106]
Louro, H.; Borges, T.; Silva, M.J. Manufactured nanomaterials: new challenges for public health. Rev. Port. Saude Publica, 2013, 31, 145-157.
[107]
Buzea, C.; Pacheco, I.I.; Robbie, K. Nanomaterials and nanoparticles: sources and toxicity. Biointerphases, 2007, 2(4), MR17-MR71.
[http://dx.doi.org/10.1116/1.2815690] [PMID: 20419892]
[108]
Linkov, I.; Satterstrom, F.K.; Corey, L.M. Nanotoxicology and nanomedicine: making hard decisions. Nanomedicine Nanotechnology. Biol. Med., 2008, 4, 167-171.
[109]
Suh, W.H.; Suslick, K.S.; Stucky, G.D.; Suh, Y.H. Nanotechnology, nanotoxicology, and neuroscience. Prog. Neurobiol., 2009, 87(3), 133-170.
[http://dx.doi.org/10.1016/j.pneurobio.2008.09.009] [PMID: 18926873]
[110]
Singh, S.; Shi, T.; Duffin, R.; Albrecht, C.; van Berlo, D.; Höhr, D.; Fubini, B.; Martra, G.; Fenoglio, I.; Borm, P.J.A.; Schins, R.P.F. Endocytosis, oxidative stress and IL-8 expression in human lung epithelial cells upon treatment with fine and ultrafine TiO2: role of the specific surface area and of surface methylation of the particles. Toxicol. Appl. Pharmacol., 2007, 222(2), 141-151.
[http://dx.doi.org/10.1016/j.taap.2007.05.001] [PMID: 17599375]
[111]
Clift, M.J.D.; Rothen-Rutishauser, B.; Brown, D.M.; Duffin, R.; Donaldson, K.; Proudfoot, L.; Guy, K.; Stone, V. The impact of different nanoparticle surface chemistry and size on uptake and toxicity in a murine macrophage cell line. Toxicol. Appl. Pharmacol., 2008, 232(3), 418-427.
[http://dx.doi.org/10.1016/j.taap.2008.06.009] [PMID: 18708083]
[112]
Jiang, J.; Oberdörster, G.; Biswas, P. Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J. Nanopart. Res., 2009, 11, 77-89.
[http://dx.doi.org/10.1007/s11051-008-9446-4]
[113]
Maynard, A.D.; Warheit, D.B.; Philbert, M.A. The new toxicology of sophisticated materials: nanotoxicology and beyond. Toxicol. Sci., 2011, 120(Suppl. 1), S109-S129.
[http://dx.doi.org/10.1093/toxsci/kfq372] [PMID: 21177774]
[114]
Geiser, M.; Kreyling, W.G. Deposition and biokinetics of inhaled nanoparticles. Part. Fibre Toxicol., 2010, 7, 2.
[http://dx.doi.org/10.1186/1743-8977-7-2] [PMID: 20205860]
[115]
Hussain, S.; Boland, S.; Baeza-Squiban, A.; Hamel, R.; Thomassen, L.C.J.; Martens, J.A.; Billon-Galland, M.A.; Fleury-Feith, J.; Moisan, F.; Pairon, J.C.; Marano, F. Oxidative stress and proinflammatory effects of carbon black and titanium dioxide nanoparticles: role of particle surface area and internalized amount. Toxicology, 2009, 260(1-3), 142-149.
[http://dx.doi.org/10.1016/j.tox.2009.04.001] [PMID: 19464580]
[116]
Hebbalalu, D.; Lalley, J.; Nadagouda, M.N.; Varma, R.S. Greener Techniques for the Synthesis of Silver Nanoparticles Using Plant Extracts, Enzymes, Bacteria, Biodegradable Polymers, and Microwaves. ACS Sustain. Chem.& Eng., 2013, 1, 703-712.
[http://dx.doi.org/10.1021/sc4000362]
[117]
Huang, X.; Jain, P.K.; El-Sayed, I.H.; El-Sayed, M.A. Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicine (Lond.), 2007, 2(5), 681-693.
[http://dx.doi.org/10.2217/17435889.2.5.681] [PMID: 17976030]
[118]
Muthukrishnan, A.M. Green Synthesis of Copper-Chitosan Nanoparticles and Study of Its Antibacterial Activity. J. Nanomed. Nanotechnol, 2015, 06,
[http://dx.doi.org/10.4172/2157-7439.1000251]
[119]
Gulati, S.; Sachdeva, M.; Bhasin, K.K. Capping Agents in Nanoparticle Synthesis: Surfactant and Solvent System. AIP Conference Proceedings, 2018, Vol. 1953, 030214,
[120]
Engel, S.; Fritz, E.C.; Ravoo, B.J. New trends in the functionalization of metallic gold: from organosulfur ligands to N-heterocyclic carbenes. Chem. Soc. Rev., 2017, 46(8), 2057-2075.
[http://dx.doi.org/10.1039/C7CS00023E] [PMID: 28272608]
[121]
Cheng, L.; Li, X.; Dong, J. Size-Controlled Preparation of Gold Nanoparticles with Novel PH Responsive Gemini Amphiphiles. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2015, 3, 6334-6340.
[http://dx.doi.org/10.1039/C5TC00624D]
[122]
Nadhe, S.B.; Wadhwani, S.A.; Singh, R.; Chopade, B.A. Green Synthesis of AuNPs by Acinetobacter sp. GWRVA25: Optimization, Characterization, and Its Antioxidant Activity. Front Chem., 2020, 8, 474.
[http://dx.doi.org/10.3389/fchem.2020.00474] [PMID: 32626688]
[123]
Jain, D. Shivani; Bhojiya, A. A.; Singh, H.; Daima, H. K.; Singh, M.; Mohanty, S. R.; Stephen, B. J.; Singh, A. Microbial fabrication of zinc oxide nanoparticles and evaluation of their antimicrobial and photocatalytic properties. Front Chem., 2020, 8, 778.
[http://dx.doi.org/10.3389/fchem.2020.00778.]
[124]
Molnár, Z.; Bódai, V.; Szakacs, G.; Erdélyi, B.; Fogarassy, Z.; Sáfrán, G.; Varga, T.; Kónya, Z.; Tóth-Szeles, E.; Szűcs, R.; Lagzi, I. Green synthesis of gold nanoparticles by thermophilic filamentous fungi. Sci. Rep., 2018, 8(1), 3943.
[http://dx.doi.org/10.1038/s41598-018-22112-3] [PMID: 29500365]
[125]
Anil Kumar, S.; Abyaneh, M.K.; Gosavi, S.W.; Kulkarni, S.K.; Pasricha, R.; Ahmad, A.; Khan, M.I. Nitrate reductase-mediated synthesis of silver nanoparticles from AgNO3. Biotechnol. Lett., 2007, 29(3), 439-445.
[http://dx.doi.org/10.1007/s10529-006-9256-7] [PMID: 17237973]
[126]
Kalimuthu, K.; Suresh Babu, R.; Venkataraman, D.; Bilal, M.; Gurunathan, S. Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloids Surf. B Biointerfaces, 2008, 65(1), 150-153.
[http://dx.doi.org/10.1016/j.colsurfb.2008.02.018] [PMID: 18406112]
[127]
Durán, N.; Marcato, P.D.; Alves, O.L.; Souza, G.I.; Esposito, E. Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J. Nanobiotechnology, 2005, 3, 8.
[http://dx.doi.org/10.1186/1477-3155-3-8] [PMID: 16014167]
[128]
Kumar, C.G.; Mamidyala, S.K. Extracellular synthesis of silver nanoparticles using culture supernatant of Pseudomonas aeruginosa. Colloids Surf. B Biointerfaces, 2011, 84(2), 462-466.
[http://dx.doi.org/10.1016/j.colsurfb.2011.01.042] [PMID: 21353501]
[129]
Singh, P.K.; Kundu, S. Biosynthesis of Gold Nanoparticles Using Bacteria. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci., 2014, 84, 331-336.
[http://dx.doi.org/10.1007/s40011-013-0230-6]
[130]
Diniz do Nascimento, L.; Moraes, A.A.B.; Costa, K.S.D.; Pereira Galúcio, J.M.; Taube, P.S.; Costa, C.M.L.; Neves Cruz, J.; de Aguiar Andrade, E.H.; Faria, L.J.G. Bioactive Natural Compounds and Antioxidant Activity of Essential Oils from Spice Plants: New Findings and Potential Applications. Biomolecules, 2020, 10(7), 1-37.
[http://dx.doi.org/10.3390/biom10070988] [PMID: 32630297]
[131]
do Nascimento, L.D.; Almeida, L.Q.; de Sousa, E.M.P.; Costa, C.M.L.; da Costa, K.S.; Andrade, E.H. de A.; de Faria, L.J.G. Microwave-Assisted Extraction: An Alternative to Extract Piper Aduncum Essential Oil. Brazilian J. Dev., 2020, 6, 40619-40638.
[http://dx.doi.org/10.34117/bjdv6n6-558]
[132]
Chaves, J.O.; de Souza, M.C.; da Silva, L.C.; Lachos-Perez, D.; Torres-Mayanga, P.C.; Machado, A.P.D.F.; Forster-Carneiro, T.; Vázquez-Espinosa, M.; González-de-Peredo, A.V.; Barbero, G.F.; Rostagno, M.A. Extraction of Flavonoids From Natural Sources Using Modern Techniques. Front Chem., 2020, 8507887
[http://dx.doi.org/10.3389/fchem.2020.507887] [PMID: 33102442]
[133]
Kuppusamy, P.; Yusoff, M.M.; Maniam, G.P.; Govindan, N. Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications - An updated report. Saudi Pharm. J., 2016, 24(4), 473-484.
[http://dx.doi.org/10.1016/j.jsps.2014.11.013] [PMID: 27330378]
[134]
Mousavi, S.M.; Hashemi, S.A.; Ghasemi, Y.; Atapour, A.; Amani, A.M.; Savar Dashtaki, A.; Babapoor, A.; Arjmand, O. Green synthesis of silver nanoparticles toward bio and medical applications: review study.Artif. Cells Nanomed. Biotechnol., 2018, 46(sup3), S855-S872.,
[http://dx.doi.org/10.1080/21691401.2018.1517769] [PMID: 30328732]
[135]
Sukumar, S.; Rudrasenan, A.; Padmanabhan Nambiar, D. Green-Synthesized Rice-Shaped Copper Oxide Nanoparticles Using Caesalpinia bonducella Seed Extract and Their Applications. ACS Omega, 2020, 5(2), 1040-1051.
[http://dx.doi.org/10.1021/acsomega.9b02857] [PMID: 31984260]
[136]
Uthaman, S.; Kim, H.S.; Revuri, V.; Min, J.J.; Lee, Y.K.; Huh, K.M.; Park, I.K. Green synthesis of bioactive polysaccharide-capped gold nanoparticles for lymph node CT imaging. Carbohydr. Polym., 2018, 181, 27-33.
[http://dx.doi.org/10.1016/j.carbpol.2017.10.042] [PMID: 29253972]
[137]
Philip, D. Green Synthesis of Gold and Silver Nanoparticles Using Hibiscus Rosa Sinensis. Physica E, 2010, 42, 1417-1424.
[http://dx.doi.org/10.1016/j.physe.2009.11.081]
[138]
Fayaz, A.M.; Girilal, M.; Venkatesan, R.; Kalaichelvan, P.T. Biosynthesis of anisotropic gold nanoparticles using Maduca longifolia extract and their potential in infrared absorption. Colloids Surf. B Biointerfaces, 2011, 88(1), 287-291.
[http://dx.doi.org/10.1016/j.colsurfb.2011.07.003] [PMID: 21802261]
[139]
Jayaseelan, C.; Ramkumar, R.; Rahuman, A.A.; Perumal, P. Green Synthesis of Gold Nanoparticles Using Seed Aqueous Extract of Abelmoschus Esculentus and Its Antifungal Activity. Ind. Crops Prod., 2013, 45, 423-429.
[http://dx.doi.org/10.1016/j.indcrop.2012.12.019]
[140]
Garibo, D.; Borbón-Nuñez, H.A.; de León, J.N.D.; García Mendoza, E.; Estrada, I.; Toledano-Magaña, Y.; Tiznado, H.; Ovalle-Marroquin, M.; Soto-Ramos, A.G.; Blanco, A.; Rodríguez, J.A.; Romo, O.A.; Chávez-Almazán, L.A.; Susarrey-Arce, A. Green synthesis of silver nanoparticles using Lysiloma acapulcensis exhibit high-antimicrobial activity. Sci. Rep., 2020, 10(1), 12805.
[http://dx.doi.org/10.1038/s41598-020-69606-7] [PMID: 32732959]
[141]
Elia, P.; Zach, R.; Hazan, S.; Kolusheva, S.; Porat, Z.; Zeiri, Y. Green synthesis of gold nanoparticles using plant extracts as reducing agents. Int. J. Nanomedicine, 2014, 9, 4007-4021.
[PMID: 25187704]
[142]
Qais, F.A.; Shafiq, A.; Ahmad, I.; Husain, F.M.; Khan, R.A.; Hassan, I. Green synthesis of silver nanoparticles using Carum copticum: Assessment of its quorum sensing and biofilm inhibitory potential against gram negative bacterial pathogens. Microb. Pathog., 2020, 144104172
[http://dx.doi.org/10.1016/j.micpath.2020.104172] [PMID: 32224208]
[143]
He, Y.; Wei, F.; Ma, Z.; Zhang, H.; Yang, Q.; Yao, B.; Huang, Z.; Li, J.; Zeng, C.; Zhang, Q. Green Synthesis of Silver Nanoparticles Using Seed Extract of: Alpinia Katsumadai, and Their Antioxidant, Cytotoxicity, and Antibacterial Activities. RSC Advances, 2017, 7, 39842-39851.
[http://dx.doi.org/10.1039/C7RA05286C]
[144]
Sudha, A.; Jeyakanthan, J.; Srinivasan, P. Green Synthesis of Silver Nanoparticles Using Lippia Nodiflora Aerial Extract and Evaluation of Their Antioxidant, Antibacterial and Cytotoxic Effects. Resour. Technol., 2017, 3, 506-515.
[145]
Priya, D.D.; Roopan, S.M.; Singh, S.; Bansal, J.; Shanavas, S.; Khan, M.R.; Al-Dhabi, N.A.; Arasu, M.V.; Duraipandiyan, V. Phyto-synthesis of cuo nano-particles and its catalytic application in c-s bond formation. Mater. Lett., 2020, 266127486
[http://dx.doi.org/10.1016/j.matlet.2020.127486]
[146]
Rehana, D.; Mahendiran, D.; Kumar, R.S.; Rahiman, A.K. Evaluation of antioxidant and anticancer activity of copper oxide nanoparticles synthesized using medicinally important plant extracts. Biomed. Pharmacother., 2017, 89, 1067-1077.
[http://dx.doi.org/10.1016/j.biopha.2017.02.101] [PMID: 28292015]
[147]
Liu, Y.; Kim, S.; Kim, Y.J.; Perumalsamy, H.; Lee, S.; Hwang, E.; Yi, T.H. Green synthesis of gold nanoparticles using Euphrasia officinalisleaf extract to inhibit lipopolysaccharide-induced inflammation through NF-κB and JAK/STAT pathways in RAW 264.7 macrophages. Int. J. Nanomedicine, 2019, 14, 2945-2959.
[http://dx.doi.org/10.2147/IJN.S199781] [PMID: 31114201]
[148]
Santos, N.M.; Gomes, A.S.; Cavalcante, D.G.S.M.; Santos, L.F.; Teixeira, S.R.; Cabrera, F.C.; Job, A.E. Green synthesis of colloidal gold nanoparticles using latex from Hevea brasiliensis and evaluation of their in vitro cytotoxicity and genotoxicity. IET Nanobiotechnol., 2019, 13(3), 307-315.
[http://dx.doi.org/10.1049/iet-nbt.2018.5225] [PMID: 31053694]
[149]
Shabestarian, H.; Homayouni-Tabrizi, M.; Soltani, M.; Namvar, F.; Azizi, S.; Mohamad, R.; Shabestarian, H. Green synthesis of gold nanoparticles using sumac aqueous extract and their antioxidant activity. Mater. Res., 2017, 20, 264-270.
[http://dx.doi.org/10.1590/1980-5373-mr-2015-0694]
[150]
Taube, P.S.; Sousa Dourado, G.; Valentim Gomes, V.; Vieira Maia, M.T.; Abinader Vasconcelos, A.; Santana da Costa, K.; do Carmo Faial, K.; Santana Carneiro, B.; Trindade Vasconcelos, N. Junior determination of macro and trace element levels in honey from the lower amazonian region, Brazil. Brazilian J. Anal. Chem., 2019., 6,
[151]
Mittal, A.K.; Chisti, Y.; Banerjee, U.C. Synthesis of mtallic nanoparticles using plant extracts. Biotechnol. Adv., 2013, 31(2), 346-356.
[http://dx.doi.org/10.1016/j.biotechadv.2013.01.003.]
[152]
González Fá, A.J.; Juan, A.; Di Nezio, M.S. Synthesis and characterization of silver nanoparticles prepared with honey: The Role of Carbohydrates. Anal. Lett., 2017, 50, 877-888.
[http://dx.doi.org/10.1080/00032719.2016.1199558]
[153]
Chen, H.; Mu, S.; Fang, L.; Shen, H.; Zhang, J.; Yang, B. Polymer-assisted fabrication of gold nanoring arrays. Nano Res., 2017, 10, 3346-3357.
[http://dx.doi.org/10.1007/s12274-017-1547-x]
[154]
Slocik, J.M.; Naik, R.R.; Stone, M.O.; Wright, D.W. Viral templates for gold nanoparticle synthesis. J. Mater. Chem., 2005, 15, 749-753.
[http://dx.doi.org/10.1039/b413074j]
[155]
Kwon, K.C.; Jo, E.; Kwon, Y-W.; Lee, B.; Ryu, J.H.; Lee, E.J.; Kim, K.; Lee, J. Superparamagnetic gold nanoparticles synthesized on protein particle scaffolds for cancer theragnosis. Adv. Mater., 2017, 29(38), 29.
[http://dx.doi.org/10.1002/adma.201701146] [PMID: 28741689]
[156]
Liu, A.; Verwegen, M.; de Ruiter, M.V.; Maassen, S.J.; Traulsen, C.H-H.; Cornelissen, J.J.L.M. Protein cages as containers for gold nanoparticles. J. Phys. Chem. B, 2016, 120(26), 6352-6357.
[http://dx.doi.org/10.1021/acs.jpcb.6b03066] [PMID: 27135176]
[157]
Zhang, W.; Zhang, Z-P.; Zhang, X-E.; Li, F. Reaction inside a viral protein nanocage: mineralization on a nanoparticle seed after encapsulation via self-assembly. Nano Res., 2017, 10, 3285-3294.
[http://dx.doi.org/10.1007/s12274-017-1541-3]
[158]
Wei, G.; Zhou, H.; Liu, Z.; Song, Y.; Wang, L.; Sun, L.; Li, Z. One-step synthesis of silver nanoparticles, nanorods, and nanowires on the surface of DNA network. J. Phys. Chem. B, 2005, 109(18), 8738-8743.
[http://dx.doi.org/10.1021/jp044314a] [PMID: 16852035]
[159]
Nobbmann, U.; Morfesis, A. Light scattering and nanoparticles. Mater. Today, 2009, 12, 52-54.
[http://dx.doi.org/10.1016/S1369-7021(09)70164-6]
[160]
Zhang, X.F.; Liu, Z.G.; Shen, W.; Gurunathan, S. Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int. J. Mol. Sci., 2016, 17(9), 17.
[http://dx.doi.org/10.3390/ijms17091534] [PMID: 27649147]
[161]
Pletikapić, G.; Žutić, V.; Vinković Vrček, I.; Svetličić, V. Atomic force microscopy characterization of silver nanoparticles interactions with marine diatom cells and extracellular polymeric substance. J. Mol. Recognit., 2012, 25(5), 309-317.
[http://dx.doi.org/10.1002/jmr.2177] [PMID: 22528193]
[162]
Zanetti-Ramos, B.G.; Fritzen-Garcia, M.B.; de Oliveira, C.S.; Pasa, A.A.; Soldi, V.; Borsali, R.; Creczynski-Pasa, T.B. Dynamic LIGHT SCATTERING AND ATOMIC FORCE MICROSCOPY TECHNIQUES FOR SIZE DETERMINATION OF POLYURETHANE NANOPARTICLES. Mater. Sci. Eng. C, 2009, 29, 638-640.
[http://dx.doi.org/10.1016/j.msec.2008.10.040]
[163]
Das, B.; Dash, S.; Mandal, D.; Adhikary, J.; Chattopadhyay, S.; Tripathy, S.; Dey, A.; Manna, S.; Dey, S.; Das, D.; Roy, S. Green-synthesized silver nanoparticles kill virulent multidrug-resistant pseudomonas aeruginosa strains: a mechanistic study. BLDE Univ. J. Heal. Sci., 2016, 1, 89.
[http://dx.doi.org/10.4103/2468-838X.196087]
[164]
Sharma, R.; Bisen, D.P.; Shukla, U.; Sharma, B.G. X-Ray Diffraction: A Powerful Method of Characterizing Nanomaterials. Recent Res. Sci. Technol., 2012, 4, 77-79.
[165]
Buhr, E.; Senftleben, N.; Klein, T.; Bergmann, D.; Gnieser, D.; Frase, C.G.; Bosse, H. Characterization of Nanoparticles by Scanning Electron Microscopy in Transmission Mode. Meas. Sci. Technol., 2009,20.
[http://dx.doi.org/10.1088/0957-0233/20/8/084025]
[166]
Haider, M.; Hartel, P.; Müller, H.; Uhlemann, S.; Zach, J. Information transfer in a TEM corrected for spherical and chromatic aberration. Microsc. Microanal., 2010, 16(4), 393-408.
[http://dx.doi.org/10.1017/S1431927610013498] [PMID: 20598203]
[167]
Haugstad, G. Atomic Force Microscopy: Understanding Basic Modes and Advanced Applications. 2012.,
[http://dx.doi.org/10.1002/9781118360668]
[168]
Devaraj, P.; Kumari, P.; Aarti, C.; Renganathan, A. Synthesis and characterization of silver nanoparticles using cannonball leaves and their cytotoxic activity against mcf-7 cell line. J. Nanotechnol., 2013, 2013, 1-5.
[http://dx.doi.org/10.1155/2013/598328]
[169]
Rohman, A.; Man, Y.B.C. Fourier transform infrared (ftir) spectroscopy for analysis of extra virgin olive oil adulterated with palm oil. Food Res. Int., 2010, 43, 886-892.
[http://dx.doi.org/10.1016/j.foodres.2009.12.006]
[170]
Mansfield, E.; Tyner, K.M.; Poling, C.M.; Blacklock, J.L. Determination of nanoparticle surface coatings and nanoparticle purity using microscale thermogravimetric analysis. Anal. Chem., 2014, 86(3), 1478-1484.
[http://dx.doi.org/10.1021/ac402888v] [PMID: 24400715]
[171]
Mourdikoudis, S.; Pallares, R.M.; Thanh, N.T.K. Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties. Nanoscale, 2018, 10(27), 12871-12934.
[http://dx.doi.org/10.1039/C8NR02278J] [PMID: 29926865]
[172]
Camci, M.T.; Ulgut, B.; Kocabas, C.; Suzer, S. In-situ XPS monitoring and characterization of electrochemically prepared au nanoparticles in an ionic liquid. ACS Omega, 2017, 2(2), 478-486.
[http://dx.doi.org/10.1021/acsomega.6b00456] [PMID: 28261688]
[173]
Casaletto, M.P.; Longo, A.; Martorana, A.; Prestianni, A.; Venezia, A.M. XPS study of supported gold catalysts: the role of au0 and Au+δ species as active sites. Surf. Interface Anal., 2006, 38, 215-218.
[http://dx.doi.org/10.1002/sia.2180]
[174]
Kotcherlakota, R.; Das, S.; Patra, C.R. Therapeutic applications of green-synthesized silver nanoparticles. Green Synthesis, Characterization and Applications of Nanoparticles; Elsevier, 2019, pp. 389-428.
[http://dx.doi.org/10.1016/B978-0-08-102579-6.00017-4]
[175]
Sanvicens, N.; Marco, M.P. Multifunctional nanoparticles--properties and prospects for their use in human medicine. Trends Biotechnol., 2008, 26(8), 425-433.
[http://dx.doi.org/10.1016/j.tibtech.2008.04.005] [PMID: 18514941]
[176]
Varghese Alex, K.; Tamil Pavai, P.; Rugmini, R.; Shiva Prasad, M.; Kamakshi, K.; Sekhar, K.C. Green synthesized Ag nanoparticles for bio-sensing and photocatalytic applications. ACS Omega, 2020, 5(22), 13123-13129.
[http://dx.doi.org/10.1021/acsomega.0c01136] [PMID: 32548498]
[177]
Wang, Y.; O’Connor, D.; Shen, Z.; Lo, I.M.C.; Tsang, D.C.W.; Pehkonen, S.; Pu, S.; Hou, D. Green Synthesis of Nanoparticles for the Remediation of Contaminated Waters and Soils: Constituents, Synthesizing Methods, and Influencing Factors. J. Clean. Prod., 2019, 226, 540-549.
[http://dx.doi.org/10.1016/j.jclepro.2019.04.128]
[178]
Primo, J.O.; Bittencourt, C.; Acosta, S.; Sierra-Castillo, A.; Colomer, J-F.; Jaerger, S.; Teixeira, V.C.; Anaissi, F.J. Synthesis of Zinc Oxide Nanoparticles by Ecofriendly Routes: Adsorbent for Copper Removal From Wastewater. Front Chem., 2020, 8571790
[http://dx.doi.org/10.3389/fchem.2020.571790] [PMID: 33330360]
[179]
Khan, S.A.; Shahid, S.; Lee, C.S. Green Synthesis of Gold and Silver Nanoparticles Using Leaf Extract of Clerodendrum inerme; Characterization, Antimicrobial, and Antioxidant Activities. Biomolecules, 2020, 10(6), 835.
[http://dx.doi.org/10.3390/biom10060835] [PMID: 32486004]
[180]
Abdel-Aziz, M.S.; Shaheen, M.S.; El-Nekeety, A.A.; Abdel-Wahhab, M.A. Antioxidant and Antibacterial Activity of Silver Nanoparticles Biosynthesized Using Chenopodium Murale Leaf Extract. J. Saudi Chem. Soc., 2014, 18, 356-363.
[http://dx.doi.org/10.1016/j.jscs.2013.09.011]
[181]
Srihasam, S.; Thyagarajan, K.; Korivi, M.; Lebaka, V.R.; Mallem, S.P.R. Phytogenic Generation of NiO Nanoparticles Using Stevia Leaf Extract and Evaluation of Their In-Vitro Antioxidant and Antimicrobial Properties. Biomolecules, 2020, 10(1), 89.
[http://dx.doi.org/10.3390/biom10010089] [PMID: 31935798]
[182]
Yaqoob, S.B.; Adnan, R.; Rameez Khan, R.M.; Rashid, M. Gold, Silver, and Palladium Nanoparticles: A Chemical Tool for Biomedical Applications. Front Chem., 2020, 8, 376.
[http://dx.doi.org/10.3389/fchem.2020.00376] [PMID: 32582621]
[183]
Ismail, E.H.; Saqer, A.M.A.; Assirey, E.; Naqvi, A.; Okasha, R.M. Successful Green Synthesis of Gold Nanoparticles using a Corchorus olitorius Extract and Their Antiproliferative Effect in Cancer Cells. Int. J. Mol. Sci., 2018, 19(9), 19.
[http://dx.doi.org/10.3390/ijms19092612] [PMID: 30177647]
[184]
Picó, Y.; Barceló, D. Analysis and Prevention of Microplastics Pollution in Water: Current Perspectives and Future Directions. ACS Omega, 2019, 4(4), 6709-6719.
[http://dx.doi.org/10.1021/acsomega.9b00222] [PMID: 31459797]
[185]
Ali, N.; Bilal, M.; Khan, A.; Ali, F.; Iqbal, H.M.N. Effective exploitation of anionic, nonionic, and nanoparticle-stabilized surfactant foams for petroleum hydrocarbon contaminated soil remediation. Sci. Total Environ., 2020, 704135391
[http://dx.doi.org/10.1016/j.scitotenv.2019.135391] [PMID: 31806317]
[186]
Alabresm, A.; Chen, Y.P.; Decho, A.W.; Lead, J. A novel method for the synergistic remediation of oil-water mixtures using nanoparticles and oil-degrading bacteria. Sci. Total Environ., 2018, 630, 1292-1297.
[http://dx.doi.org/10.1016/j.scitotenv.2018.02.277] [PMID: 29554750]
[187]
Cao, X.; Alabresm, A.; Chen, Y.P.; Decho, A.W.; Lead, J. Improved metal remediation using a combined bacterial and nanoscience approach. Sci. Total Environ., 2020, 704135378
[http://dx.doi.org/10.1016/j.scitotenv.2019.135378] [PMID: 31806322]
[188]
Slavin, Y.N.; Asnis, J.; Häfeli, U.O.; Bach, H. Metal nanoparticles: understanding the mechanisms behind antibacterial activity. J. Nanobiotechnology, 2017, 15(1), 65.
[http://dx.doi.org/10.1186/s12951-017-0308-z] [PMID: 28974225]
[189]
Hamida, R.S.; Ali, M.A.; Goda, D.A.; Khalil, M.I.; Al-Zaban, M.I. Novel Biogenic Silver Nanoparticle-Induced Reactive Oxygen Species Inhibit the Biofilm Formation and Virulence Activities of Methicillin-Resistant Staphylococcus aureus (MRSA). Strain. Front. Bioeng. Biotechnol., 2020, 8, 433.
[http://dx.doi.org/10.3389/fbioe.2020.00433] [PMID: 32548095]
[190]
Matsumura, Y.; Yoshikata, K.; Kunisaki, S.; Tsuchido, T. Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate. Appl. Environ. Microbiol., 2003, 69(7), 4278-4281.
[http://dx.doi.org/10.1128/AEM.69.7.4278-4281.2003] [PMID: 12839814]
[191]
Percival, S.L.; Bowler, P.G.; Russell, D. Bacterial resistance to silver in wound care. J. Hosp. Infect., 2005, 60(1), 1-7.
[http://dx.doi.org/10.1016/j.jhin.2004.11.014] [PMID: 15823649]
[192]
Thakur, B.K.; Kumar, A.; Kumar, D. Green Synthesis of Titanium Dioxide Nanoparticles Using Azadirachta Indica Leaf Extract and Evaluation of Their Antibacterial Activity. S. Afr. J. Bot., 2019, 124, 223-227.
[http://dx.doi.org/10.1016/j.sajb.2019.05.024]
[193]
Jayaseelan, C.; Rahuman, A.A.; Roopan, S.M.; Kirthi, A.V.; Venkatesan, J.; Kim, S.K.; Iyappan, M.; Siva, C. Biological approach to synthesize TiO2 nanoparticles using Aeromonas hydrophila and its antibacterial activity. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2013, 107, 82-89.
[http://dx.doi.org/10.1016/j.saa.2012.12.083] [PMID: 23416912]
[194]
de Jesús Ruíz-Baltazar, Á.; Reyes-López, S.Y.; Larrañaga, D.; Estévez, M.; Pérez, R. Green Synthesis of Silver Nanoparticles Using a Melissa Officinalis Leaf Extract with Antibacterial Properties. Results Phys., 2017, 7, 2639-2643.
[http://dx.doi.org/10.1016/j.rinp.2017.07.044]
[195]
Rodríguez-Luis, O.E.; Hernandez-Delgadillo, R.; Sánchez-Nájera, R.I.; Martínez-Castañón, G.A.; Niño-Martínez, N.; Sánchez Navarro, M.D.C.; Ruiz, F.; Cabral-Romero, C. Green Synthesis of Silver Nanoparticles and Their Bactericidal and Antimycotic Activities against Oral Microbes. J. Nanomater., 2016, 2016, 1-10.
[http://dx.doi.org/10.1155/2016/9204573]
[196]
Sunderam, V.; Thiyagarajan, D.; Lawrence, A.V.; Mohammed, S.S.S.; Selvaraj, A. In-vitro antimicrobial and anticancer properties of green synthesized gold nanoparticles using Anacardium occidentale leaves extract. Saudi J. Biol. Sci., 2019, 26(3), 455-459.
[http://dx.doi.org/10.1016/j.sjbs.2018.12.001] [PMID: 30899157]
[197]
Dang, H.; Fawcett, D.; Poinern, G.E.J. Green Synthesis of Gold Nanoparticles from Waste Macadamia Nut Shells and Their Antimicrobial Activity against Escherichia Coli and Staphylococcus Epidermis. Int. J. Res. Med. Sci., 2019, 7, 1171.
[http://dx.doi.org/10.18203/2320-6012.ijrms20191320]
[198]
Veena, S.; Devasena, T.; Sathak, S.S.M.; Yasasve, M.; Vishal, L.A. Green Synthesis of Gold Nanoparticles from Vitex Negundo Leaf Extract: Characterization and In Vitro Evaluation of Antioxidant–Antibacterial Activity. J. Cluster Sci., 2019, 30, 1591-1597.
[http://dx.doi.org/10.1007/s10876-019-01601-z]
[199]
Shende, S.; Ingle, A.P.; Gade, A.; Rai, M. Green synthesis of copper nanoparticles by Citrus medica Linn. (Idilimbu) juice and its antimicrobial activity. World J. Microbiol. Biotechnol., 2015, 31(6), 865-873.
[http://dx.doi.org/10.1007/s11274-015-1840-3] [PMID: 25761857]
[200]
Bandeira, M.; Giovanela, M.; Roesch-Ely, M.; Devine, D.M.; da Silva Crespo, J. Green Synthesis of Zinc Oxide Nanoparticles: A Review of the Synthesis Methodology and Mechanism of Formation; Sustainable Chemistry and Pharmacy, 2020, p. 15.
[201]
Hagens, W.I.; Oomen, A.G.; de Jong, W.H.; Cassee, F.R.; Sips, A.J.A.M. What do we (need to) know about the kinetic properties of nanoparticles in the body? Regul. Toxicol. Pharmacol., 2007, 49(3), 217-229.
[http://dx.doi.org/10.1016/j.yrtph.2007.07.006] [PMID: 17868963]
[202]
Nel, A.; Xia, T.; Mädler, L.; Li, N. Toxic potential of materials at the nanolevel. Science, 2006, 311(5761), 622-627.
[http://dx.doi.org/10.1126/science.1114397] [PMID: 16456071]
[203]
Okuda-Shimazaki, J.; Takaku, S.; Kanehira, K.; Sonezaki, S.; Taniguchi, A. Effects of titanium dioxide nanoparticle aggregate size on gene expression. Int. J. Mol. Sci., 2010, 11(6), 2383-2392.
[http://dx.doi.org/10.3390/ijms11062383] [PMID: 20640159]
[204]
Li, Y.; Lee, N.H.; Song, J.S.; Lee, E.G.; Kim, S.J. Synthesis and Photocatalytic Properties of Nano Bi-Crystalline Titania of Anatase and Brookite by Hydrolyzing TiOCl2 Aqueous Solution at Low Temperatures. Res. Chem. Intermed., 2005, 31, 309-318.
[http://dx.doi.org/10.1163/1568567053956554]
[205]
Zhu, X.; Pathakoti, K.; Hwang, H-M. Green Synthesis of Titanium Dioxide and Zinc Oxide Nanoparticles and Their Usage for Antimicrobial Applications and Environmental Remediation.Green Synthesis; Characterization and Applications of Nanoparticles, 2019, pp. 223-263.
[http://dx.doi.org/10.1016/B978-0-08-102579-6.00010-1]
[206]
Subhapriya, S.; Gomathipriya, P. Green synthesis of titanium dioxide (TiO2) nanoparticles by Trigonella foenum-graecum extract and its antimicrobial properties. Microb. Pathog., 2018, 116, 215-220.
[http://dx.doi.org/10.1016/j.micpath.2018.01.027] [PMID: 29366863]
[207]
Madadi, Z.; Soltanieh, M.; Bagheri Lotfabad, T.; Nazari, S.N. Green Synthesis of Titanium Dioxide Nanoparticles with Glycyrrhiza Glabra and Their Photocatalytic Activity. Asian J. Green Chem., 2019, 4, 256-268.
[208]
Selim, Y.A.; Azb, M.A.; Ragab, I. H M Abd El-Azim, M. Green Synthesis of Zinc Oxide Nanoparticles Using Aqueous Extract of Deverra tortuosa and their Cytotoxic Activities. Sci. Rep., 2020, 10(1), 3445.
[http://dx.doi.org/10.1038/s41598-020-60541-1] [PMID: 32103090]
[209]
Ogunyemi, S.O.; Abdallah, Y.; Zhang, M.; Fouad, H.; Hong, X.; Ibrahim, E.; Masum, M.M.I.; Hossain, A.; Mo, J.; Li, B. Green synthesis of zinc oxide nanoparticles using different plant extracts and their antibacterial activity against Xanthomonas oryzae pv. oryzae. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 341-352.
[http://dx.doi.org/10.1080/21691401.2018.1557671] [PMID: 30691311]
[210]
Ezealisiji, K.M.; Siwe-Noundou, X.; Maduelosi, B.; Nwachukwu, N.; Krause, R.W.M. Green Synthesis of Zinc Oxide Nanoparticles Using Solanum Torvum (L) Leaf Extract and Evaluation of the Toxicological Profile of the ZnO Nanoparticles–Hydrogel Composite in Wistar Albino Rats. Int. Nano Lett., 2019, 9, 99-107.
[http://dx.doi.org/10.1007/s40089-018-0263-1]
[211]
Yang, Z.; Wang, D.Y.; Pang, Y.; Li, Y.X.; Wang, Q.; Zhang, T.Y.; Wang, J.B.; Liu, X.; Yang, Y.Y.; Jian, J.M.; Jian, M.Q.; Zhang, Y.Y.; Yang, Y.; Ren, T.L. Simultaneously Detecting Subtle and Intensive Human Motions Based on a Silver Nanoparticles Bridged Graphene Strain Sensor. ACS Appl. Mater. Interfaces, 2018, 10(4), 3948-3954.
[http://dx.doi.org/10.1021/acsami.7b16284] [PMID: 29281246]
[212]
Lala, N.L.; Ramaseshan, R.; Bojun, L.; Sundarrajan, S.; Barhate, R.S.; Ying-Jun, L.; Ramakrishna, S. Fabrication of nanofibers with antimicrobial functionality used as filters: protection against bacterial contaminants. Biotechnol. Bioeng., 2007, 97(6), 1357-1365.
[http://dx.doi.org/10.1002/bit.21351] [PMID: 17274060]
[213]
Sivera, M.; Kvitek, L.; Soukupova, J.; Panacek, A.; Prucek, R.; Vecerova, R.; Zboril, R. Silver nanoparticles modified by gelatin with extraordinary pH stability and long-term antibacterial activity. PLoS One, 2014, 9(8)e103675
[http://dx.doi.org/10.1371/journal.pone.0103675] [PMID: 25098570]
[214]
Yue, G.; Li, F.; Yang, G.; Zhang, W. Efficient Nickel Sulfide and Graphene Counter Electrodes Decorated with Silver Nanoparticles and Application in Dye-Sensitized Solar Cells. Nanoscale Res. Lett., 2016, 11(1), 239.
[http://dx.doi.org/10.1186/s11671-016-1456-z] [PMID: 27142877]
[215]
Jung, H-Y.Y.; Yeo, I-S.S.; Kim, T-U.U.; Ki, H-C.C.; Gu, H-B.B. Surface Plasmon Resonance Effect of Silver Nanoparticles on a TiO 2 Electrode for Dye-Sensitized Solar Cells. Appl. Surf. Sci., 2018, 432, 266-271.
[http://dx.doi.org/10.1016/j.apsusc.2017.04.237]
[216]
Arrese, J.; Vescio, G.; Xuriguera, E.; Medina-Rodriguez, B.; Cornet, A.; Cirera, A. Flexible Hybrid Circuit Fully Inkjet-Printed: Surface Mount Devices Assembled by Silver Nanoparticles-Based Inkjet Ink. J. Appl. Phys., 2017, 121104904
[http://dx.doi.org/10.1063/1.4977961]
[217]
Fukuda, K.; Sekine, T.; Kobayashi, Y.; Takeda, Y.; Shimizu, M.; Yamashita, N.; Kumaki, D.; Itoh, M.; Nagaoka, M.; Toda, T.; Saito, S.; Kurihara, M.; Sakamoto, M.; Tokito, S. Organic Integrated Circuits Using Room-Temperature Sintered Silver Nanoparticles as Printed Electrodes. Org. Electron., 2012, 13, 3296-3301.
[http://dx.doi.org/10.1016/j.orgel.2012.09.028]
[218]
Malaikozhundan, B.; Vijayakumar, S.; Vaseeharan, B.; Jenifer, A.A.; Chitra, P.; Prabhu, N.M.; Kannapiran, E. Two potential uses for silver nanoparticles coated with Solanum nigrum unripe fruit extract: Biofilm inhibition and photodegradation of dye effluent. Microb. Pathog., 2017, 111, 316-324.
[http://dx.doi.org/10.1016/j.micpath.2017.08.039] [PMID: 28867634]
[219]
Borase, H.P.; Patil, C.D.; Salunkhe, R.B.; Suryawanshi, R.K.; Salunke, B.K.; Patil, S.V. Inhibition of Restriction Endonucleases by Biofunctionalized Silver Nanoparticles: An in Vitro Study. Mater. Lett., 2014, 134, 24-26.
[http://dx.doi.org/10.1016/j.matlet.2014.07.055]
[220]
Kaegi, R.; Voegelin, A.; Ort, C.; Sinnet, B.; Thalmann, B.; Krismer, J.; Hagendorfer, H.; Elumelu, M.; Mueller, E. Fate and transformation of silver nanoparticles in urban wastewater systems. Water Res., 2013, 47(12), 3866-3877.
[http://dx.doi.org/10.1016/j.watres.2012.11.060] [PMID: 23571111]
[221]
McGillicuddy, E.; Murray, I.; Kavanagh, S.; Morrison, L.; Fogarty, A.; Cormican, M.; Dockery, P.; Prendergast, M.; Rowan, N.; Morris, D. Silver nanoparticles in the environment: Sources, detection and ecotoxicology. Sci. Total Environ., 2017, 575, 231-246.
[http://dx.doi.org/10.1016/j.scitotenv.2016.10.041] [PMID: 27744152]
[222]
Barua, S.; Konwarh, R.; Bhattacharya, S.S.; Das, P.; Devi, K.S.P.; Maiti, T.K.; Mandal, M.; Karak, N. Non-hazardous anticancerous and antibacterial colloidal ‘green’ silver nanoparticles. Colloids Surf. B Biointerfaces, 2013, 105, 37-42.
[http://dx.doi.org/10.1016/j.colsurfb.2012.12.015] [PMID: 23352940]
[223]
Hosseini, R.; Ahari, H.; Mahasti, P.; Paidari, S. Measuring the Migration of Silver from Silver Nanocomposite Polyethylene Packaging Based on (TiO2) into Penaeus Semisulcatus Using Titration Comparison with Migration Methods. Fish. Sci., 2017, 83, 649-659.
[http://dx.doi.org/10.1007/s12562-017-1090-4]
[224]
Raja, K.; Saravanakumar, A.; Vijayakumar, R. Efficient synthesis of silver nanoparticles from Prosopis juliflora leaf extract and its antimicrobial activity using sewage. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2012, 97, 490-494.
[http://dx.doi.org/10.1016/j.saa.2012.06.038] [PMID: 22835939]
[225]
Behravan, M.; Hossein Panahi, A.; Naghizadeh, A.; Ziaee, M.; Mahdavi, R.; Mirzapour, A. Facile green synthesis of silver nanoparticles using Berberis vulgaris leaf and root aqueous extract and its antibacterial activity. Int. J. Biol. Macromol., 2019, 124, 148-154.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.11.101] [PMID: 30447360]
[226]
Huang, W.; Yan, M.; Duan, H.; Bi, Y.; Cheng, X.; Yu, H. .Synergistic Antifungal Activity of Green Synthesized Silver Nanoparticles and Epoxiconazole against Setosphaeria Turcica. J. Nanomater, 2020, 2020,
[http://dx.doi.org/10.1155/2020/9535432]
[227]
Song, Y.; Jiang, H.; Wang, B.; Kong, Y.; Chen, J. Silver-Incorporated Mussel-Inspired Polydopamine Coatings on Mesoporous Silica as an Efficient Nanocatalyst and Antimicrobial Agent. ACS Appl. Mater. Interfaces, 2018, 10(2), 1792-1801.
[http://dx.doi.org/10.1021/acsami.7b18136] [PMID: 29303548]
[228]
Daraee, H.; Eatemadi, A.; Abbasi, E.; Fekri Aval, S.; Kouhi, M.; Akbarzadeh, A. Application of gold nanoparticles in biomedical and drug delivery. Artif. Cells Nanomed. Biotechnol., 2016, 44(1), 410-422.
[http://dx.doi.org/10.3109/21691401.2014.955107] [PMID: 25229833]
[229]
Mohammed, A.M.; Rahim, R.A.; Ibraheem, I.J.; Loong, F.K.; Hisham, H.; Hashim, U.; Al-Douri, Y. Application of Gold Nanoparticles for Electrochemical DNA Biosensor. J. Nanomater., 2014, 2014, 1-7.
[http://dx.doi.org/10.1155/2014/683460]
[230]
Sedighi, A.; Li, P.C.H.; Pekcevik, I.C.; Gates, B.D. A proposed mechanism of the influence of gold nanoparticles on DNA hybridization. ACS Nano, 2014, 8(7), 6765-6777.
[http://dx.doi.org/10.1021/nn500790m] [PMID: 24965286]
[231]
Soares, J.C.; Iwaki, L.E.O.; Soares, A.C.; Rodrigues, V.C.; Melendez, M.E.; Fregnani, J.H.T.G.; Reis, R.M.; Carvalho, A.L.; Corrêa, D.S.; Oliveira, O.N. Jr Immunosensor for Pancreatic Cancer Based on Electrospun Nanofibers Coated with Carbon Nanotubes or Gold Nanoparticles. ACS Omega, 2017, 2(10), 6975-6983.
[http://dx.doi.org/10.1021/acsomega.7b01029] [PMID: 30023536]
[232]
Farooq, M.U.; Novosad, V.; Rozhkova, E.A.; Wali, H.; Ali, A.; Fateh, A.A.; Neogi, P.B.; Neogi, A.; Wang, Z. Gold Nanoparticles-enabled Efficient Dual Delivery of Anticancer Therapeutics to HeLa Cells. Sci. Rep., 2018, 8(1), 2907.
[http://dx.doi.org/10.1038/s41598-018-21331-y] [PMID: 29440698]
[233]
Xiong, J.; Wang, Y.; Xue, Q.; Wu, X. Synthesis of Highly Stable Dispersions of Nanosized Copper Particles Using L-Ascorbic Acid. Green Chem., 2011, 13, 900-904.
[http://dx.doi.org/10.1039/c0gc00772b]
[234]
Umer, A.; Naveed, S.; Ramzan, N.; Rafique, M.S.; Imran, M. A Green Method for the Synthesis of Copper Nanoparticles Using L-Ascorbic Acid. Rev. Mat., 2014, 19, 197-203.
[235]
Sharma, J.K.; Akhtar, M.S.; Ameen, S.; Srivastava, P.; Singh, G. Green Synthesis of CuO Nanoparticles with Leaf Extract of Calotropis Gigantea and Its Dye-Sensitized Solar Cells Applications. J. Alloys Compd., 2015, 632, 321-325.
[http://dx.doi.org/10.1016/j.jallcom.2015.01.172]
[236]
Pariona, N.; Mtz-Enriquez, A.I.; Sánchez-Rangel, D.; Carrión, G.; Paraguay-Delgado, F.; Rosas-Saito, G. Green-Synthesized Copper Nanoparticles as a Potential Antifungal against Plant Pathogens. RSC Advances, 2019, 9, 18835-18843.
[http://dx.doi.org/10.1039/C9RA03110C]
[237]
Mandava, K.; Kadimcharla, K.; Keesara, N.R.; Fatima, S.N.; Bommena, P.; Batchu, U.R. Green synthesis of stable copper nanoparticles and synergistic activity with antibiotics. Indian J. Pharm. Sci., 2017, 79(5)
[http://dx.doi.org/10.4172/pharmaceutical-sciences.1000281]
[238]
Ismail, M.I.M. Green synthesis and characterizations of copper nanoparticles. Mater. Chem. Phys., 2020, 240(122283)122283
[http://dx.doi.org/10.1016/j.matchemphys.2019.122283.]
[239]
Fan, L.; Zhang, H.; Gao, M.; Zhang, M.; Liu, P.; Liu, X. Cellulose Nanocrystals/Silver Nanoparticles: In-Situ Preparation and Application in PVA Films. Holzforschung, 2019.
[http://dx.doi.org/10.1515/hf-2018-0251]
[240]
Kang, X.; Kuga, S.; Wang, C.; Zhao, Y.; Wu, M.; Huang, Y. Green Preparation of Cellulose Nanocrystal and Its Application. ACS Sustain. Chem.& Eng., 2018, 6, 2954-2960.
[http://dx.doi.org/10.1021/acssuschemeng.7b02363]
[241]
Wu, X.; Lu, C.; Zhou, Z.; Yuan, G.; Xiong, R.; Zhang, X. Green Synthesis and Formation Mechanism of Cellulose Nanocrystal-Supported Gold Nanoparticles with Enhanced Catalytic Performance. Environ. Sci. Nano, 2014, 1, 71-79.
[http://dx.doi.org/10.1039/c3en00066d]
[242]
Oun, A.A.; Rhim, J.W. Characterization of carboxymethyl cellulose-based nanocomposite films reinforced with oxidized nanocellulose isolated using ammonium persulfate method. Carbohydr. Polym., 2017, 174, 484-492.
[http://dx.doi.org/10.1016/j.carbpol.2017.06.121] [PMID: 28821096]
[243]
Lu, L.; Li, Y.; Liang, Y.; Chen, Q.; Lu, Q. One-Pot Green Synthesis of Carboxylated Cellulose Nanocrystals through Oxidative Degradation of Bamboo Pulp. BioResources, 2020, 15, 49-61.
[244]
Yan, W.; Chen, C.; Wang, L.; Zhang, D.; Li, A.J.; Yao, Z.; Shi, L.Y. Facile and green synthesis of cellulose nanocrystal-supported gold nanoparticles with superior catalytic activity. Carbohydr. Polym., 2016, 140, 66-73.
[http://dx.doi.org/10.1016/j.carbpol.2015.12.049] [PMID: 26876829]
[245]
Rostami-Vartooni, A.; Alizadeh, M.; Bagherzadeh, M. Green synthesis, characterization and catalytic activity of natural bentonite-supported copper nanoparticles for the solvent-free synthesis of 1-substituted 1H-1,2,3,4-tetrazoles and reduction of 4-nitrophenol. Beilstein J. Nanotechnol., 2015, 6, 2300-2309.
[http://dx.doi.org/10.3762/bjnano.6.236] [PMID: 26732060]
[246]
Rostami-Vartooni, A.; Nasrollahzadeh, M.; Alizadeh, M. Green synthesis of seashell supported silver nanoparticles using Bunium persicum seeds extract: Application of the particles for catalytic reduction of organic dyes. J. Colloid Interface Sci., 2016, 470, 268-275.
[http://dx.doi.org/10.1016/j.jcis.2016.02.060] [PMID: 26962977]
[247]
Latha, D.; Prabu, P.; Gnanamoorthy, G.; Sampurnam, S.; Manikandan, R.; Arulvasu, C.; Narayanan, V. Facile Justicia Adhatoda leaf extract derived route to silver nanoparticle: Synthesis, characterization and its application in potocatalytic and aticancer acivity. Mater. Res. Express, 2019, 6(4)045003
[http://dx.doi.org/10.1088/2053-1591/aaf828]
[248]
Latha, D.; Prabu, P.; Munusamy, S.; Sampurnam, S.; Arulvasu, C.; Narayanan, V. Evaluation of Catalytic Activity of Green Synthesized Bimetallic Nanoparticle FromJusticiaadhatoda. In Materials Today. Proceedings, 2019, 14, 569-573.
[249]
Francis, S.; Nair, K.M.; Paul, N.; Koshy, E.P.; Mathew, B. Catalytic Activities of Green Synthesized Silver and Gold Nanoparticles. Mater. Today Proc., 2019, 9, 97-104.
[http://dx.doi.org/10.1016/j.matpr.2019.02.042]
[250]
Bouallegui, Y.; Ben Younes, R.; Turki, F.; Oueslati, R. Impact of exposure time, particle size and uptake pathway on silver nanoparticle effects on circulating immune cells in mytilus galloprovincialis. J. Immunotoxicol., 2017, 14(1), 116-124.
[http://dx.doi.org/10.1080/1547691X.2017.1335810] [PMID: 28604134]
[251]
Jiang, H.S.; Yin, L.Y.; Ren, N.N.; Zhao, S.T.; Li, Z.; Zhi, Y.; Shao, H.; Li, W.; Gontero, B. Silver nanoparticles induced reactive oxygen species via photosynthetic energy transport imbalance in an aquatic plant. Nanotoxicology, 2017, 11(2), 157-167.
[http://dx.doi.org/10.1080/17435390.2017.1278802] [PMID: 28044463]
[252]
Choudhury, S.R.; Ordaz, J.; Lo, C.L.; Damayanti, N.P.; Zhou, F.; Irudayaraj, J. From the Cover: Zinc oxide Nanoparticles-Induced Reactive Oxygen Species Promotes Multimodal Cyto- and Epigenetic Toxicity. Toxicol. Sci., 2017, 156(1), 261-274.
[PMID: 28115643]
[253]
Mühlfeld, C.; Gehr, P.; Rothen-Rutishauser, B. Translocation and cellular entering mechanisms of nanoparticles in the respiratory tract. Swiss Med. Wkly., 2008, 138(27-28), 387-391.
[PMID: 18642134]
[254]
Rothen-Rutishauser, B.; Mühlfeld, C.; Blank, F.; Musso, C.; Gehr, P. Translocation of particles and inflammatory responses after exposure to fine particles and nanoparticles in an epithelial airway model. Part. Fibre Toxicol., 2007, 4, 9.
[http://dx.doi.org/10.1186/1743-8977-4-9] [PMID: 17894871]
[255]
Yacobi, N.R.; Phuleria, H.C.; Demaio, L.; Liang, C.H.; Peng, C.A.; Sioutas, C.; Borok, Z.; Kim, K.J.; Crandall, E.D. Nanoparticle effects on rat alveolar epithelial cell monolayer barrier properties. Toxicol. In Vitro, 2007, 21(8), 1373-1381.
[http://dx.doi.org/10.1016/j.tiv.2007.04.003] [PMID: 17555923]
[256]
Durán, N.; Durán, M.; de Jesus, M.B.; Seabra, A.B.; Fávaro, W.J.; Nakazato, G. Silver nanoparticles: A new view on mechanistic aspects on antimicrobial activity. Nanomedicine (Lond.), 2016, 12(3), 789-799.
[http://dx.doi.org/10.1016/j.nano.2015.11.016] [PMID: 26724539]
[257]
de Lima, R.; Seabra, A.B.; Durán, N. Silver nanoparticles: a brief review of cytotoxicity and genotoxicity of chemically and biogenically synthesized nanoparticles. J. Appl. Toxicol., 2012, 32(11), 867-879.
[http://dx.doi.org/10.1002/jat.2780] [PMID: 22696476]
[258]
Morais, M.; Teixeira, A.L.; Dias, F.; Machado, V.; Medeiros, R.; Prior, J.A.V. Cytotoxic Effect of Silver Nanoparticles Synthesized by Green Methods in Cancer. J. Med. Chem., 2020, 63(23), 14308-14335.
[http://dx.doi.org/10.1021/acs.jmedchem.0c01055] [PMID: 33231444]
[259]
Das, B.; Tripathy, S.; Adhikary, J.; Chattopadhyay, S.; Mandal, D.; Dash, S.K.; Das, S.; Dey, A.; Dey, S.K.; Das, D.; Roy, S. Surface modification minimizes the toxicity of silver nanoparticles: an in vitro and in vivo study. J. Biol. Inorg. Chem., 2017, 22(6), 893-918.
[http://dx.doi.org/10.1007/s00775-017-1468-x] [PMID: 28643149]
[260]
Durán, N.; Silveira, C.P.; Durán, M.; Martinez, D.S.T. Silver nanoparticle protein corona and toxicity: a mini-review. J. Nanobiotechnology, 2015, 13, 55.
[http://dx.doi.org/10.1186/s12951-015-0114-4] [PMID: 26337542]
[261]
van der Zande, M.; Vandebriel, R.J.; Van Doren, E.; Kramer, E.; Herrera Rivera, Z.; Serrano-Rojero, C.S.; Gremmer, E.R.; Mast, J.; Peters, R.J.B.; Hollman, P.C.H.; Hendriksen, P.J.M.; Marvin, H.J.P.; Peijnenburg, A.A.C.M.; Bouwmeester, H. Distribution, elimination, and toxicity of silver nanoparticles and silver ions in rats after 28-day oral exposure. ACS Nano, 2012, 6(8), 7427-7442.
[http://dx.doi.org/10.1021/nn302649p] [PMID: 22857815]
[262]
Pinzaru, I.; Coricovac, D.; Dehelean, C.; Moacă, E.A.; Mioc, M.; Baderca, F.; Sizemore, I.; Brittle, S.; Marti, D.; Calina, C.D.; Tsatsakis, A.M.; Şoica, C. Stable PEG-coated silver nanoparticles - A comprehensive toxicological profile. Food Chem. Toxicol., 2018, 111, 546-556.
[http://dx.doi.org/10.1016/j.fct.2017.11.051] [PMID: 29191727]
[263]
Park, J.W.; Oh, J.H.; Kim, W.K.; Lee, S.K. Toxicity of citrate-coated silver nanoparticles differs according to method of suspension preparation. Bull. Environ. Contam. Toxicol., 2014, 93(1), 53-59.
[http://dx.doi.org/10.1007/s00128-014-1296-4] [PMID: 24841540]
[264]
Liu, W.; Wu, Y.; Wang, C.; Li, H.C.; Wang, T.; Liao, C.Y.; Cui, L.; Zhou, Q.F.; Yan, B.; Jiang, G.B. Impact of silver nanoparticles on human cells: effect of particle size. Nanotoxicology, 2010, 4(3), 319-330.
[http://dx.doi.org/10.3109/17435390.2010.483745] [PMID: 20795913]
[265]
Kim, Y.S.; Song, M.Y.; Park, J.D.; Song, K.S.; Ryu, H.R.; Chung, Y.H.; Chang, H.K.; Lee, J.H.; Oh, K.H.; Kelman, B.J.; Hwang, I.K.; Yu, I.J. Subchronic oral toxicity of silver nanoparticles. Part. Fibre Toxicol., 2010, 7, 20.
[http://dx.doi.org/10.1186/1743-8977-7-20] [PMID: 20691052]
[266]
Munger, M.A.; Radwanski, P.; Hadlock, G.C.; Stoddard, G.; Shaaban, A.; Falconer, J.; Grainger, D.W.; Deering-Rice, C.E. In vivo human time-exposure study of orally dosed commercial silver nanoparticles. Nanomedicine (Lond.), 2014, 10(1), 1-9.
[http://dx.doi.org/10.1016/j.nano.2013.06.010] [PMID: 23811290]
[267]
Graves, J.L., Jr; Tajkarimi, M.; Cunningham, Q.; Campbell, A.; Nonga, H.; Harrison, S.H.; Barrick, J.E. Rapid evolution of silver nanoparticle resistance in Escherichia coli. Front. Genet., 2015, 6, 42.
[http://dx.doi.org/10.3389/fgene.2015.00042] [PMID: 25741363]
[268]
Durán, N.; Rolim, W.R.; Durán, M.; Fávaro, W.J.; Seabra, A.B. Nanotoxicology of Silver Nanoparticles: Toxicity in Aninals and Humans. Quim. Nova, 2019, 42, 206-213.
[269]
Yanga, J.; Cao, W.; Rui, Y. Interactions between Nanoparticles and Plants: Phytotoxicity and Defense Mechanisms. J. Plant Interact., 2017, 12, 158-169.
[http://dx.doi.org/10.1080/17429145.2017.1310944]
[270]
Yan, A.; Chen, Z. Impacts of Silver Nanoparticles on Plants: A Focus on the Phytotoxicity and Underlying Mechanism. Int. J. Mol. Sci., 2019, 20(5), 20.
[http://dx.doi.org/10.3390/ijms20051003] [PMID: 30813508]
[271]
Zhang, C.L.; Jiang, H.S.; Gu, S.P.; Zhou, X.H.; Lu, Z.W.; Kang, X.H.; Yin, L.; Huang, J. Combination analysis of the physiology and transcriptome provides insights into the mechanism of silver nanoparticles phytotoxicity. Environ. Pollut., 2019, 252(Pt B), 1539-1549.,
[http://dx.doi.org/10.1016/j.envpol.2019.06.032] [PMID: 31277023]
[272]
Falco, W.F.; Scherer, M.D.; Oliveira, S.L.; Wender, H.; Colbeck, I.; Lawson, T.; Caires, A.R.L. Phytotoxicity of silver nanoparticles on Vicia faba: Evaluation of particle size effects on photosynthetic performance and leaf gas exchange. Sci. Total Environ., 2020, 701134816
[http://dx.doi.org/10.1016/j.scitotenv.2019.134816] [PMID: 31704404]
[273]
Zhang, H.; Chen, S.; Jia, X.; Huang, Y.; Ji, R.; Zhao, L. Comparation of the phytotoxicity between chemically and green synthesized silver nanoparticles. Sci. Total Environ., 2021, 752142264
[http://dx.doi.org/10.1016/j.scitotenv.2020.142264] [PMID: 33207511]
[274]
Deng, J.; Yao, M.; Gao, C. Cytotoxicity of gold nanoparticles with different structures and surface-anchored chiral polymers. Acta Biomater., 2017, 53, 610-618.
[http://dx.doi.org/10.1016/j.actbio.2017.01.082] [PMID: 28213095]
[275]
Huhn, D.; Kantner, K.; Geidel, C.; Brandholt, S.; De Cock, I.; Soenen, S.J.H.; Rivera Gil, P.; Montenegro, J.M.; Braeckmans, K.; Mullen, K.; Nienhaus, G.U.; Klapper, M.; Parak, W.J. Polymer-coated nanoparticles interacting with proteins and cells: focusing on the sign of the net charge. ACS Nano, 2013, 7(4), 3253-3263.
[http://dx.doi.org/10.1021/nn3059295] [PMID: 23566380]
[276]
Xia, T.; Li, N.; Nel, A.E. Potential health impact of nanoparticles. Annu. Rev. Public Health, 2009, 30, 137-150.
[http://dx.doi.org/10.1146/annurev.publhealth.031308.100155] [PMID: 19705557]
[277]
Auffan, M.; Rose, J.; Wiesner, M.R.; Bottero, J.Y. Chemical stability of metallic nanoparticles: a parameter controlling their potential cellular toxicity in vitro. Environ. Pollut., 2009, 157(4), 1127-1133.
[http://dx.doi.org/10.1016/j.envpol.2008.10.002] [PMID: 19013699]
[278]
Li, X.; Hu, Z.; Ma, J.; Wang, X.; Zhang, Y.; Wang, W.; Yuan, Z. The systematic evaluation of size-dependent toxicity and multi-time biodistribution of gold nanoparticles. Colloids Surf. B Biointerfaces, 2018, 167, 260-266.
[http://dx.doi.org/10.1016/j.colsurfb.2018.04.005] [PMID: 29677597]
[279]
Sonavane, G.; Tomoda, K.; Makino, K. Biodistribution of colloidal gold nanoparticles after intravenous administration: effect of particle size. Colloids Surf. B Biointerfaces, 2008, 66(2), 274-280.
[http://dx.doi.org/10.1016/j.colsurfb.2008.07.004] [PMID: 18722754]
[280]
Kubik, T.; Bogunia-Kubik, K.; Sugisaka, M. Nanotechnology on duty in medical applications. Curr. Pharm. Biotechnol., 2005, 6(1), 17-33.
[http://dx.doi.org/10.2174/1389201053167248] [PMID: 15727553]
[281]
Cho, T.J.; MacCuspie, R.I.; Gigault, J.; Gorham, J.M.; Elliott, J.T.; Hackley, V.A. Highly stable positively charged dendron-encapsulated gold nanoparticles. Langmuir, 2014, 30(13), 3883-3893.
[http://dx.doi.org/10.1021/la5002013] [PMID: 24625049]
[282]
Cho, W.S.; Cho, M.; Jeong, J.; Choi, M.; Cho, H.Y.; Han, B.S.; Kim, S.H.; Kim, H.O.; Lim, Y.T.; Chung, B.H.; Jeong, J. Acute toxicity and pharmacokinetics of 13 nm-sized PEG-coated gold nanoparticles. Toxicol. Appl. Pharmacol., 2009, 236(1), 16-24.
[http://dx.doi.org/10.1016/j.taap.2008.12.023] [PMID: 19162059]
[283]
Aillon, K.L.; Xie, Y.; El-Gendy, N.; Berkland, C.J.; Forrest, M.L. Effects of nanomaterial physicochemical properties on in vivo toxicity. Adv. Drug Deliv. Rev., 2009, 61(6), 457-466.
[http://dx.doi.org/10.1016/j.addr.2009.03.010] [PMID: 19386275]
[284]
Chen, Y.S.; Hung, Y.C.; Liau, I.; Huang, G.S. Assessment of the In Vivo Toxicity of Gold Nanoparticles. Nanoscale Res. Lett., 2009, 4(8), 858-864.
[http://dx.doi.org/10.1007/s11671-009-9334-6] [PMID: 20596373]
[285]
Sonavane, G.; Tomoda, K.; Sano, A.; Ohshima, H.; Terada, H.; Makino, K. In vitro permeation of gold nanoparticles through rat skin and rat intestine: effect of particle size. Colloids Surf. B Biointerfaces, 2008, 65(1), 1-10.
[http://dx.doi.org/10.1016/j.colsurfb.2008.02.013] [PMID: 18499408]
[286]
Zhang, X.D.; Wu, D.; Shen, X.; Chen, J.; Sun, Y.M.; Liu, P.X.; Liang, X.J. Size-dependent radiosensitization of PEG-coated gold nanoparticles for cancer radiation therapy. Biomaterials, 2012, 33(27), 6408-6419.
[http://dx.doi.org/10.1016/j.biomaterials.2012.05.047] [PMID: 22681980]
[287]
Fraga, S.; Faria, H.; Soares, M.E.; Duarte, J.A.; Soares, L.; Pereira, E.; Costa-Pereira, C.; Teixeira, J.P.; de Lourdes Bastos, M.; Carmo, H. Influence of the surface coating on the cytotoxicity, genotoxicity and uptake of gold nanoparticles in human HepG2 cells. J. Appl. Toxicol., 2013, 33(10), 1111-1119.
[http://dx.doi.org/10.1002/jat.2865] [PMID: 23529830]
[288]
Fraga, S.; Brandão, A.; Soares, M.E.; Morais, T.; Duarte, J.A.; Pereira, L.; Soares, L.; Neves, C.; Pereira, E.; Bastos, M. de L.; Carmo, H. Short- and long-term distribution and toxicity of gold nanoparticles in the rat after a single-dose intravenous administration. Nanomedicine (Lond.), 2014, 10(8), 1757-1766.
[http://dx.doi.org/10.1016/j.nano.2014.06.005] [PMID: 24941462]
[289]
Ma, X.; Quah, B. Effects of Surface Charge on the Fate and Phytotoxicity of Gold Nanoparticles to Phaseolus Vulgaris. J. Food Chem. Nanotechnol., 2016, 2,
[290]
Chen, Z.; Meng, H.; Xing, G.; Chen, C.; Zhao, Y.; Jia, G.; Wang, T.; Yuan, H.; Ye, C.; Zhao, F.; Chai, Z.; Zhu, C.; Fang, X.; Ma, B.; Wan, L. Acute toxicological effects of copper nanoparticles in vivo. Toxicol. Lett., 2006, 163(2), 109-120.
[http://dx.doi.org/10.1016/j.toxlet.2005.10.003] [PMID: 16289865]
[291]
Meng, H.; Chen, Z.; Xing, G.; Yuan, H.; Chen, C.; Zhao, F.; Zhang, C.; Zhao, Y. Ultrahigh reactivity provokes nanotoxicity: explanation of oral toxicity of nano-copper particles. Toxicol. Lett., 2007, 175(1-3), 102-110.
[http://dx.doi.org/10.1016/j.toxlet.2007.09.015] [PMID: 18024012]
[292]
Lei, R.; Wu, C.; Yang, B.; Ma, H.; Shi, C.; Wang, Q.; Wang, Q.; Yuan, Y.; Liao, M. Integrated metabolomic analysis of the nano-sized copper particle-induced hepatotoxicity and nephrotoxicity in rats: a rapid in vivo screening method for nanotoxicity. Toxicol. Appl. Pharmacol., 2008, 232(2), 292-301.
[http://dx.doi.org/10.1016/j.taap.2008.06.026] [PMID: 18706438]
[293]
Song, L.; Connolly, M.; Fernández-Cruz, M.L.; Vijver, M.G.; Fernández, M.; Conde, E.; de Snoo, G.R.; Peijnenburg, W.J.G.M.; Navas, J.M. Species-specific toxicity of copper nanoparticles among mammalian and piscine cell lines. Nanotoxicology, 2014, 8(4), 383-393.
[http://dx.doi.org/10.3109/17435390.2013.790997] [PMID: 23600739]
[294]
Mosa, K.A.; El-Naggar, M.; Ramamoorthy, K.; Alawadhi, H.; Elnaggar, A.; Wartanian, S.; Ibrahim, E.; Hani, H. Copper Nanoparticles Induced Genotoxicty, Oxidative Stress, and Changes in Superoxide Dismutase (SOD) Gene Expression in Cucumber (Cucumis sativus) Plants. Front. Plant Sci., 2018, 9, 872.
[http://dx.doi.org/10.3389/fpls.2018.00872] [PMID: 30061904]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy