Generic placeholder image

Current Diabetes Reviews

Editor-in-Chief

ISSN (Print): 1573-3998
ISSN (Online): 1875-6417

Review Article

Why is the Incidence of Type 1 Diabetes Increasing?

Author(s): Alexia G. Abela and Stephen Fava *

Volume 17, Issue 8, 2021

Published on: 23 August, 2021

Article ID: e030521193110 Pages: 13

DOI: 10.2174/1573399817666210503133747

Price: $65

Open Access Journals Promotions 2
Abstract

Type 1 diabetes is a condition that can lead to serious long-term complications and can have significant psychological and quality of life implications. Its incidence is increasing in all parts of the world, but the reasons for this are incompletely understood. Genetic factors alone cannot explain such a rapid increase in incidence; therefore, environmental factors must be implicated.

Lifestyle factors have been classically associated with type 2 diabetes. However, there are data implicating obesity and insulin resistance to type 1 diabetes as well (accelerator hypothesis). Cholesterol has also been shown to be correlated with the incidence of type 1 diabetes; this may be mediated by immunomodulatory effects of cholesterol. There is considerable interest in early life factors, including maternal diet, mode of delivery, infant feeding, childhood diet, microbial exposure (hygiene hypothesis), and use of anti-microbials in early childhood.

Distance from the sea has recently been shown to be negatively correlated with the incidence of type 1 diabetes. This may contribute to the increasing incidence of type 1 diabetes since people are increasingly living closer to the sea. Postulated mediating mechanisms include hours of sunshine (and possibly vitamin D levels), mean temperature, dietary habits, and pollution. Ozone, polychlorinated biphenyls, phthalates, trichloroethylene, dioxin, heavy metals, bisphenol, nitrates/nitrites, and mercury are amongst the chemicals which may increase the risk of type 1 diabetes.

Another area of research concerns the role of the skin and gut microbiome. The microbiome is affected by many of the factors mentioned above, including the mode of delivery, infant feeding, exposure to microbes, antibiotic use, and dietary habits. Research on the reasons why the incidence of type 1 diabetes is increasing not only sheds light on its pathogenesis but also offers insights into ways we can prevent type 1 diabetes.

Keywords: Type 1 diabetes, incidence, pollution, hygiene hypothesis, accelerator hypothesis, microbiome.

[1]
Groop PH, Thomas M, Feodoroff M, Forsblom C, Harjutsalo V. FinnDiane Study Group. Excess mortality in patients with type 1 diabetes without albuminuria-separating the contribution of early and late risks. Diabetes Care 2018; 41(4): 748-54.
[http://dx.doi.org/10.2337/dc17-1618] [PMID: 29378776]
[2]
Snell-Bergeon JK, Maahs DM. Diabetes: Elevated risk of mortality in type 1 diabetes mellitus. Nat Rev Endocrinol 2015; 11(3): 136-8.
[http://dx.doi.org/10.1038/nrendo.2014.245] [PMID: 25583696]
[3]
Lee YB, Han K, Kim B, et al. Risk of early mortality and cardiovascular disease in type 1 diabetes: a comparison with type 2 diabetes, a nationwide study. Cardiovasc Diabetol 2019; 18(1): 157.
[http://dx.doi.org/10.1186/s12933-019-0953-7] [PMID: 31733656]
[4]
Livingstone SJ, Levin D, Looker HC, et al. Scottish Diabetes Research Network epidemiology group; Scottish Renal Registry. Estimated life expectancy in a Scottish cohort with type 1 diabetes, 2008-2010. JAMA 2015; 313(1): 37-44.
[http://dx.doi.org/10.1001/jama.2014.16425] [PMID: 25562264]
[5]
Ou HT, Yang CY, Wang JD, Hwang JS, Wu JS. Life expectancy and lifetime health care expenditures for type 1 diabetes: A nationwide longitudinal cohort of incident cases followed for 14 years. Value Health 2016; 19(8): 976-84.
[http://dx.doi.org/10.1016/j.jval.2016.05.017] [PMID: 27987648]
[6]
Pillay S, Anderson J, Couper J, Maftei O, Gent R, Peña AS. Children with type 1 diabetes have delayed flow-mediated dilation. Can J Diabetes 2018; 42(3): 276-80.
[http://dx.doi.org/10.1016/j.jcjd.2017.06.011] [PMID: 28754435]
[7]
Wurm M, Kühnemund L, Maier L, et al. Hemoglobin a1c and retinal arteriolar narrowing in children with type 1 diabetes: The diagnostics of early atherosclerosis risk in kids study. Pediatr Diabetes 2019; 20(5): 622-8.
[http://dx.doi.org/10.1111/pedi.12858] [PMID: 30993848]
[8]
Khedr D, Hafez M, Lumpuy-Castillo J, et al. Lipid biomarkers as predictors of diastolic dysfunction in diabetes with poor glycemic control. Int J Mol Sci 2020; 21(14): 5079.
[http://dx.doi.org/10.3390/ijms21145079] [PMID: 32708413]
[9]
Balzano-Nogueira L, Ramirez R, Zamkovaya T, et al. Integrative analyses of TEDDY Omics data reveal lipid metabolism abnormalities, increased intracellular ROS and heightened inflammation prior to autoimmunity for type 1 diabetes. Genome Biol 2021; 22(1): 39.
[http://dx.doi.org/10.1186/s13059-021-02262-w] [PMID: 33478573]
[10]
Jensen MT, Sogaard P, Gustafsson I, et al. Echocardiography improves prediction of major adverse cardiovascular events in a population with type 1 diabetes and without known heart disease: The Thousand & 1 Study. Diabetologia 2019; 62(12): 2354-64.
[http://dx.doi.org/10.1007/s00125-019-05009-2] [PMID: 31664481]
[11]
Sharif K, Watad A, Coplan L, Amital H, Shoenfeld Y, Afek A. Psychological stress and type 1 diabetes mellitus: What is the link? Expert Rev Clin Immunol 2018; 14(12): 1081-8.
[http://dx.doi.org/10.1080/1744666X.2018.1538787] [PMID: 30336709]
[12]
Rechenberg K, Whittemore R, Holland M, Grey M. General and diabetes-specific stress in adolescents with type 1 diabetes. Diabetes Res Clin Pract 2017; 130: 1-8.
[http://dx.doi.org/10.1016/j.diabres.2017.05.003] [PMID: 28551480]
[13]
Lukács A, Mayer K, Sasvári P, Barkai L. Health-related quality of life of adolescents with type 1 diabetes in the context of resilience. Pediatr Diabetes 2018; 19(8): 1481-6.
[http://dx.doi.org/10.1111/pedi.12769] [PMID: 30203556]
[14]
Nielsen HB, Ovesen LL, Mortensen LH, Lau CJ, Joensen LE. Type 1 diabetes, quality of life, occupational status and education level - A comparative population-based study. Diabetes Res Clin Pract 2016; 121: 62-8.
[http://dx.doi.org/10.1016/j.diabres.2016.08.021] [PMID: 27662040]
[15]
Hex N, Bartlett C, Wright D, Taylor M, Varley D. Estimating the current and future costs of Type 1 and Type 2 diabetes in the UK, including direct health costs and indirect societal and productivity costs. Diabet Med 2012; 29(7): 855-62.
[http://dx.doi.org/10.1111/j.1464-5491.2012.03698.x] [PMID: 22537247]
[16]
Álvarez Casaño M, Alonso Montejo MDM, Leiva Gea I, et al. Study of direct costs of type 1 diabetes mellitus in Andalusian patients aged 2-16 years. Endocrinol Diabetes Nutr 2019; 66(8): 480-6. [English, Spanish.].
[http://dx.doi.org/10.1016/j.endinu.2019.03.010] [PMID: 31122889]
[17]
Patterson CC, Karuranga S, Salpea P, et al. Worldwide estimates of incidence, prevalence and mortality of type 1 diabetes in children and adolescents: Results from the International Diabetes Federation Diabetes AtlasDiabetes Res Clin Pract. 2019; 157: p. 107842.
[18]
Patterson CC, Dahlquist GG, Gyürüs E, Green A, Soltész G. EURODIAB Study Group. Incidence trends for childhood type 1 diabetes in Europe during 1989-2003 and predicted new cases 2005-20: A multicentre prospective registration study. Lancet 2009; 373(9680): 2027-33.
[http://dx.doi.org/10.1016/S0140-6736(09)60568-7] [PMID: 19481249]
[19]
Liu J, Ren ZH, Qiang H, et al. Trends in the incidence of diabetes mellitus: Results from the Global Burden of Disease Study 2017 and implications for diabetes mellitus prevention. BMC Public Health 2020; 20(1): 1415.
[http://dx.doi.org/10.1186/s12889-020-09502-x] [PMID: 32943028]
[20]
Fourlanos S, Varney MD, Tait BD, et al. The rising incidence of type 1 diabetes is accounted for by cases with lower-risk human leukocyte antigen genotypes. Diabetes Care 2008; 31(8): 1546-9.
[http://dx.doi.org/10.2337/dc08-0239] [PMID: 18487476]
[21]
McNally RJ, Feltbower RG, Parker L, Bodansky HJ, Campbell F, McKinney PA. Space-time clustering analyses of type 1 diabetes among 0- to 29-year-olds in Yorkshire, UK. Diabetologia 2006; 49(5): 900-4.
[http://dx.doi.org/10.1007/s00125-006-0208-5] [PMID: 16557371]
[22]
Law GR, McKinney PA, Staines A, et al. Clustering of childhood IDDM. Links with age and place of residence. Diabetes Care 1997; 20(5): 753-6.
[http://dx.doi.org/10.2337/diacare.20.5.753] [PMID: 9135937]
[23]
Dahlquist GG, Källen BA. Time-space clustering of date at birth in childhood-onset diabetes. Diabetes Care 1996; 19(4): 328-32.
[http://dx.doi.org/10.2337/diacare.19.4.328] [PMID: 8729155]
[24]
Bodington MJ, Muzulu SI, Burden AC. Spatial clustering in childhood diabetes: Evidence of an environmental cause. Diabet Med 1995; 12(10): 865-7.
[http://dx.doi.org/10.1111/j.1464-5491.1995.tb00387.x] [PMID: 8846675]
[25]
Manuwald U, Heinke P, Salzsieder E, et al. Incidence trends of type 1 diabetes before and after the reunification in children up to 14 years of age in Saxony, Eastern Germany.
[26]
Jansen A, Homo-Delarche F, Hooijkaas H, Leenen PJ, Dardenne M, Drexhage HA. Immunohistochemical characterization of monocytes-macrophages and dendritic cells involved in the initiation of the insulitis and beta-cell destruction in NOD mice. Diabetes 1994; 43(5): 667-75.
[http://dx.doi.org/10.2337/diab.43.5.667] [PMID: 8168644]
[27]
Voorbij HA, Jeucken PH, Kabel PJ, De Haan M, Drexhage HA. Dendritic cells and scavenger macrophages in pancreatic islets of prediabetic BB rats. Diabetes 1989; 38(12): 1623-9.
[http://dx.doi.org/10.2337/diab.38.12.1623] [PMID: 2684715]
[28]
Pearson JA, Wong FS, Wen L. The importance of the Non Obese Diabetic (NOD) mouse model in autoimmune diabetes. J Autoimmun 2016; 66: 76-88.
[http://dx.doi.org/10.1016/j.jaut.2015.08.019] [PMID: 26403950]
[29]
Diabetes Epidemiology Research International Group. Geographic patterns of childhood insulin-dependent diabetes mellitus. Diabetes 1988; 37(8): 1113-9.
[http://dx.doi.org/10.2337/diab.37.8.1113] [PMID: 3391346]
[30]
Karvonen M, Tuomilehto J, Libman I, LaPorte R. World Health Organization DIAMOND Project Group. A review of the recent epidemiological data on the worldwide incidence of type 1 (insulin-dependent) diabetes mellitus. Diabetologia 1993; 36(10): 883-92.
[http://dx.doi.org/10.1007/BF02374468] [PMID: 8243865]
[31]
EURODIAB ACE Study Group. Variation and trends in incidence of childhood diabetes in Europe. Lancet 2000; 355(9207): 873-6.
[http://dx.doi.org/10.1016/S0140-6736(99)07125-1] [PMID: 10752702]
[32]
Waernbaum I, Dahlquist G. Low mean temperature rather than few sunshine hours are associated with an increased incidence of type 1 diabetes in children. Eur J Epidemiol 2016; 31(1): 61-5.
[http://dx.doi.org/10.1007/s10654-015-0023-8] [PMID: 25821168]
[33]
Dahlquist G, Mustonen L. Childhood onset diabetes-time trends and climatological factors. Int J Epidemiol 1994; 23(6): 1234-41.
[http://dx.doi.org/10.1093/ije/23.6.1234] [PMID: 7721526]
[34]
Sloka S, Grant M, Newhook LA. The geospatial relation between UV solar radiation and type 1 diabetes in Newfoundland. Acta Diabetol 2010; 47(1): 73-8.
[http://dx.doi.org/10.1007/s00592-009-0100-0] [PMID: 19238314]
[35]
Abela AG, Fava S. Incidence of type 1 diabetes and distance from the sea: A descriptive epidemiological study. J Diabetes 2019; 11(5): 345-7.
[http://dx.doi.org/10.1111/1753-0407.12862] [PMID: 30264428]
[36]
UN Atlas of the Oceans. Available from: http://www.oceansatlas.org/subtopic/en/c/92/accessed 15th December 2020.
[37]
Mohr SB, Garland CF, Gorham ED, Garland FC. The association between ultraviolet B irradiance, vitamin D status and incidence rates of type 1 diabetes in 51 regions worldwide. Diabetologia 2008; 51(8): 1391-8.
[http://dx.doi.org/10.1007/s00125-008-1061-5] [PMID: 18548227]
[38]
Sørensen IM, Joner G, Jenum PA, Eskild A, Torjesen PA, Stene LC. Maternal serum levels of 25-hydroxy-vitamin D during pregnancy and risk of type 1 diabetes in the offspring. Diabetes 2012; 61(1): 175-8.
[http://dx.doi.org/10.2337/db11-0875] [PMID: 22124461]
[39]
Mathieu C, Waer M, Casteels K, Laureys J, Bouillon R. Prevention of type I diabetes in NOD mice by nonhypercalcemic doses of a new structural analog of 1,25-dihydroxyvitamin D3, KH1060. Endocrinology 1995; 136(3): 866-72.
[http://dx.doi.org/10.1210/endo.136.3.7867594] [PMID: 7867594]
[40]
The EURODIAB Substudy 2 Study Group. Vitamin D supplement in early childhood and risk for Type I (insulin-dependent) diabetes mellitus. Diabetologia 1999; 42(1): 51-4.
[http://dx.doi.org/10.1007/s001250051112] [PMID: 10027578]
[41]
Hyppönen E, Läärä E, Reunanen A, Järvelin MR, Virtanen SM. Intake of vitamin D and risk of type 1 diabetes: a birth-cohort study. Lancet 2001; 358(9292): 1500-3.
[http://dx.doi.org/10.1016/S0140-6736(01)06580-1] [PMID: 11705562]
[42]
Penna G, Adorini L. 1 α,25-dihydroxyvitamin D3 inhibits differentiation, maturation, activation, and survival of dendritic cells leading to impaired alloreactive T cell activation. J Immunol 2000; 164(5): 2405-11.
[http://dx.doi.org/10.4049/jimmunol.164.5.2405] [PMID: 10679076]
[43]
van Halteren AGS, van Etten E, de Jong EC, Bouillon R, Roep BO, Mathieu C. Redirection of human autoreactive T-cells Upon interaction with dendritic cells modulated by TX527, an analog of 1,25 dihydroxyvitamin D(3). Diabetes 2002; 51(7): 2119-25.
[http://dx.doi.org/10.2337/diabetes.51.7.2119] [PMID: 12086941]
[44]
Adamczak DM, Nowak JK, Frydrychowicz M, Kaczmarek M, Sikora J. The role of Toll-like receptors and vitamin D in diabetes mellitus type 1-a review. Scand J Immunol 2014; 80(2): 75-84.
[http://dx.doi.org/10.1111/sji.12188] [PMID: 24845558]
[45]
Chen S, Sims GP, Chen XX, Gu YY, Chen S, Lipsky PE. Modulatory effects of 1,25-dihydroxyvitamin D3 on human B cell differentiation. J Immunol 2007; 179(3): 1634-47.
[http://dx.doi.org/10.4049/jimmunol.179.3.1634] [PMID: 17641030]
[46]
Boonstra A, Barrat FJ, Crain C, Heath VL, Savelkoul HF, O’Garra A. 1α,25-Dihydroxyvitamin d3 has a direct effect on naive CD4(+) T cells to enhance the development of Th2 cells. J Immunol 2001; 167(9): 4974-80.
[http://dx.doi.org/10.4049/jimmunol.167.9.4974] [PMID: 11673504]
[47]
Shao F, Zheng P, Yu D, Zhou Z, Jia L. Follicular helper T cells in type 1 diabetes. FASEB J 2020; 34(1): 30-40.
[http://dx.doi.org/10.1096/fj.201901637R] [PMID: 31914661]
[48]
Fsadni P, Fsadni C, Fava S, Montefort S. Correlation of worldwide incidence of type 1 diabetes (DiaMond) with prevalence of asthma and atopic eczema (ISAAC). Clin Respir J 2012; 6(1): 18-25.
[http://dx.doi.org/10.1111/j.1752-699X.2011.00239.x] [PMID: 21501393]
[49]
Olesen AB, Juul S, Birkebaek N, Thestrup-Pedersen K. Association between atopic dermatitis and insulin-dependent diabetes mellitus: A case-control study. Lancet 2001; 357(9270): 1749-52.
[http://dx.doi.org/10.1016/S0140-6736(00)04896-0] [PMID: 11403811]
[50]
Stene LC, Rønningen KS, Bjørnvold M, Undlien DE, Joner G. An inverse association between history of childhood eczema and subsequent risk of type 1 diabetes that is not likely to be explained by HLA-DQ, PTPN22, or CTLA4 polymorphisms. Pediatr Diabetes 2010; 11(6): 386-93.
[http://dx.doi.org/10.1111/j.1399-5448.2009.00605.x] [PMID: 19895409]
[51]
Stene LC, Joner G. Norwegian Childhood Diabetes Study Group. Atopic disorders and risk of childhood-onset type 1 diabetes in individuals. Clin Exp Allergy 2004; 34(2): 201-6.
[http://dx.doi.org/10.1111/j.1365-2222.2004.01864.x] [PMID: 14987298]
[52]
Cardwell CR, Shields MD, Carson DJ, Patterson CC. A meta-analysis of the association between childhood type 1 diabetes and atopic disease. Diabetes Care 2003; 26(9): 2568-74.
[http://dx.doi.org/10.2337/diacare.26.9.2568] [PMID: 12941720]
[53]
Williams AJ, Krug J, Lampeter EF, et al. Raised temperature reduces the incidence of diabetes in the NOD mouse. Diabetologia 1990; 33(10): 635-7.
[http://dx.doi.org/10.1007/BF00400211] [PMID: 2258003]
[54]
Liese AD, Puett RC, Lamichhane AP, et al. Neighborhood level risk factors for type 1 diabetes in youth: The SEARCH case-control study. Int J Health Geogr 2012; 11: 1-4.
[http://dx.doi.org/10.1186/1476-072X-11-1]
[55]
Hathout EH, Beeson WL, Ischander M, Rao R, Mace JW. Air pollution and type 1 diabetes in children. Pediatr Diabetes 2006; 7(2): 81-7.
[http://dx.doi.org/10.1111/j.1399-543X.2006.00150.x] [PMID: 16629713]
[56]
Malmqvist E, Larsson HE, Jönsson I, et al. Maternal exposure to air pollution and type 1 diabetes-Accounting for genetic factors. Environ Res 2015; 140: 268-74.
[http://dx.doi.org/10.1016/j.envres.2015.03.024] [PMID: 25880886]
[57]
Elten M, Donelle J, Lima I, et al. Ambient air pollution and incidence of early-onset paediatric type 1 diabetes: A retrospective population-based cohort study. Environ Res 2020; 184: 109291.
[http://dx.doi.org/10.1016/j.envres.2020.109291] [PMID: 32120123]
[58]
Lanzinger S, Rosenbauer J, Sugiri D, et al. Impact of long-term air pollution exposure on metabolic control in children and adolescents with type 1 diabetes: results from the DPV registry. Diabetologia 2018; 61(6): 1354-61.
[http://dx.doi.org/10.1007/s00125-018-4580-8] [PMID: 29478096]
[59]
Jantzen K, Jensen A, Kermanizadeh A, et al. Inhalation of house dust and ozone alters systemic levels of endothelial progenitor cells, oxidative stress, and inflammation in elderly subjects. Toxicol Sci 2018; 163(2): 353-63.
[http://dx.doi.org/10.1093/toxsci/kfy027] [PMID: 29767793]
[60]
Lodovici M, Bigagli E. Oxidative stress and air pollution exposure. J Toxicol 2011; 2011: 487074.
[http://dx.doi.org/10.1155/2011/487074] [PMID: 21860622]
[61]
Kurai J, Onuma K, Sano H, Okada F, Watanabe M. Ozone augments interleukin-8 production induced by ambient particulate matter. Genes Environ 2018; 40: 14.
[http://dx.doi.org/10.1186/s41021-018-0102-7] [PMID: 30026883]
[62]
Yan Z, Jin Y, An Z, Liu Y, Samet JM, Wu W. Inflammatory cell signaling following exposures to particulate matter and ozone. Biochim Biophys Acta 2016; 1860(12): 2826-34.
[http://dx.doi.org/10.1016/j.bbagen.2016.03.030] [PMID: 27015762]
[63]
Arjomandi M, Wong H, Donde A, et al. Exposure to medium and high ambient levels of ozone causes adverse systemic inflammatory and cardiac autonomic effects. Am J Physiol Heart Circ Physiol 2015; 308(12): H1499-509.
[http://dx.doi.org/10.1152/ajpheart.00849.2014] [PMID: 25862833]
[64]
Li W, Dorans KS, Wilker EH, et al. Short-term exposure to ambient air pollution and biomarkers of systemic inflammation: the framingham heart study. Arterioscler Thromb Vasc Biol 2017; 37(9): 1793-800.
[http://dx.doi.org/10.1161/ATVBAHA.117.309799] [PMID: 28751572]
[65]
Holland N, Davé V, Venkat S, et al. Ozone inhalation leads to a dose-dependent increase of cytogenetic damage in human lymphocytes. Environ Mol Mutagen 2015; 56(4): 378-87.
[http://dx.doi.org/10.1002/em.21921] [PMID: 25451016]
[66]
Vella RE, Pillon NJ, Zarrouki B, et al. Ozone exposure triggers insulin resistance through muscle c-Jun N-terminal kinase activation. Diabetes 2015; 64(3): 1011-24.
[http://dx.doi.org/10.2337/db13-1181] [PMID: 25277399]
[67]
Zhong J, Allen K, Rao X, et al. Repeated ozone exposure exacerbates insulin resistance and activates innate immune response in genetically susceptible mice. Inhal Toxicol 2016; 28(9): 383-92.
[http://dx.doi.org/10.1080/08958378.2016.1179373] [PMID: 27240593]
[68]
Hathout EH, Beeson WL, Nahab F, Rabadi A, Thomas W, Mace JW. Role of exposure to air pollutants in the development of type 1 diabetes before and after 5 yr of age. Pediatr Diabetes 2002; 3(4): 184-8.
[http://dx.doi.org/10.1034/j.1399-5448.2002.30403.x] [PMID: 15016145]
[69]
Di Ciaula A. Type I diabetes in paediatric age in Apulia (Italy): Incidence and associations with outdoor air pollutants. Diabetes Res Clin Pract 2016; 111: 36-43.
[http://dx.doi.org/10.1016/j.diabres.2015.10.016] [PMID: 26527558]
[70]
Michalska M, Zorena K, Wąż P, et al. Gaseous pollutants and particulate matter (pm) in ambient air and the number of new cases of type 1 diabetes in children and adolescents in the pomeranian voivodeship, poland. BioMed Res Int 2020; 2020: 1648264.
[http://dx.doi.org/10.1155/2020/1648264] [PMID: 32099842]
[71]
González RN, Torres-Avilés F, Carrasco PE, Salas PF, Pérez BF. Association of the incidence of type 1 diabetes mellitus with environmental factors in Chile during the period 2000-2007. Rev Med Chil 2013; 141(5): 595-601. Spanish
[http://dx.doi.org/10.4067/S0034-98872013000500007] [PMID: 24089274]
[72]
Sheehan A, Freni Sterrantino A, Fecht D, Elliott P, Hodgson S. Childhood type 1 diabetes: An environment-wide association study across England. Diabetologia 2020; 63(5): 964-76.
[http://dx.doi.org/10.1007/s00125-020-05087-7] [PMID: 31980846]
[73]
Tsai DH, Riediker M, Berchet A, et al. Effects of short- and long-term exposures to particulate matter on inflammatory marker levels in the general population. Environ Sci Pollut Res Int 2019; 26(19): 19697-704.
[http://dx.doi.org/10.1007/s11356-019-05194-y] [PMID: 31079306]
[74]
Bengalli R, Molteni E, Longhin E, Refsnes M, Camatini M, Gualtieri M. Release of IL-1 β triggered by Milan summer PM10: Molecular pathways involved in the cytokine release. BioMed Res Int 2013; 2013: 158093.
[http://dx.doi.org/10.1155/2013/158093] [PMID: 23509682]
[75]
Yi L, Wei C, Fan W. Fine-particulate matter (PM2.5), a risk factor for rat gestational diabetes with altered blood glucose and pancreatic GLUT2 expression. Gynecol Endocrinol 2017; 33(8): 611-6.
[http://dx.doi.org/10.1080/09513590.2017.1301923] [PMID: 28368218]
[76]
Gruzieva O, Merid SK, Gref A, et al. Exposure to traffic-related air pollution and serum inflammatory cytokines in children. Environ Health Perspect 2017; 125(6): 067007.
[http://dx.doi.org/10.1289/EHP460] [PMID: 28669936]
[77]
Perret JL, Bowatte G, Lodge CJ, et al. The dose-response association between nitrogen dioxide exposure and serum interleukin-6 concentrations. Int J Mol Sci 2017; 18(5): 1015.
[http://dx.doi.org/10.3390/ijms18051015] [PMID: 28481326]
[78]
Chen YL, Qiao YC, Pan YH, et al. Correlation between serum interleukin-6 level and type 1 diabetes mellitus: A systematic review and meta-analysis. Cytokine 2017; 94: 14-20.
[http://dx.doi.org/10.1016/j.cyto.2017.01.002] [PMID: 28283222]
[79]
Hundhausen C, Roth A, Whalen E, et al. Enhanced T cell responses to IL-6 in type 1 diabetes are associated with early clinical disease and increased IL-6 receptor expression. Sci Transl Med 2016; 8(356): 356ra119.
[http://dx.doi.org/10.1126/scitranslmed.aad9943] [PMID: 27629486]
[80]
Ururahy MA, de Souza KS, Oliveira YM, et al. Association of polymorphisms in IL6 gene promoter region with type 1 diabetes and increased albumin-to-creatinine ratio. Diabetes Metab Res Rev 2015; 31(5): 500-6.
[http://dx.doi.org/10.1002/dmrr.2621] [PMID: 25384728]
[81]
Kubi JA, Chen ACH, Fong SW, et al. Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on the differentiation of embryonic stem cells towards pancreatic lineage and pancreatic beta cell function. Environ Int 2019; 130: 104885.
[http://dx.doi.org/10.1016/j.envint.2019.05.079] [PMID: 31195220]
[82]
Kurita H, Yoshioka W, Nishimura N, Kubota N, Kadowaki T, Tohyama C. Aryl hydrocarbon receptor-mediated effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin on glucose-stimulated insulin secretion in mice. J Appl Toxicol 2009; 29(8): 689-94.
[http://dx.doi.org/10.1002/jat.1459] [PMID: 19623578]
[83]
Novelli M, Piaggi S, De Tata V. 2,3,7,8-Tetrachlorodibenzo-p-dioxin-induced impairment of glucose-stimulated insulin secretion in isolated rat pancreatic islets. Toxicol Lett 2005; 156(2): 307-14.
[http://dx.doi.org/10.1016/j.toxlet.2004.12.004] [PMID: 15737493]
[84]
Kerkvliet NI, Steppan LB, Vorachek W, et al. Activation of aryl hydrocarbon receptor by TCDD prevents diabetes in NOD mice and increases Foxp3+ T cells in pancreatic lymph nodes. Immunotherapy 2009; 1(4): 539-47.
[PMID: 20174617]
[85]
Xu J, Huang G, Nagy T, Guo TL. Bisphenol A alteration of type 1 diabetes in non-obese diabetic (NOD) female mice is dependent on window of exposure. Arch Toxicol 2019; 93(4): 1083-93.
[http://dx.doi.org/10.1007/s00204-019-02419-4] [PMID: 30826855]
[86]
Bodin J, Kocbach Bølling A, Wendt A, et al. Exposure to bisphenol A, but not phthalates, increases spontaneous diabetes type 1 development in NOD mice. Toxicol Rep 2015; 2: 99-110.
[http://dx.doi.org/10.1016/j.toxrep.2015.02.010] [PMID: 28962342]
[87]
Bodin J, Bølling AK, Samuelsen M, Becher R, Løvik M, Nygaard UC. Long-term bisphenol a exposure accelerates insulitis development in diabetes-prone NOD mice. Immunopharmacol Immunotoxicol 2013; 35(3): 349-58.
[http://dx.doi.org/10.3109/08923973.2013.772195] [PMID: 23496298]
[88]
Bodin J, Bølling AK, Becher R, Kuper F, Løvik M, Nygaard UC. Transmaternal bisphenol a exposure accelerates diabetes type 1 development in NOD mice. Toxicol Sci 2014; 137(2): 311-23.
[http://dx.doi.org/10.1093/toxsci/kft242] [PMID: 24189131]
[89]
Cetkovic-Cvrlje M, Thinamany S, Bruner KA, Bisphenol A. Bisphenol A (BPA) aggravates multiple low-dose streptozotocin-induced Type 1 diabetes in C57BL/6 mice. J Immunotoxicol 2017; 14(1): 160-8.
[http://dx.doi.org/10.1080/1547691X.2017.1334722] [PMID: 28707492]
[90]
Wilson NK, Chuang JC, Morgan MK, Lordo RA, Sheldon LS. An observational study of the potential exposures of preschool children to pentachlorophenol, bisphenol-A, and nonylphenol at home and daycare. Environ Res 2007; 103(1): 9-20.
[http://dx.doi.org/10.1016/j.envres.2006.04.006] [PMID: 16750524]
[91]
Kang JH, Kondo F, Katayama Y. Human exposure to bisphenol A. Toxicology 2006; 226(2-3): 79-89.
[http://dx.doi.org/10.1016/j.tox.2006.06.009] [PMID: 16860916]
[92]
İnce T, Balcı A, Yalçın SS, et al. Urinary bisphenol-A levels in children with type 1 diabetes mellitus. J Pediatr Endocrinol Metab 2018; 31(8): 829-36.
[http://dx.doi.org/10.1515/jpem-2018-0141] [PMID: 29975667]
[93]
Cetkovic-Cvrlje M, Olson M, Schindler B, Gong HK. Exposure to DDT metabolite p,p′-DDE increases autoimmune type 1 diabetes incidence in NOD mouse model. J Immunotoxicol 2016; 13(1): 108-18.
[http://dx.doi.org/10.3109/1547691X.2015.1017060] [PMID: 25721050]
[94]
Kaur N, Starling AP, Calafat AM, et al. Longitudinal association of biomarkers of pesticide exposure with cardiovascular disease risk factors in youth with diabetes. Environ Res 2020; 181: 108916.
[http://dx.doi.org/10.1016/j.envres.2019.108916] [PMID: 31761333]
[95]
Rignell-Hydbom A, Elfving M, Ivarsson SA, et al. A nested case- control study of intrauterine exposure to persistent organochlorine pollutants in relation to risk of type 1 diabetes.
[http://dx.doi.org/10.1371/journal.pone.0011281]
[96]
Bagenstose LM, Salgame P, Monestier M. Cytokine regulation of a rodent model of mercuric chloride-induced autoimmunity. Environ Health Perspect 1999; 107: Suppl 5(Suppl 5): 807-.
[97]
Mathieson PW. Mercuric chloride-induced autoimmunity. Autoimmunity 1992; 13(3): 243-7.
[http://dx.doi.org/10.3109/08916939209004830] [PMID: 1472634]
[98]
Chen YW, Huang CF, Yang CY, Yen CC, Tsai KS, Liu SH. Inorganic mercury causes pancreatic beta-cell death via the oxidative stress-induced apoptotic and necrotic pathways. Toxicol Appl Pharmacol 2010; 243(3): 323-31.
[http://dx.doi.org/10.1016/j.taap.2009.11.024] [PMID: 20006636]
[99]
Ludvigsson J, Andersson-White P, Guerrero-Bosagna C. Toxic metals in cord blood and later development of Type 1 diabetes. Pediatr Dimens 2019; 4(2)
[http://dx.doi.org/10.15761/PD.1000186] [PMID: 31396560]
[100]
Haglund B, Ryckenberg K, Selinus O, Dahlquist G. Evidence of a relationship between childhood-onset type I diabetes and low groundwater concentration of zinc. Diabetes Care 1996; 19(8): 873-5.
[http://dx.doi.org/10.2337/diacare.19.8.873] [PMID: 8842606]
[101]
Sørensen M, Andersen ZJ, Nordsborg RB, et al. Long-term exposure to road traffic noise and incident diabetes: a cohort study. Environ Health Perspect 2013; 121(2): 217-22.
[http://dx.doi.org/10.1289/ehp.1205503] [PMID: 23229017]
[102]
Roswall N, Raaschou-Nielsen O, Jensen SS, Tjønneland A, Sørensen M. Long-term exposure to residential railway and road traffic noise and risk for diabetes in a Danish cohort. Environ Res 2018; 160: 292-7.
[http://dx.doi.org/10.1016/j.envres.2017.10.008] [PMID: 29045908]
[103]
Cardwell CR, Stene LC, Joner G, et al. Caesarean section is associated with an increased risk of childhood-onset type 1 diabetes mellitus: a meta-analysis of observational studies. Diabetologia 2008; 51(5): 726-35.
[http://dx.doi.org/10.1007/s00125-008-0941-z] [PMID: 18292986]
[104]
Tanoey J, Gulati A, Patterson C, Becher H. Risk of type 1 diabetes in the offspring born through elective or non-elective caesarean section in comparison to vaginal delivery: a meta-analysis of observational studies. Curr Diab Rep 2019; 19(11): 124.
[http://dx.doi.org/10.1007/s11892-019-1253-z] [PMID: 31712908]
[105]
Waernbaum I, Dahlquist G, Lind T. Perinatal risk factors for type 1 diabetes revisited: a population-based register study. Diabetologia 2019; 62(7): 1173-84.
[http://dx.doi.org/10.1007/s00125-019-4874-5] [PMID: 31041471]
[106]
Lund-Blix NA, Dydensborg Sander S, Størdal K, et al. Infant feeding and risk of type 1 diabetes in two large scandinavian birth cohorts. Diabetes Care 2017; 40(7): 920-7.
[http://dx.doi.org/10.2337/dc17-0016] [PMID: 28487451]
[107]
Güngör D, Nadaud P, LaPergola CC, et al. Infant milk-feeding practices and diabetes outcomes in offspring: a systematic review. Am J Clin Nutr 2019; 109(Suppl 7): 817S-37S.
[108]
Savilahti E, Saarinen KM. Early infant feeding and type 1 diabetes. Eur J Nutr 2009; 48(4): 243-9.
[http://dx.doi.org/10.1007/s00394-009-0008-z] [PMID: 19263185]
[109]
Kyvik KO, Green A, Svendsen A, Mortensen K. Breast feeding and the development of type 1 diabetes mellitus. Diabet Med 1992; 9(3): 233-5.
[http://dx.doi.org/10.1111/j.1464-5491.1992.tb01767.x] [PMID: 1576804]
[110]
Cardwell CR, Stene LC, Ludvigsson J, et al. Breast-feeding and childhood-onset type 1 diabetes: A pooled analysis of individual participant data from 43 observational studies. Diabetes Care 2012; 35(11): 2215-25.
[http://dx.doi.org/10.2337/dc12-0438] [PMID: 22837371]
[111]
Knip M, Åkerblom HK, Becker D, et al. TRIGR Study Group. Hydrolyzed infant formula and early β-cell autoimmunity: a randomized clinical trial. JAMA 2014; 311(22): 2279-87.
[http://dx.doi.org/10.1001/jama.2014.5610] [PMID: 24915259]
[112]
Xiao L, Van’t Land B, Engen PA, et al. Human milk oligosaccharides protect against the development of autoimmune diabetes in NOD-mice. Sci Rep 2018; 8(1): 3829.
[http://dx.doi.org/10.1038/s41598-018-22052-y] [PMID: 29497108]
[113]
Bode L. Human milk oligosaccharides: Every baby needs a sugar mama. Glycobiology 2012; 22(9): 1147-62.
[http://dx.doi.org/10.1093/glycob/cws074] [PMID: 22513036]
[114]
Funda DP, Kaas A, Bock T, Tlaskalová-Hogenová H, Buschard K. Gluten-free diet prevents diabetes in NOD mice. Diabetes Metab Res Rev 1999; 15(5): 323-7.
[http://dx.doi.org/10.1002/(SICI)1520-7560(199909/10)15:5<323::AID-DMRR53>3.0.CO;2-P] [PMID: 10585617]
[115]
Hansen AK, Ling F, Kaas A, Funda DP, Farlov H, Buschard K. Diabetes preventive gluten-free diet decreases the number of caecal bacteria in non-obese diabetic mice. Diabetes Metab Res Rev 2206 22(3): 220-5.
[http://dx.doi.org/10.1002/dmrr.609]
[116]
Hakola L, Miettinen ME, Syrjälä E, et al. Association of cereal, gluten, and dietary fiber intake with islet autoimmunity and type 1 diabetes. JAMA Pediatr 2019; 173: 953-60. [published online ahead of print, 2019 Aug 12].
[http://dx.doi.org/10.1001/jamapediatrics.2019.2564] [PMID: 31403683]
[117]
Pastore MR, Bazzigaluppi E, Belloni C, Arcovio C, Bonifacio E, Bosi E. Six months of gluten-free diet do not influence autoantibody titers, but improve insulin secretion in subjects at high risk for type 1 diabetes. J Clin Endocrinol Metab 2003; 88(1): 162-5.
[http://dx.doi.org/10.1210/jc.2002-021177] [PMID: 12519846]
[118]
Lund-Blix NA, Dong F, Mårild K, et al. Gluten intake and risk of islet autoimmunity and progression to type 1 diabetes in children at increased risk of the disease: The diabetes autoimmunity study in the young (daisy). Diabetes Care 2019; 42(5): 789-96.
[http://dx.doi.org/10.2337/dc18-2315] [PMID: 30796108]
[119]
Hummel S, Pflüger M, Hummel M, Bonifacio E, Ziegler AG. Primary dietary intervention study to reduce the risk of islet autoimmunity in children at increased risk for type 1 diabetes: The BABYDIET study. Diabetes Care 2011; 34(6): 1301-5.
[http://dx.doi.org/10.2337/dc10-2456] [PMID: 21515839]
[120]
Norris JM, Barriga K, Klingensmith G, et al. Timing of initial cereal exposure in infancy and risk of islet autoimmunity. JAMA 2003; 290(13): 1713-20.
[http://dx.doi.org/10.1001/jama.290.13.1713] [PMID: 14519705]
[121]
Larsen J, Weile C, Antvorskov JC, et al. Effect of dietary gluten on dendritic cells and innate immune subsets in BALB/c and NOD mice. PLoS One 2015; 10(3): e0118618.
[http://dx.doi.org/10.1371/journal.pone.0118618] [PMID: 25738288]
[122]
Hansen AK, Ling F, Kaas A, Funda DP, Farlov H, Buschard K. Diabetes preventive gluten-free diet decreases the number of caecal bacteria in non-obese diabetic mice. Diabetes Metab Res Rev 2006; 22(3): 220-5.
[http://dx.doi.org/10.1002/dmrr.609] [PMID: 16355418]
[123]
Marietta EV, Gomez AM, Yeoman C, et al. Low incidence of spontaneous type 1 diabetes in non-obese diabetic mice raised on gluten-free diets is associated with changes in the intestinal microbiome. PLoS One 2013; 8(11): e78687.
[http://dx.doi.org/10.1371/journal.pone.0078687] [PMID: 24236037]
[124]
Muntoni S, Cocco P, Aru G, Cucca F. Nutritional factors and worldwide incidence of childhood type 1 diabetes. Am J Clin Nutr 2000; 71(6): 1525-9.
[http://dx.doi.org/10.1093/ajcn/71.6.1525] [PMID: 10837294]
[125]
Boljat A, Gunjača I, Konstantinović I, et al. Environmental risk factors for type 1 diabetes mellitus development. Exp Clin Endocrinol Diabetes 2017; 125(8): 563-70.
[http://dx.doi.org/10.1055/s-0043-109000] [PMID: 28750427]
[126]
Muntoni S, Mereu R, Atzori L, et al. High meat consumption is associated with type 1 diabetes mellitus in a Sardinian case-control study. Acta Diabetol 2013; 50(5): 713-9.
[http://dx.doi.org/10.1007/s00592-012-0385-2] [PMID: 22391937]
[127]
Syrjälä E, Nevalainen J, Peltonen J, et al. A joint modeling approach for childhood meat, fish and egg consumption and the risk of advanced islet autoimmunity. Sci Rep 2019; 9(1): 7760.
[128]
Dahlquist GG, Blom LG, Persson LA, Sandström AI, Wall SG. Dietary factors and the risk of developing insulin dependent diabetes in childhood. BMJ 1990; 300(6735): 1302-6.
[http://dx.doi.org/10.1136/bmj.300.6735.1302] [PMID: 2369660]
[129]
Chen K, Chen H, Faas MM, et al. Specific inulin-type fructan fibers protect against autoimmune diabetes by modulating gut immunity, barrier function, and microbiota homeostasis. Mol Nutr Food Res 2017; 61(8): 4.
[http://dx.doi.org/10.1002/mnfr.201601006]
[130]
Toivonen RK, Emani R, Munukka E, et al. Fermentable fibres condition colon microbiota and promote diabetogenesis in NOD mice. Diabetologia 2014; 57(10): 2183-92.
[http://dx.doi.org/10.1007/s00125-014-3325-6] [PMID: 25031069]
[131]
Dahlquist G, Blom L, Lönnberg G. The Swedish Childhood Diabetes Study-a multivariate analysis of risk determinants for diabetes in different age groups. Diabetologia 1991; 34(10): 757-62.
[http://dx.doi.org/10.1007/BF00401524] [PMID: 1959708]
[132]
Bahadoran Z, Ghasemi A, Mirmiran P, Azizi F, Hadaegh F. Nitrate-nitrite-nitrosamines exposure and the risk of type 1 diabetes: A review of current data. World J Diabetes 2016; 7(18): 433-40.
[http://dx.doi.org/10.4239/wjd.v7.i18.433] [PMID: 27795817]
[133]
Jumpertz R, Le DS, Turnbaugh PJ, et al. Energy-balance studies reveal associations between gut microbes, caloric load, and nutrient absorption in humans. Am J Clin Nutr 2011; 94(1): 58-65.
[http://dx.doi.org/10.3945/ajcn.110.010132] [PMID: 21543530]
[134]
Rook GA. Hygiene hypothesis and autoimmune diseases. Clin Rev Allergy Immunol 2012; 42(1): 5-15.
[http://dx.doi.org/10.1007/s12016-011-8285-8] [PMID: 22090147]
[135]
Bach JF. The hygiene hypothesis in autoimmunity: The role of pathogens and commensals. Nat Rev Immunol 2018; 18(2): 105-20.
[http://dx.doi.org/10.1038/nri.2017.111] [PMID: 29034905]
[136]
Rook GA. Regulation of the immune system by biodiversity from the natural environment: an ecosystem service essential to health. Proc Natl Acad Sci USA 2013; 110(46): 18360-7.
[http://dx.doi.org/10.1073/pnas.1313731110] [PMID: 24154724]
[137]
Abela AG, Fava S. Association of incidence of type 1 diabetes with mortality from infectious disease and with antibiotic susceptibility at a country level. Acta Diabetol 2013; 50(6): 859-65.
[http://dx.doi.org/10.1007/s00592-013-0464-z] [PMID: 23512474]
[138]
EURODIAB Substudy 2 Study Group. Infections and vaccinations as risk factors for childhood type I (insulin-dependent) diabetes mellitus: a multicentre case-control investigation. Diabetologia 2000; 43(1): 47-53.
[http://dx.doi.org/10.1007/s001250050006] [PMID: 10663215]
[139]
Kaila B, Taback SP. The effect of day care exposure on the risk of developing type 1 diabetes: a meta-analysis of case-control studies. Diabetes Care 2001; 24(8): 1353-8.
[http://dx.doi.org/10.2337/diacare.24.8.1353] [PMID: 11473069]
[140]
Seiskari T, Kondrashova A, Viskari H, et al. EPIVIR study group. Allergic sensitization and microbial load-a comparison between Finland and Russian Karelia. Clin Exp Immunol 2007; 148(1): 47-52.
[http://dx.doi.org/10.1111/j.1365-2249.2007.03333.x] [PMID: 17302731]
[141]
Stene LC, Barriga K, Norris JM, et al. Symptoms of common maternal infections in pregnancy and risk of islet autoimmunity in early childhood. Diabetes Care 2003; 26(11): 3136-41.
[http://dx.doi.org/10.2337/diacare.26.11.3136] [PMID: 14578251]
[142]
Cardwell CR, Carson DJ, Patterson CC. No association between routinely recorded infections in early life and subsequent risk of childhood-onset Type 1 diabetes: a matched case-control study using the UK General Practice Research Database. Diabet Med 2008; 25(3): 261-7.
[http://dx.doi.org/10.1111/j.1464-5491.2007.02351.x] [PMID: 18201209]
[143]
Tapia G, Størdal K, Mårild K, et al. Antibiotics, acetaminophen and infections during prenatal and early life in relation to type 1 diabetes. Int J Epidemiol 2018; 47(5): 1538-48.
[http://dx.doi.org/10.1093/ije/dyy092] [PMID: 29868838]
[144]
Abela AG, Fava S. Does the level of bacterial exposure in early life impact the risk of Type 1 diabetes? Expert Rev Clin Immunol 2013; 9(8): 695-7.
[http://dx.doi.org/10.1586/1744666X.2013.814410] [PMID: 23971746]
[145]
Toyota T, Satoh J, Oya K, Shintani S, Okano T. Streptococcal preparation (OK-432) inhibits development of type I diabetes in NOD mice. Diabetes 1986; 35(4): 496-9.
[http://dx.doi.org/10.2337/diab.35.4.496] [PMID: 3956883]
[146]
Satoh J, Shintani S, Oya K, et al. Treatment with streptococcal preparation (OK-432) suppresses anti-islet autoimmunity and prevents diabetes in BB rats. Diabetes 1988; 37(9): 1188-94.
[http://dx.doi.org/10.2337/diab.37.9.1188] [PMID: 3044884]
[147]
Qin HY, Singh B. BCG vaccination prevents insulin-dependent diabetes mellitus (IDDM) in NOD mice after disease acceleration with cyclophosphamide. J Autoimmun 1997; 10(3): 271-8.
[http://dx.doi.org/10.1006/jaut.1997.0136] [PMID: 9218754]
[148]
Matsuzaki T, Nagata Y, Kado S, et al. Prevention of onset in an insulin-dependent diabetes mellitus model, NOD mice, by oral feeding of Lactobacillus casei. APMIS 1997; 105(8): 643-9.
[http://dx.doi.org/10.1111/j.1699-0463.1997.tb05066.x] [PMID: 9298104]
[149]
Brugman S, Klatter FA, Visser JT, et al. Antibiotic treatment partially protects against type 1 diabetes in the Bio-Breeding diabetes-prone rat. Is the gut flora involved in the development of type 1 diabetes? Diabetologia 2006; 49(9): 2105-8.
[http://dx.doi.org/10.1007/s00125-006-0334-0] [PMID: 16816951]
[150]
Murri M, Leiva I, Gomez-Zumaquero JM, et al. Gut microbiota in children with type 1 diabetes differs from that in healthy children: a case-control study. BMC Med 2013; 11: 46.
[http://dx.doi.org/10.1186/1741-7015-11-46] [PMID: 23433344]
[151]
Leiva-Gea I, Sánchez-Alcoholado L, Martín-Tejedor B, et al. Gut microbiota differs in composition and functionality between children with type 1 diabetes and mody2 and healthy control subjects: a case-control study. Diabetes Care 2018; 41(11): 2385-95.
[http://dx.doi.org/10.2337/dc18-0253] [PMID: 30224347]
[152]
de Goffau MC, Fuentes S, van den Bogert B, et al. Aberrant gut microbiota composition at the onset of type 1 diabetes in young children. Diabetologia 2014; 57(8): 1569-77.
[http://dx.doi.org/10.1007/s00125-014-3274-0] [PMID: 24930037]
[153]
Kostic AD, Gevers D, Siljander H, et al. DIABIMMUNE Study Group. The dynamics of the human infant gut microbiome in development and in progression toward type 1 diabetes. Cell Host Microbe 2015; 17(2): 260-73.
[http://dx.doi.org/10.1016/j.chom.2015.01.001] [PMID: 25662751]
[154]
Alkanani AK, Hara N, Gottlieb PA, et al. Alterations in intestinal microbiota correlate with susceptibility to type 1 diabetes. Diabetes 2015; 64(10): 3510-20.
[http://dx.doi.org/10.2337/db14-1847] [PMID: 26068542]
[155]
Harbison JE, Roth-Schulze AJ, Giles LC, et al. Gut microbiome dysbiosis and increased intestinal permeability in children with islet autoimmunity and type 1 diabetes: a prospective cohort study. Pediatr Diabetes 2019; 20(5): 574-83.
[http://dx.doi.org/10.1111/pedi.12865] [PMID: 31081243]
[156]
de Goffau MC, Luopajärvi K, Knip M, et al. Fecal microbiota composition differs between children with β-cell autoimmunity and those without. Diabetes 2013; 62(4): 1238-44.
[http://dx.doi.org/10.2337/db12-0526] [PMID: 23274889]
[157]
Davis-Richardson AG, Ardissone AN, Dias R, et al. Bacteroides dorei dominates gut microbiome prior to autoimmunity in Finnish children at high risk for type 1 diabetes. Front Microbiol 2014; 5: 678.
[http://dx.doi.org/10.3389/fmicb.2014.00678] [PMID: 25540641]
[158]
Brown CT, Davis-Richardson AG, Giongo A, et al. Gut microbiome metagenomics analysis suggests a functional model for the development of autoimmunity for type 1 diabetes. PLoS One 2011; 6(10): e25792.
[http://dx.doi.org/10.1371/journal.pone.0025792] [PMID: 22043294]
[159]
Vatanen T, Franzosa EA, Schwager R, et al. The human gut microbiome in early-onset type 1 diabetes from the TEDDY study. Nature 2018; 562(7728): 589-94.
[http://dx.doi.org/10.1038/s41586-018-0620-2] [PMID: 30356183]
[160]
Mariño E, Richards JL, McLeod KH, et al. Gut microbial metabolites limit the frequency of autoimmune T cells and protect against type 1 diabetes. Nat Immunol 2017; 18(5): 552-62.
[http://dx.doi.org/10.1038/ni.3713] [PMID: 28346408]
[161]
Luu M, Visekruna A. Short-chain fatty acids: Bacterial messengers modulating the immunometabolism of T cells. Eur J Immunol 2019; 49(6): 842-8.
[http://dx.doi.org/10.1002/eji.201848009] [PMID: 31054154]
[162]
Furusawa Y, Obata Y, Fukuda S, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 2013; 504(7480): 446-50.
[http://dx.doi.org/10.1038/nature12721] [PMID: 24226770]
[163]
Arpaia N, Campbell C, Fan X, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 2013; 504(7480): 451-5.
[http://dx.doi.org/10.1038/nature12726] [PMID: 24226773]
[164]
Yu H, Paiva R, Flavell RA. Harnessing the power of regulatory T- cells to control autoimmune diabetes: Overview and perspective. Immunology 2018; 153(2): 161-70.
[http://dx.doi.org/10.1111/imm.12867] [PMID: 29155454]
[165]
Cabrera SM, Rigby MR, Mirmira RG. Targeting regulatory T cells in the treatment of type 1 diabetes mellitus. Curr Mol Med 2012; 12(10): 1261-72.
[http://dx.doi.org/10.2174/156652412803833634] [PMID: 22709273]
[166]
Valladares R, Sankar D, Li N, et al. Lactobacillus johnsonii N6.2 mitigates the development of type 1 diabetes in BB-DP rats. PLoS One 2010; 5(5): e10507.
[http://dx.doi.org/10.1371/journal.pone.0010507] [PMID: 20463897]
[167]
Lau K, Benitez P, Ardissone A, et al. Inhibition of type 1 diabetes correlated to a Lactobacillus johnsonii N6.2-mediated Th17 bias. J Immunol 2011; 186(6): 3538-46.
[http://dx.doi.org/10.4049/jimmunol.1001864] [PMID: 21317395]
[168]
Calcinaro F, Dionisi S, Marinaro M, et al. Oral probiotic administration induces interleukin-10 production and prevents spontaneous autoimmune diabetes in the non-obese diabetic mouse. Diabetologia 2005; 48(8): 1565-75.
[http://dx.doi.org/10.1007/s00125-005-1831-2] [PMID: 15986236]
[169]
Uusitalo U, Liu X, Yang J, et al. TEDDY Study Group. Association of early exposure of probiotics and islet autoimmunity in the teddy study. JAMA Pediatr 2016; 170(1): 20-8.
[http://dx.doi.org/10.1001/jamapediatrics.2015.2757] [PMID: 26552054]
[170]
Lee AS, Gibson DL, Zhang Y, Sham HP, Vallance BA, Dutz JP. Gut barrier disruption by an enteric bacterial pathogen accelerates insulitis in NOD mice. Diabetologia 2010; 53(4): 741-8.
[http://dx.doi.org/10.1007/s00125-009-1626-y] [PMID: 20012858]
[171]
Bosi E, Molteni L, Radaelli MG, et al. Increased intestinal permeability precedes clinical onset of type 1 diabetes. Diabetologia 2006; 49(12): 2824-7.
[http://dx.doi.org/10.1007/s00125-006-0465-3] [PMID: 17028899]
[172]
Bokulich NA, Chung J, Battaglia T, et al. Antibiotics, birth mode, and diet shape microbiome maturation during early life. Sci Transl Med 2016; 8(343): 343ra82.
[http://dx.doi.org/10.1126/scitranslmed.aad7121] [PMID: 27306664]
[173]
Kemppainen KM, Vehik K, Lynch KF, et al. Environmental determinants of diabetes in the young (teddy) study group. Association between early-life antibiotic use and the risk of islet or celiac disease autoimmunity. JAMA Pediatr 2017; 171(12): 1217-25.
[http://dx.doi.org/10.1001/jamapediatrics.2017.2905] [PMID: 29052687]
[174]
Boursi B, Mamtani R, Haynes K, Yang YX. The effect of past antibiotic exposure on diabetes risk. Eur J Endocrinol 2015; 172(6): 639-48.
[http://dx.doi.org/10.1530/EJE-14-1163] [PMID: 25805893]
[175]
Mikkelsen KH, Knop FK, Vilsbøll T, Frost M, Hallas J, Pottegård A. Use of antibiotics in childhood and risk of Type 1 diabetes: A population-based case-control study. Diabet Med 2017; 34(2): 272-7.
[http://dx.doi.org/10.1111/dme.13262] [PMID: 27646695]
[176]
Palleja A, Mikkelsen KH, Forslund SK, et al. Recovery of gut microbiota of healthy adults following antibiotic exposure. Nat Microbiol 2018; 3(11): 1255-65.
[http://dx.doi.org/10.1038/s41564-018-0257-9] [PMID: 30349083]
[177]
Kibirige M, Metcalf B, Renuka R, Wilkin TJ. Testing the accelerator hypothesis: The relationship between body mass and age at diagnosis of type 1 diabetes. Diabetes Care 2003; 26(10): 2865-70.
[http://dx.doi.org/10.2337/diacare.26.10.2865] [PMID: 14514593]
[178]
Betts P, Mulligan J, Ward P, Smith B, Wilkin T. Increasing body weight predicts the earlier onset of insulin-dependant diabetes in childhood: Testing the ‘accelerator hypothesis’ (2). Diabet Med 2005; 22(2): 144-51.
[http://dx.doi.org/10.1111/j.1464-5491.2004.01368.x] [PMID: 15660730]
[179]
Knerr I, Wolf J, Reinehr T, et al. DPV Scientific Initiative of Germany and Austria. The ‘accelerator hypothesis’: Relationship between weight, height, body mass index and age at diagnosis in a large cohort of 9,248 German and Austrian children with type 1 diabetes mellitus. Diabetologia 2005; 48(12): 2501-4.
[http://dx.doi.org/10.1007/s00125-005-0033-2] [PMID: 16283240]
[180]
Hyppönen E, Virtanen SM, Kenward MG, Knip M, Akerblom HK. Childhood Diabetes in Finland Study Group. Obesity, increased linear growth, and risk of type 1 diabetes in children. Diabetes Care 2000; 23(12): 1755-60.
[http://dx.doi.org/10.2337/diacare.23.12.1755] [PMID: 11128347]
[181]
Evertsen J, Alemzadeh R, Wang X. Increasing incidence of pediatric type 1 diabetes mellitus in Southeastern Wisconsin: relationship with body weight at diagnosis. PLoS One 2009; 4(9): e6873.
[http://dx.doi.org/10.1371/journal.pone.0006873] [PMID: 19727402]
[182]
O’Connell MA, Donath S, Cameron FJ. Major increase in Type 1 diabetes: No support for the accelerator hypothesis. Diabet Med 2007; 24(8): 920-3.
[http://dx.doi.org/10.1111/j.1464-5491.2007.02203.x] [PMID: 17535289]
[183]
Vehik K, Hamman RF, Lezotte D, Norris JM, Klingensmith GJ, Dabelea D. Childhood growth and age at diagnosis with Type 1 diabetes in Colorado young people. Diabet Med 2009; 26(10): 961-7.
[http://dx.doi.org/10.1111/j.1464-5491.2009.02819.x] [PMID: 19900226]
[184]
Wasyl-Nawrot B, Wójcik M, Nazim J, Skupień J, Starzyk JB. Increased incidence of type 1 diabetes in children and no change in the age of diagnosis and bmi-sds at the onset - is the accelerator hypothesis not working? J Clin Res Pediatr Endocrinol 2020; 12(3): 281-6.
[http://dx.doi.org/10.4274/jcrpe.galenos.2020.2019.0133] [PMID: 31990164]
[185]
Viner RM, Hindmarsh PC, Taylor B, Cole TJ. Childhood body mass index (BMI), breastfeeding and risk of Type 1 diabetes: Findings from a longitudinal national birth cohort. Diabet Med 2008; 25(9): 1056-61.
[http://dx.doi.org/10.1111/j.1464-5491.2008.02525.x] [PMID: 19183310]
[186]
Ljungkrantz M, Ludvigsson J, Samuelsson U. Type 1 diabetes: Increased height and weight gains in early childhood. Pediatr Diabetes 2008; 9(3 Pt 2): 50-6.
[http://dx.doi.org/10.1111/j.1399-5448.2007.00360.x] [PMID: 18540867]
[187]
Knip M, Reunanen A, Virtanen SM, Nuutinen M, Viikari J, Akerblom HK. Does the secular increase in body mass in children contribute to the increasing incidence of type 1 diabetes? Pediatr Diabetes 2008; 9(3 Pt 2): 46-9.
[http://dx.doi.org/10.1111/j.1399-5448.2007.00344.x] [PMID: 18221438]
[188]
Vella S, Bezzina Sultana M, Fava S. Association of cholesterol and lifestyle markers with type 1 diabetes incidence rates at a population level. J Public Health (Oxf) 2017; 39(3): 542-8.
[PMID: 27591302]
[189]
Cerdó T, García-Santos JA, G Bermúdez M, Campoy C. The role of probiotics and prebiotics in the prevention and treatment of obesity. Nutrients 2019; 11(3): 635.
[http://dx.doi.org/10.3390/nu11030635] [PMID: 30875987]
[190]
Bingley PJ, Mahon JL, Gale EA. European Nicotinamide Diabetes Intervention Trial Group. Insulin resistance and progression to type 1 diabetes in the European Nicotinamide Diabetes Intervention Trial (ENDIT). Diabetes Care 2008; 31(1): 146-50.
[http://dx.doi.org/10.2337/dc07-0103] [PMID: 17959864]
[191]
Wilkin TJ. The accelerator hypothesis: weight gain as the missing link between Type I and Type II diabetes. Diabetologia 2001; 44(7): 914-22.
[http://dx.doi.org/10.1007/s001250100548] [PMID: 11508279]
[192]
Islam ST, Abraham A, Donaghue KC, et al. Plateau of adiposity in Australian children diagnosed with Type 1 diabetes: A 20-year study. Diabet Med 2014; 31(6): 686-90.
[http://dx.doi.org/10.1111/dme.12402] [PMID: 24495260]
[193]
Upadhyaya B, Larsen T, Barwari S, Louwagie EJ, Baack ML, Dey M. Prenatal exposure to a maternal high-fat diet affects histone modification of cardiometabolic genes in newborn rats. Nutrients 2017; 9(4): 407.
[http://dx.doi.org/10.3390/nu9040407] [PMID: 28425976]
[194]
Zhou X, Paulsson G, Stemme S, Hansson GK. Hypercholesterolemia is associated with a T helper (Th) 1/Th2 switch of the autoimmune response in atherosclerotic apo E-knockout mice. J Clin Invest 1998; 101(8): 1717-25.
[http://dx.doi.org/10.1172/JCI1216] [PMID: 9541503]
[195]
Cnop M, Hannaert JC, Grupping AY, Pipeleers DG. Low density lipoprotein can cause death of islet beta-cells by its cellular uptake and oxidative modification. Endocrinology 2002; 143(9): 3449-53.
[http://dx.doi.org/10.1210/en.2002-220273] [PMID: 12193557]
[196]
Qian L, Xu L, Lin Y, Peng Y. Statins and beta-cell function. Med Sci Monit 2010; 16(1): HY1-2.
[PMID: 20037497]
[197]
Rydgren T, Vaarala O, Sandler S. Simvastatin protects against multiple low-dose streptozotocin-induced type 1 diabetes in CD-1 mice and recurrence of disease in nonobese diabetic mice. J Pharmacol Exp Ther 2007; 323(1): 180-5.
[http://dx.doi.org/10.1124/jpet.107.122655] [PMID: 17636011]
[198]
Strom A, Kolb H, Martin S, et al. DIATOR Study Group. Improved preservation of residual beta cell function by atorvastatin in patients with recent onset type 1 diabetes and high CRP levels (DIATOR trial). PLoS One 2012; 7(3): e33108.
[http://dx.doi.org/10.1371/journal.pone.0033108] [PMID: 22448235]
[199]
Hakamada-Taguchi R, Uehara Y, Kuribayashi K, et al. Inhibition of hydroxymethylglutaryl-coenzyme a reductase reduces Th1 development and promotes Th2 development. Circ Res 2003; 93(10): 948-56.
[http://dx.doi.org/10.1161/01.RES.0000101298.76864.14] [PMID: 14563711]
[200]
Blotsky AL, Rahme E, Dahhou M, Nakhla M, Dasgupta K. Gestational diabetes associated with incident diabetes in childhood and youth: a retrospective cohort study. CMAJ 2019; 191(15): E410-7.
[http://dx.doi.org/10.1503/cmaj.181001] [PMID: 30988041]
[201]
Lindell N, Carlsson A, Josefsson A, Samuelsson U. Maternal obesity as a risk factor for early childhood type 1 diabetes: A nationwide, prospective, population-based case-control study. Diabetologia 2018; 61(1): 130-7.
[http://dx.doi.org/10.1007/s00125-017-4481-2] [PMID: 29098322]
[202]
Howe CG, Cox B, Fore R, et al. Maternal gestational diabetes mellitus and newborn dna methylation: Findings from the pregnancy and childhood epigenetics consortium. Diabetes Care 2020; 43(1): 98-105.
[http://dx.doi.org/10.2337/dc19-0524] [PMID: 31601636]
[203]
Weng X, Liu F, Zhang H, et al. Genome-wide DNA methylation profiling in infants born to gestational diabetes mellitus. Diabetes Res Clin Pract 2018; 142: 10-8.
[http://dx.doi.org/10.1016/j.diabres.2018.03.016] [PMID: 29596946]
[204]
Soderborg TK, Carpenter CM, Janssen RC, et al. Gestational diabetes is uniquely associated with altered early seeding of the infant gut microbiota. Front Endocrinol (Lausanne) 2020; 11: 603021.
[http://dx.doi.org/10.3389/fendo.2020.603021] [PMID: 33329403]
[205]
Auvinen AM, Luiro K, Jokelainen J, et al. Type 1 and type 2 diabetes after gestational diabetes: a 23 year cohort study. Diabetologia 2020; 63(10): 2123-8.
[http://dx.doi.org/10.1007/s00125-020-05215-3] [PMID: 32725280]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy