Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Review Article

Development of Metal-Based Drugs and Application in Clinical Treatment

Author(s): Yi Ming Shao, Bold Sharavyn, Ping Huang, Hua Naranmandura and Qian Qian Wang*

Volume 12, Issue 3, 2022

Published on: 29 July, 2021

Article ID: e120521193309 Pages: 7

DOI: 10.2174/2210315511666210512025010

Price: $65

Abstract

Metals occur naturally in soil and many kinds of rocks, particularly in minerals and ores, which also play a vital role in living systems such as plants and animals. Over the large time scale, metal evolution from toxins to drugs has achieved a milestone mean in medicine. Currently, a few metal-based drugs (i.e., metallodrugs) have been used in the clinic to treat patients with different medical conditions, making exciting new developments in anticancer therapeutics (e.g., arsenic trioxide and cisplatin) that quickly move into focus. Moreover, a thorough understanding of the properties and effects of metals on the human body could improve the development and innovation of metal-based drugs. In this review, we have comprehensively described the discovery and development of metal-based anticancer drugs, as well as their side effects in clinical treatment. Although metallodrugs have shown promising outcomes in the treatment of cancers, further investigation is needed to optimize their side effect for broader applications.

Keywords: Metals, cancer, selenium, platinum, arsenic, antimony, APL.

Graphical Abstract
[1]
Allardyce, C.S.; Dyson, P.J. Metal-based drugs that break the rules. Dalton Trans., 2016, 45(8), 3201-3209.
[http://dx.doi.org/10.1039/C5DT03919C] [PMID: 26820398]
[2]
Franz, K.J.; Metzler-Nolte, N. Introduction: Metals in medicine. Chem. Rev., 2019, 119(2), 727-729.
[http://dx.doi.org/10.1021/acs.chemrev.8b00685] [PMID: 30990707]
[3]
Mendola, D.; Rizzarelli, E. Perspectives in medicinal chemistry: metallomics and new targets in metal-based drug discovery. Curr. Top. Med. Chem, 2016, 16(29), 3381-3382.
[http://dx.doi.org/10.2174/156802661629161020215241] [PMID: 27852206]
[4]
Gyamfi, E.T. Metals and metalloids in traditional medicines (Ayurvedic medicines, nutraceuticals and traditional Chinese medicines). Environ. Sci. Pollut. Res. Int., 2019, 26(16), 15767-15778.
[http://dx.doi.org/10.1007/s11356-019-05023-2] [PMID: 31004267]
[5]
Jo, G.; Todorov, T.I. Distribution of nutrient and toxic elements in brown and polished rice. Food Chem., 2019, 289, 299-307.
[http://dx.doi.org/10.1016/j.foodchem.2019.03.040] [PMID: 30955616]
[6]
Rayman, M.P. Selenium and human health. Lancet, 2012, 379(9822), 1256-1268.
[http://dx.doi.org/10.1016/S0140-6736(11)61452-9] [PMID: 22381456]
[7]
McQuitty, R.J. Metal-based drugs. Sci. Prog., 2014, 97(Pt 1), 1-19.
[http://dx.doi.org/10.3184/003685014X13898980185076] [PMID: 24800466]
[8]
Karasawa, T.; Steyger, P.S. An integrated view of cisplatin-induced nephrotoxicity and ototoxicity. Toxicol. Lett., 2015, 237(3), 219-227.
[http://dx.doi.org/10.1016/j.toxlet.2015.06.012] [PMID: 26101797]
[9]
Jia, S.; Wang, R.; Wu, K.; Jiang, H.; Du, Z. Elucidation of the mechanism of action for metal based anticancer drugs by mass spectrometry-based quantitative proteomics. Molecules, 2019, 24(3), 581.
[http://dx.doi.org/10.3390/molecules24030581] [PMID: 30736320]
[10]
Wang, Q.Q.; Jiang, Y.; Naranmandura, H. Therapeutic strategy of arsenic trioxide in the fight against cancers and other diseases. Metallomics, 2020, 12(3), 326-336.
[http://dx.doi.org/10.1039/C9MT00308H] [PMID: 32163072]
[11]
Ghosh, S. Cisplatin: The first metal based anticancer drug. Bioorg. Chem., 2019, 88, 102925.
[http://dx.doi.org/10.1016/j.bioorg.2019.102925] [PMID: 31003078]
[12]
Ndagi, U.; Mhlongo, N.; Soliman, M.E. Metal complexes in cancer therapy - an update from drug design perspective. Drug Des. Devel. Ther., 2017, 11, 599-616.
[http://dx.doi.org/10.2147/DDDT.S119488] [PMID: 28424538]
[13]
Pujade-Lauraine, E.; Banerjee, S.; Pignata, S. Management of Platinum-Resistant, Relapsed Epithelial Ovarian Cancer and New Drug Perspectives. J. Clin. Oncol., 2019, 37(27), 2437-2448.
[http://dx.doi.org/10.1200/JCO.19.00194] [PMID: 31403868]
[14]
Lallemand-Breitenbach, V.; Zhu, J.; Chen, Z.; de Thé, H. Curing APL through PML/RARA degradation by As2O3. Trends Mol. Med., 2012, 18(1), 36-42.
[http://dx.doi.org/10.1016/j.molmed.2011.10.001] [PMID: 22056243]
[15]
Jamieson, C.; Martinelli, G.; Papayannidis, C.; Cortes, J. E. Hedgehog Pathway Inhibitors: A New Therapeutic Class for the Treatment of Acute Myeloid Leukemia. Blood Cancer Discov, 2020, 1(2), 134-145.
[http://dx.doi.org/10.1038/s41375-018-0139-4] [PMID: 29743722]
[16]
Tan, H.W.; Mo, H.Y.; Lau, A.T.Y.; Xu, Y.M. Selenium Species: Current Status and Potentials in Cancer Prevention and Therapy. Int. J. Mol. Sci., 2018, 20(1), 75.
[http://dx.doi.org/10.3390/ijms20010075] [PMID: 30585189]
[17]
Fukumoto, Y.; Yamada, H.; Matsuhashi, K.; Okada, W.; Tanaka, Y.K.; Suzuki, N.; Ogra, Y. Production of a Urinary Selenium Metabolite, Trimethylselenonium, by Thiopurine S-Methyltransferase and Indolethylamine N-Methyltransferase. Chem. Res. Toxicol., 2020, 33(9), 2467-2474.
[http://dx.doi.org/10.1021/acs.chemrestox.0c00254] [PMID: 32786394]
[18]
Takahashi, K.; Ogra, Y. Identification of the biliary selenium metabolite and the biological significance of selenium enterohepatic circulation. Metallomics, 2020, 12(2), 241-248.
[http://dx.doi.org/10.1039/C9MT00274J] [PMID: 31808489]
[19]
Katarzyna, B.; Taylor, R.M.; Szpunar, J.; Lobinski, R.; Sunde, R.A. Identification and determination of selenocysteine, selenosugar, and other selenometabolites in turkey liver. Metallomics, 2020, 12(5), 758-766.
[http://dx.doi.org/10.1039/d0mt00040j] [PMID: 32211715]
[20]
Björnstedt, M.; Fernandes, A.P. Selenium in the prevention of human cancers. EPMA J., 2010, 1(3), 389-395.
[http://dx.doi.org/10.1007/s13167-010-0033-2] [PMID: 23199083]
[21]
Stolwijk, J.M.; Garje, R.; Sieren, J.C.; Buettner, G.R.; Zakharia, Y. Understanding the Redox Biology of Selenium in the Search of Targeted Cancer Therapies. Antioxidants, 2020, 9(5), 420.
[http://dx.doi.org/10.3390/antiox9050420] [PMID: 32414091]
[22]
Li, S.; Zhao, Q.; Zhang, K.; Sun, W.; Jia, X.; Yang, Y.; Yin, J.; Tang, C.; Zhang, J. Se deficiency induces renal pathological changes by regulating selenoprotein expression, disrupting redox balance, and activating inflammation. Metallomics, 2020, 12(10), 1576-1584.
[http://dx.doi.org/10.1039/D0MT00165A] [PMID: 32869810]
[23]
Lee, E.H.; Myung, S.K.; Jeon, Y.J.; Kim, Y.; Chang, Y.J.; Ju, W.; Seo, H.G.; Huh, B.Y. Effects of selenium supplements on cancer prevention: meta-analysis of randomized controlled trials. Nutr. Cancer, 2011, 63(8), 1185-1195.
[http://dx.doi.org/10.1080/01635581.2011.607544] [PMID: 22004275]
[24]
Sun, L.; Zhang, J.; Yang, Q.; Si, Y.; Liu, Y.; Wang, Q.; Han, F.; Huang, Z. Synergistic effects of sam and selenium compounds on proliferation, migration and adhesion of hela cells. Anticancer Res., 2017, 37(8), 4433-4441.
[PMID: 28739737]
[25]
Evans, S.O.; Jacobson, G.M.; Goodman, H.J.B.; Bird, S.; Jameson, M.B. Comparison of three oral selenium compounds in cancer patients: Evaluation of differential pharmacodynamic effects in normal and malignant cells. J. Trace Elem. Med. Biol., 2020, 58, 126446.
[http://dx.doi.org/10.1016/j.jtemb.2019.126446] [PMID: 31838377]
[26]
Wu, X.; Huang, K.; Wei, C.; Chen, F.; Pan, C. Regulation of cellular glutathione peroxidase by different forms and concentrations of selenium in primary cultured bovine hepatocytes. J. Nutr. Biochem., 2010, 21(2), 153-161.
[http://dx.doi.org/10.1016/j.jnutbio.2008.12.006] [PMID: 19269156]
[27]
Cui, J.; Yan, M.; Liu, X.; Yin, S.; Lu, S.; Fan, L.; Hu, H. Inorganic selenium induces nonapoptotic programmed cell death in pc-3 prostate cancer cells associated with inhibition of glycolysis. J. Agric. Food Chem., 2019, 67(38), 10637-10645.
[http://dx.doi.org/10.1021/acs.jafc.9b03875] [PMID: 31513389]
[28]
Zhang, Z.; Du, Y.; Liu, T.; Wong, K.H.; Chen, T. Systematic acute and subchronic toxicity evaluation of polysaccharide-protein complex-functionalized selenium nanoparticles with anticancer potency. Biomater. Sci., 2019, 7(12), 5112-5123.
[http://dx.doi.org/10.1039/C9BM01104H] [PMID: 31573569]
[29]
Hozyen, H.F.; Khalil, H.M.A.; Ghandour, R.A.; Al-Mokaddem, A.K.; Amer, M.S.; Azouz, R.A. Nano selenium protects against deltamethrin-induced reproductive toxicity in male rats. Toxicol. Appl. Pharmacol., 2020, 408, 115274.
[http://dx.doi.org/10.1016/j.taap.2020.115274] [PMID: 33038357]
[30]
Qi, L.; Luo, Q.; Zhang, Y.; Jia, F.; Zhao, Y.; Wang, F. Advances in toxicological research of the anticancer drug cisplatin. Chem. Res. Toxicol., 2019, 32(8), 1469-1486.
[http://dx.doi.org/10.1021/acs.chemrestox.9b00204] [PMID: 31353895]
[31]
Ge, Y.; Zheng, N.; Chen, X.; Zhu, J.; Sun, W.; Olson, J.R.; Aga, D.S.; Hu, W.; Tang, X.; Ren, X. GMDTC chelating agent attenuates cisplatin-induced systemic toxicity without affecting antitumor efficacy. Chem. Res. Toxicol., 2019, 32(8), 1572-1582.
[http://dx.doi.org/10.1021/acs.chemrestox.9b00097] [PMID: 31240907]
[32]
Yuan, X.; Zhang, W.; He, Y.; Yuan, J.; Song, D.; Chen, H.; Qin, W.; Qian, X.; Yu, H.; Guo, Z. Proteomic analysis of cisplatin- and oxaliplatin-induced phosphorylation in proteins bound to Pt-DNA adducts. Metallomics, 2020, 12(11), 1834-1840.
[http://dx.doi.org/10.1039/D0MT00194E] [PMID: 33151228]
[33]
Farrell, N.P. Multi-platinum anti-cancer agents. Substitution-inert compounds for tumor selectivity and new targets. Chem. Soc. Rev., 2015, 44(24), 8773-8785.
[http://dx.doi.org/10.1039/C5CS00201J] [PMID: 25951946]
[34]
Rottenberg, S.; Disler, C.; Perego, P. The rediscovery of platinum-based cancer therapy. Nat Rev Cancer, 2020, 10, 1038.
[http://dx.doi.org/10.1038/s41568-020-00308-y]
[35]
Cheng, L.; Li, C.; Xi, Z.; Wei, K.; Yuan, S.; Arnesano, F.; Natile, G.; Liu, Y. Cisplatin reacts with histone H1 and the adduct forms a ternary complex with DNA. Metallomics, 2019, 11(3), 556-564.
[http://dx.doi.org/10.1039/C8MT00358K] [PMID: 30672544]
[36]
Geng, X.; Liu, L.; Tsai, K.J.; Liu, Z. Role of ZIP8 in regulation of cisplatin sensitivity through Bcl-2. Toxicol. Appl. Pharmacol., 2019, 362, 52-58.
[http://dx.doi.org/10.1016/j.taap.2018.10.016] [PMID: 30342059]
[37]
Sakai, H.; Ikeno, Y.; Tsukimura, Y.; Inomata, M.; Suzuki, Y.; Kon, R.; Ikarashi, N.; Chiba, Y.; Yamada, T.; Kamei, J. Upregulation of ubiquitinated proteins and their degradation pathway in muscle atrophy induced by cisplatin in mice. Toxicol. Appl. Pharmacol., 2020, 403, 115165.
[http://dx.doi.org/10.1016/j.taap.2020.115165] [PMID: 32738330]
[38]
Podratz, J.L.; Knight, A.M.; Ta, L.E.; Staff, N.P.; Gass, J.M.; Genelin, K.; Schlattau, A.; Lathroum, L.; Windebank, A.J. Cisplatin induced mitochondrial DNA damage in dorsal root ganglion neurons. Neurobiol. Dis., 2011, 41(3), 661-668.
[http://dx.doi.org/10.1016/j.nbd.2010.11.017] [PMID: 21145397]
[39]
Kleih, M.; Böpple, K.; Dong, M.; Gaißler, A.; Heine, S.; Olayioye, M.A.; Aulitzky, W.E.; Essmann, F. Direct impact of cisplatin on mitochondria induces ROS production that dictates cell fate of ovarian cancer cells. Cell Death Dis., 2019, 10(11), 851.
[http://dx.doi.org/10.1038/s41419-019-2081-4] [PMID: 31699970]
[40]
Fujii, H.; Iihara, H.; Kajikawa, N.; Kobayashi, R.; Suzuki, A.; Tanaka, Y.; Yamaguchi, K.; Yoshida, K.; Itoh, Y. Control of nausea based on risk analysis in patients with esophageal and gastric cancer who received cisplatin-based chemotherapy. Anticancer Res., 2017, 37(12), 6831-6837.
[PMID: 29187462]
[41]
Raudenska, M.; Balvan, J.; Fojtu, M.; Gumulec, J.; Masarik, M. Unexpected therapeutic effects of cisplatin. Metallomics, 2019, 11(7), 1182-1199.
[http://dx.doi.org/10.1039/C9MT00049F] [PMID: 31098602]
[42]
Xu, L.; Zhang, Y.; Zhang, P.; Dai, X.; Gao, Y.; Lv, Y.; Qin, S.; Xu, F. Integrated metabolomics and network pharmacology strategy-driven active traditional chinese medicine ingredients discovery for the alleviation of cisplatin nephrotoxicity. Chem. Res. Toxicol., 2019, 32(12), 2411-2421.
[http://dx.doi.org/10.1021/acs.chemrestox.9b00180] [PMID: 31682104]
[43]
Dilruba, S.; Kalayda, G.V. Platinum-based drugs: past, present and future. Cancer Chemother. Pharmacol., 2016, 77(6), 1103-1124.
[http://dx.doi.org/10.1007/s00280-016-2976-z] [PMID: 26886018]
[44]
Liu, T.; Guan, F.; Wang, Y.; Zhang, Z.; Li, Y.; Cui, Y.; Li, Z.; Liu, H.; Zhang, Y.; Wang, Y.; Ma, S. MS-275 combined with cisplatin exerts synergistic antitumor effects in human esophageal squamous cell carcinoma cells. Toxicol. Appl. Pharmacol., 2020, 395, 114971.
[http://dx.doi.org/10.1016/j.taap.2020.114971] [PMID: 32217144]
[45]
Shaker, M.E.; Shaaban, A.A.; El-Shafey, M.M.; El-Mesery, M.E. The selective c-Met inhibitor capmatinib offsets cisplatin-nephrotoxicity and doxorubicin-cardiotoxicity and improves their anticancer efficacies. Toxicol. Appl. Pharmacol., 2020, 398, 115018.
[http://dx.doi.org/10.1016/j.taap.2020.115018] [PMID: 32333917]
[46]
El Magdoub, H.M.; Schaalan, M.F.; Rahmo, R.M.; Farag, D.B.; Khedr, L.H. Implications of miRNAs on TGF-β/TAK1/mTOR pathway in mediating the renoprotective effects of pentoxifylline against cisplatin-induced nephrotoxicity in rats. Toxicol. Appl. Pharmacol., 2020, 404, 115184.
[http://dx.doi.org/10.1016/j.taap.2020.115184] [PMID: 32777238]
[47]
Man, S.; Lv, P.; Cui, J.; Liu, F.; Peng, L.; Ma, L.; Liu, C.; Gao, W. Paris saponin II-induced paraptosis-associated cell death increased the sensitivity of cisplatin. Toxicol. Appl. Pharmacol., 2020, 406, 115206.
[http://dx.doi.org/10.1016/j.taap.2020.115206] [PMID: 32835762]
[48]
Ferragut Cardoso, A.P.; Udoh, K.T.; States, J.C. Arsenic-induced changes in miRNA expression in cancer and other diseases. Toxicol. Appl. Pharmacol., 2020, 409, 115306.
[http://dx.doi.org/10.1016/j.taap.2020.115306] [PMID: 33127375]
[49]
Lou, B.; Hu, Y.; Lu, X.; Zhang, X.; Li, Y.; Pi, J.; Xu, Y. Long-isoform NRF1 protects against arsenic cytotoxicity in mouse bone marrow-derived mesenchymal stem cells by suppressing mitochondrial ROS and facilitating arsenic efflux. Toxicol. Appl. Pharmacol., 2020, 407, 115251.
[http://dx.doi.org/10.1016/j.taap.2020.115251] [PMID: 32980394]
[50]
Liu, Y.; Liu, F.; Liang, W.; Zhu, L.; Lantz, R.C.; Zhu, J.; Chen, Y. Arsenic represses airway epithelial mucin expression by affecting retinoic acid signaling pathway. Toxicol. Appl. Pharmacol., 2020, 394, 114959.
[http://dx.doi.org/10.1016/j.taap.2020.114959] [PMID: 32201329]
[51]
Tam, L.M.; Price, N.E.; Wang, Y. Molecular mechanisms of arsenic-induced disruption of DNA repair. Chem. Res. Toxicol., 2020, 33(3), 709-726.
[http://dx.doi.org/10.1021/acs.chemrestox.9b00464] [PMID: 31986875]
[52]
Huang, C.H.; Lee, Y.C.; Chiou, J.T.; Shi, Y.J.; Wang, L.J.; Chang, L.S. Arsenic trioxide-induced p38 MAPK and Akt mediated MCL1 downregulation causes apoptosis of BCR-ABL1-positive leukemia cells. Toxicol. Appl. Pharmacol., 2020, 397, 115013.
[http://dx.doi.org/10.1016/j.taap.2020.115013] [PMID: 32305283]
[53]
Gao, L.; Xue, B.; Xiang, B.; Liu, K.J. Arsenic trioxide disturbs the LIS1/NDEL1/dynein microtubule dynamic complex by disrupting the CLIP170 zinc finger in head and neck cancer. Toxicol. Appl. Pharmacol., 2020, 403, 115158.
[http://dx.doi.org/10.1016/j.taap.2020.115158] [PMID: 32717241]
[54]
Wang, Q.Q.; Hua, H.Y.; Naranmandura, H.; Zhu, H.H. Balance between the toxicity and anticancer activity of arsenic trioxide in treatment of acute promyelocytic leukemia. Toxicol. Appl. Pharmacol., 2020, 409, 115299.
[http://dx.doi.org/10.1016/j.taap.2020.115299] [PMID: 33091440]
[55]
Maimaitiyiming, Y.; Shao, Y.M.; Chen, W.Z.; Jiang, Y.; Bu, N.; Ma, L.Y.; Wang, Q.Q.; Lu, X.Y.; Naranmandura, H. Irreversibility of arsenic trioxide induced PML/RARα fusion protein solubility changes. Metallomics, 2019, 11(12), 2089-2096.
[http://dx.doi.org/10.1039/C9MT00220K] [PMID: 31670356]
[56]
Maimaitiyiming, Y.; Wang, Q.Q.; Hsu, C.H.; Naranmandura, H. Arsenic induced epigenetic changes and relevance to treatment of acute promyelocytic leukemia and beyond. Toxicol. Appl. Pharmacol., 2020, 406, 115212.
[http://dx.doi.org/10.1016/j.taap.2020.115212] [PMID: 32882258]
[57]
Zhu, H.H.; Qin, Y.Z.; Huang, X.J. Resistance to arsenic therapy in acute promyelocytic leukemia. N. Engl. J. Med., 2014, 370(19), 1864-1866.
[http://dx.doi.org/10.1056/NEJMc1316382] [PMID: 24806185]
[58]
Lehmann-Che, J.; Bally, C.; de Thé, H. Resistance to therapy in acute promyelocytic leukemia. N. Engl. J. Med., 2014, 371(12), 1170-1172.
[http://dx.doi.org/10.1056/NEJMc1409040] [PMID: 25229938]
[59]
Meakin, C.J.; Szilagyi, J.T.; Avula, V.; Fry, R.C. Inorganic arsenic and its methylated metabolites as endocrine disruptors in the placenta: Mechanisms underpinning glucocorticoid receptor (GR) pathway perturbations. Toxicol. Appl. Pharmacol., 2020, 409, 115305.
[http://dx.doi.org/10.1016/j.taap.2020.115305] [PMID: 33129825]
[60]
Barguilla, I.; Peremartí, J.; Bach, J.; Marcos, R.; Hernández, A. Role of As3mt and Mth1 in the genotoxic and carcinogenic effects induced by long-term exposures to arsenic in MEF cells. Toxicol. Appl. Pharmacol., 2020, 409, 115303.
[http://dx.doi.org/10.1016/j.taap.2020.115303] [PMID: 33141059]
[61]
Douillet, C.; Koller, B.H.; Stýblo, M. Metabolism of Inorganic Arsenic in Mice Lacking Genes Encoding GST-P, GST-M, and GST-T. Chem. Res. Toxicol., 2020, 33(8), 2043-2046.
[http://dx.doi.org/10.1021/acs.chemrestox.0c00273] [PMID: 32700902]
[62]
Maimaitiyiming, Y.; Zhu, H.H.; Yang, C.; Naranmandura, H. Biotransformation of arsenic trioxide by AS3MT favors eradication of acute promyelocytic leukemia: revealing the hidden facts. Drug Metab. Rev., 2020, 52(3), 425-437.
[http://dx.doi.org/10.1080/03602532.2020.1791173] [PMID: 32677488]
[63]
Tam, L.M.; Wang, Y. Arsenic Exposure and Compromised Protein Quality Control. Chem. Res. Toxicol., 2020, 33(7), 1594-1604.
[http://dx.doi.org/10.1021/acs.chemrestox.0c00107] [PMID: 32410444]
[64]
Banerjee, M.; Ferragut Cardoso, A.P.; Lykoudi, A.; Wilkey, D.W.; Pan, J.; Watson, W.H.; Garbett, N.C.; Rai, S.N.; Merchant, M.L.; States, J.C. Arsenite exposure displaces zinc from zranb2 leading to altered splicing. Chem. Res. Toxicol., 2020, 33(6), 1403-1417.
[http://dx.doi.org/10.1021/acs.chemrestox.9b00515] [PMID: 32274925]
[65]
Li, S.; Ren, Q. Effects of Arsenic on wnt/β-catenin signaling pathway: a systematic review and meta-analysis. Chem. Res. Toxicol., 2020, 33(6), 1458-1467.
[http://dx.doi.org/10.1021/acs.chemrestox.0c00019] [PMID: 32307979]
[66]
Maimaitiyiming, Y.; Wang, C.; Xu, S.; Islam, K.; Chen, Y.J.; Yang, C.; Wang, Q.Q.; Naranmandura, H. Role of arsenic (+3 oxidation state) methyltransferase in arsenic mediated APL treatment: an in vitro investigation. Metallomics, 2018, 10(6), 828-837.
[http://dx.doi.org/10.1039/C8MT00057C] [PMID: 29774349]
[67]
Hirano, S.; Kobayashi, Y.; Cui, X.; Kanno, S.; Hayakawa, T.; Shraim, A. The accumulation and toxicity of methylated arsenicals in endothelial cells: important roles of thiol compounds. Toxicol. Appl. Pharmacol., 2004, 198(3), 458-467.
[http://dx.doi.org/10.1016/j.taap.2003.10.023] [PMID: 15276427]
[68]
Wang, Q.Q.; Zhou, X.Y.; Zhang, Y.F.; Bu, N.; Zhou, J.; Cao, F.L.; Naranmandura, H. Methylated arsenic metabolites bind to PML protein but do not induce cellular differentiation and PML-RARα protein degradation. Oncotarget, 2015, 6(28), 25646-25659.
[http://dx.doi.org/10.18632/oncotarget.4662] [PMID: 26213848]
[69]
Mann, K.K.; Wallner, B.; Lossos, I.S.; Miller, W.H., Jr Darinaparsin: A novel organic arsenical with promising anticancer activity. Expert Opin. Investig. Drugs, 2009, 18(11), 1727-1734.
[http://dx.doi.org/10.1517/13543780903282759] [PMID: 19780704]
[70]
Hosein, P.J.; Craig, M.D.; Tallman, M.S.; Boccia, R.V.; Hamilton, B.L.; Lewis, J.J.; Lossos, I.S. A multicenter phase II study of darinaparsin in relapsed or refractory Hodgkin’s and non-Hodgkin’s lymphoma. Am. J. Hematol., 2012, 87(1), 111-114.
[http://dx.doi.org/10.1002/ajh.22232] [PMID: 22081459]
[71]
Dilda, P.J.; Ramsay, E.E.; Corti, A.; Pompella, A.; Hogg, P.J. Metabolism of the tumor angiogenesis inhibitor 4-(N-(S-Glutathionylacetyl)amino)phenylarsonous acid. J. Biol. Chem., 2008, 283(51), 35428-35434.
[http://dx.doi.org/10.1074/jbc.M804470200] [PMID: 18723877]
[72]
Horsley, L.; Cummings, J.; Middleton, M.; Ward, T.; Backen, A.; Clamp, A.; Dawson, M.; Farmer, H.; Fisher, N.; Halbert, G.; Halford, S.; Harris, A.; Hasan, J.; Hogg, P.; Kumaran, G.; Little, R.; Parker, G.J.; Potter, P.; Saunders, M.; Roberts, C.; Shaw, D.; Smith, N.; Smythe, J.; Taylor, A.; Turner, H.; Watson, Y.; Dive, C.; Jayson, G.C. Cancer Research UK Drug Development Office Phase I clinical trial. A phase 1 trial of intravenous 4-(N-(S-glutathionylacetyl)amino) phenylarsenoxide (GSAO) in patients with advanced solid tumours. Cancer Chemother. Pharmacol., 2013, 72(6), 1343-1352.
[http://dx.doi.org/10.1007/s00280-013-2320-9] [PMID: 24141375]
[73]
Hussain, L.; Maimaitiyiming, Y.; Su, L.; Wang, Q.Q.; Naranmandura, H. Phenylarsine oxide can induce degradation of plzf-rarα variant fusion protein of acute promyelocytic leukemia. Chem. Res. Toxicol., 2019, 32(4), 548-550.
[http://dx.doi.org/10.1021/acs.chemrestox.9b00072] [PMID: 30869512]
[74]
Sharma, P.; Perez, D.; Cabrera, A.; Rosas, N.; Arias, J.L. Perspectives of antimony compounds in oncology. Acta Pharmacol. Sin., 2008, 29(8), 881-890.
[http://dx.doi.org/10.1111/j.1745-7254.2008.00818.x] [PMID: 18664320]
[75]
Meireles, C.B.; Maia, L.C.; Soares, G.C.; Teodoro, I.P.P.; Gadelha, M.D.S.V.; da Silva, C.G.L.; de Lima, M.A.P. Atypical presentations of cutaneous leishmaniasis: A systematic review. Acta Trop., 2017, 172, 240-254.
[http://dx.doi.org/10.1016/j.actatropica.2017.05.022] [PMID: 28526427]
[76]
van Griensven, J.; Diro, E. Visceral Leishmaniasis: Recent advances in diagnostics and treatment regimens. Infect. Dis. Clin. North Am., 2019, 33(1), 79-99.
[http://dx.doi.org/10.1016/j.idc.2018.10.005] [PMID: 30712769]
[77]
Yang, C.; Hao, R.; Lan, Y.F.; Chen, Y.J.; Wang, C.; Bu, N.; Wang, Q.Q.; Hussain, L.; Ma, L.Y.; Maimaitiyiming, Y.; Lu, X.Y.; Naranmandura, H. Integrity of zinc finger motifs in PML protein is necessary for inducing its degradation by antimony. Metallomics, 2019, 11(8), 1419-1429.
[http://dx.doi.org/10.1039/C9MT00102F] [PMID: 31313788]
[78]
Bara, A.; Socaciu, C.; Silvestru, C.; Haiduc, I. Antitumor organometallics. I. Activity of some diphenyltin(IV) and diphenylantimony(III) derivatives on in vitro and in vivo Ehrlich ascites tumor. Anticancer Res., 1991, 11(4), 1651-1655.
[PMID: 1836124]
[79]
Kobayashi, A.; Ogra, Y. Metabolism of tellurium, antimony and germanium simultaneously administered to rats. J. Toxicol. Sci., 2009, 34(3), 295-303.
[http://dx.doi.org/10.2131/jts.34.295] [PMID: 19483383]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy