Generic placeholder image

Current Diabetes Reviews

Editor-in-Chief

ISSN (Print): 1573-3998
ISSN (Online): 1875-6417

Systematic Review Article

Diagnostic Criteria for Metabolic Syndrome in Diet-Induced Rodent Models: A Systematic Review

Author(s): Carmen Alejandrina Virgen-Carrillo*, Diana Laura Hernández de los Ríos, Karina Ruíz Torres and Alma Gabriela Martínez Moreno

Volume 17, Issue 8, 2021

Published on: 14 April, 2021

Article ID: e140421192834 Pages: 26

DOI: 10.2174/1573399817666210414103730

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Thousands of publications in recent years have addressed the induction of metabolic syndrome (MetS) in rodents. However, the criteria and the reference values for diagnosing this disease have not been defined.

Objective: Our main objective was to carry out a systematic review to gather evidence about the criteria for biochemical and anthropometric parameters in which scientific studies have relied on to report that rats developed MetS from a previous dietary manipulation.

Methods: We compiled characteristics and findings of diet-induced MetS with high-fat, high-carbohydrate, high-fat/high-carbohydrates, and cafeteria diet from PubMed and Science Direct databases published in the last 5 years.

Results: The results on the principal determinants for the syndrome, published in the reviewed articles, were chosen to propose reference values in the rat models of food induction.

Conclusion: The values obtained will serve as reference cut-of points in the development of the disease; in addition, the compilation of data will be useful in planning and executing research protocols in animal models.

Keywords: Rats, reference value, metabolic alterations, high-fat diet, high-carbohydrate diet, cafeteria diet.

[1]
Saklayen MG. The global epidemic of the metabolic syndrome. Curr Hypertens Rep 2018; 20(2): 12.
[http://dx.doi.org/10.1007/s11906-018-0812-z] [PMID: 29480368]
[2]
International Diabetes Federation, -. The IDF consensus worldwide definition of the metabolic syndrome 2006. https://www.idf.org/e-library/consensus-statements/60-idfconsensus-worldwide-definitionof-the-metabolic-syndrome.html
[3]
Aguilar-Salinas CA, Viveros-Ruiz T. Recent advances in managing/understanding the metabolic syndrome. F1000 Res 2019; 8: 370.
[http://dx.doi.org/10.12688/f1000research.17122.1] [PMID: 31001415]
[4]
Preguiça I, Alves A, Nunes S, et al. Diet-induced rodent models of obesity-related metabolic disorders-A guide to a translational perspective. Obes Rev 2020; 21(12): e13081.
[http://dx.doi.org/10.1111/obr.13081] [PMID: 32691524]
[5]
Blais EM, Rawls KD, Dougherty BV, et al. Reconciled rat and human metabolic networks for comparative toxicogenomics and biomarker predictions. Nat Commun 2017; 8: 14250.
[http://dx.doi.org/10.1038/ncomms14250] [PMID: 28176778]
[6]
Iannaccone PM, Jacob HJ. Rats! Dis Model Mech 2009; 2(5-6): 206-10.
[http://dx.doi.org/10.1242/dmm.002733] [PMID: 19407324]
[7]
Shimoyama M, Laulederkind SJF, De Pons J, et al. Exploring human disease using the Rat Genome Database. Dis Model Mech 2016; 9(10): 1089-95.
[http://dx.doi.org/10.1242/dmm.026021] [PMID: 27736745]
[8]
Kwitek AE. Rat models of metabolic syndrome. Rat Genomics 269-85.
[9]
Wong SK, Chin K-Y, Suhaimi FH, et al. Animal models of metabolic syndrome: A review. Nutrition & Metabolism 13 Epub ahead of print December 2016
[http://dx.doi.org/10.1186/s12986-016-0123-9]
[10]
Bahadoran Z, Mirmiran P, Hosseini-Esfahani F, Azizi F. Fast food consumption and the risk of metabolic syndrome after 3-years of follow-up: Tehran Lipid and Glucose Study. Eur J Clin Nutr 2013; 67(12): 1303-9.
[http://dx.doi.org/10.1038/ejcn.2013.217] [PMID: 24193228]
[11]
Kelishadi R, Heshmat R, Mansourian M, et al. Association of dietary patterns with continuous metabolic syndrome in children and adolescents; a nationwide propensity score-matched analysis: The CASPIAN-V study. Diabetol Metab Syndr 2018; 10: 52.
[http://dx.doi.org/10.1186/s13098-018-0352-3] [PMID: 29988703]
[12]
Mendrick DL, Diehl AM, Topor LS, et al. Metabolic syndrome and associated diseases: From the bench to the clinic. Toxicol Sci 2018; 162(1): 36-42.
[http://dx.doi.org/10.1093/toxsci/kfx233] [PMID: 29106690]
[13]
Fuchs T, Loureiro M de P, Macedo LE, et al. Animal models in metabolic syndrome. Rev Col Bras Cir 45 Epub ahead of print 29 October 2018..
[http://dx.doi.org/10.1590/0100-6991e-20181975]
[14]
Oliveira PS, Chaves VC, Bona NP, et al. Eugenia uniflora fruit (red type) standardized extract: A potential pharmacological tool to diet-induced metabolic syndrome damage management. Biomed Pharmacother 2017; 92: 935-41.
[http://dx.doi.org/10.1016/j.biopha.2017.05.131] [PMID: 28618655]
[15]
Panchal SK, Brown L. Rodent models for metabolic syndrome research. J Biomed Biotechnol 2011; 2011: 351982.
[http://dx.doi.org/10.1155/2011/351982] [PMID: 21253582]
[16]
Moher D, Liberati A, Tetzlaff J, Altman DG. PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med 2009; 6(7): e1000097.
[http://dx.doi.org/10.1371/journal.pmed.1000097] [PMID: 19621072]
[17]
Sil R, Chakraborti AS. Oxidative inactivation of liver mitochondria in high fructose diet-induced metabolic syndrome in rats: Effect of glycyrrhizin treatment, glycyrrhizin alleviates mitochondrial damage in metabolic syndrome. Phytother Res 2016; 30(9): 1503-12.
[http://dx.doi.org/10.1002/ptr.5654] [PMID: 27255442]
[18]
Bondarenko LB, Shayakhmetova GM, Voronina AK, Kovalenko VM. Age-dependent features of CYP3A, CYP2C, and CYP2E1 functioning at metabolic syndrome. J Basic Clin Physiol Pharmacol 2016; 27(6): 603-10.
[http://dx.doi.org/10.1515/jbcpp-2016-0012] [PMID: 27371822]
[19]
Hiriart-Urdanivia M, Sánchez-Soto C, Velasco M, Sabido-Barrera J, Ortiz-Huidobro RI. Soluble insulin receptor and metabolic syndrome. Gac Med Mex 2019; 155(5): 500-3.
[http://dx.doi.org/10.24875/GMM.19005185] [PMID: 32091018]
[20]
Ohnon W, Wattanathorn J, Thukham-Mee W, Muchimapura S, Wannanon P, Tong-Un T. The combined extract of black sticky rice and dill improves poststroke cognitive impairment in metabolic syndrome condition. Oxid Med Cell Longev 2019; 2019: 9089035.
[http://dx.doi.org/10.1155/2019/9089035] [PMID: 30937145]
[21]
Okatan EN, Turan B. The contribution of phosphodiesterases to cardiac dysfunction in rats with metabolic syndrome induced by a high-carbohydrate diet. Can J Physiol Pharmacol 2019; 97(11): 1064-72.
[http://dx.doi.org/10.1139/cjpp-2019-0006] [PMID: 31299169]
[22]
Olgar Y, Turan B. A sodium-glucose cotransporter 2 (SGLT2) inhibitor dapagliflozin comparison with insulin shows important effects on Zn2+-transporters in cardiomyocytes from insulin-resistant metabolic syndrome rats through inhibition of oxidative stress. Can J Physiol Pharmacol 2019; 97(6): 528-35.
[http://dx.doi.org/10.1139/cjpp-2018-0466] [PMID: 30444646]
[23]
Ramli NS, Ismail P, Rahmat A. Red pitaya juice supplementation ameliorates energy balance homeostasis by modulating obesity-related genes in high-carbohydrate, high-fat diet-induced metabolic syndrome rats. BMC Complement Altern Med 2016; 16: 243.
[http://dx.doi.org/10.1186/s12906-016-1200-3] [PMID: 27456968]
[24]
Rangel Silvares R, Nunes Goulart da Silva Pereira E, Eduardo Ilaquita Flores E, et al. High-fat diet-induced kidney alterations in rats with metabolic syndrome: Endothelial dysfunction and decreased antioxidant defense. Diabetes Metab Syndr Obes 2019; 12: 1773-81.
[http://dx.doi.org/10.2147/DMSO.S211253] [PMID: 31564943]
[25]
Wat E, Ng CF, Liu CL, et al. Effect of combined use of Fructus Schisandrae and statin on high-fat-diet-induced metabolic syndrome in rats. Hong Kong Med J 2016; 22(6)(Suppl. 6): 24-7.
[PMID: 27807313]
[26]
Wattanathorn J, Ohnon W, Thukhammee W, Muchmapura S, Wannanon P, Tong-Un T. Cerebroprotective effect against cerebral ischemia of the combined extract of oryza sativa and anethum graveolens in metabolic syndrome rats. Oxid Med Cell Longev 2019; 2019: 9658267.
[http://dx.doi.org/10.1155/2019/9658267] [PMID: 31827714]
[27]
Wong SK, Chin K-Y, Ima-Nirwana S. The effects of tocotrienol on bone peptides in a rat model of osteoporosis induced by metabolic syndrome: The possible communication between bone cells. Int J Environ Res Public Health 2019; 16(18): 3313.
[http://dx.doi.org/10.3390/ijerph16183313] [PMID: 31505801]
[28]
El-Bassossy HM, Elberry AA, Ghareib SA. Geraniol improves the impaired vascular reactivity in diabetes and metabolic syndrome through calcium channel blocking effect. J Diabetes Complications 2016; 30(6): 1008-16.
[http://dx.doi.org/10.1016/j.jdiacomp.2016.04.006] [PMID: 27131411]
[29]
Kaprinay B, Lipták B, Slovák L, et al. Hypertriglyceridemic rats fed high fat diet as a model of metabolic syndrome. Physiol Res 2016; 65(Suppl. 4): S515-8.
[http://dx.doi.org/10.33549/physiolres.933524] [PMID: 28006934]
[30]
Longo M, Xu P, Di Cerbo L, et al. 86: Maternal Inositol supplementation decreased end organ damage in a pregnant murine model of metabolic syndrome. Am J Obstet Gynecol 2020; 222: S71-2.
[http://dx.doi.org/10.1016/j.ajog.2019.11.102]
[31]
Lemonakis N, Poudyal H, Halabalaki M, et al. The LC-MS-based metabolomics of hydroxytyrosol administration in rats reveals amelioration of the metabolic syndrome. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1041-1042: 45-59.
[http://dx.doi.org/10.1016/j.jchromb.2016.12.020] [PMID: 28012379]
[32]
Dagla I, Benaki D, Baira E, et al. Alteration in the liver metabolome of rats with metabolic syndrome after treatment with Hydroxytyrosol. A Mass Spectrometry And Nuclear Magnetic Resonance - based metabolomics study. Talanta 2018; 178: 246-57.
[http://dx.doi.org/10.1016/j.talanta.2017.09.029] [PMID: 29136819]
[33]
Margalef M, Pons Z, Iglesias-Carres L, Bravo FI, Muguerza B, Arola-Arnal A. Flavanol plasma bioavailability is affected by metabolic syndrome in rats. Food Chem 2017; 231: 287-94.
[http://dx.doi.org/10.1016/j.foodchem.2017.03.141] [PMID: 28450008]
[34]
Treviño S, Vázquez-Roque RA, López-López G, et al. Metabolic syndrome causes recognition impairments and reduced hippocampal neuronal plasticity in rats. J Chem Neuroanat 2017; 82: 65-75.
[http://dx.doi.org/10.1016/j.jchemneu.2017.02.007] [PMID: 28219715]
[35]
Gancheva S, Eftimov M, Todorova M, et al. P.708 Behavioural effects of aqueous infusion of Kochia scoparia seeds in rats with diet-induced metabolic syndrome. Eur Neuropsychopharmacol 2019; 29: S478-9.
[http://dx.doi.org/10.1016/j.euroneuro.2019.09.749]
[36]
Todorova M, Eftimov M, Gancheva S, et al. P.707 Behavioural effects of the polyphenol-rich Aronia melanocarpa fruit juice in rats with diet-induced metabolic syndrome. Eur Neuropsychopharmacol 2019; 29: S477-8.
[http://dx.doi.org/10.1016/j.euroneuro.2019.09.748]
[37]
Chen I-H, Cheng J-T, Tong Y-C. Reduced cannabinoid receptors in bladder of metabolic syndrome rats. Urol Sci 2016; 27: S17.
[http://dx.doi.org/10.1016/j.urols.2016.05.112]
[38]
Fenning A, MacRae K, Vella R. Opioid agonist function and expression is altered in cardiovascular tissues following chronic metabolic syndrome in rats. Heart Lung Circ 2017; 26: S121.
[http://dx.doi.org/10.1016/j.hlc.2017.06.179]
[39]
Ojeda ML, Nogales F, Serrano A, Murillo ML, Carreras O. Maternal metabolic syndrome and selenium: Endocrine energy balance during early programming. Life Sci 2019; 233: 116689.
[http://dx.doi.org/10.1016/j.lfs.2019.116689] [PMID: 31348949]
[40]
Huang T, Yan X, Yan X, et al. Modulation of gut microbiota by berberine and decocted Coptis chinensis Franch. in a high-fat diet-induced metabolic syndrome rat model. J Tradit Chin Med Sci 2017; 4: 149-57.
[http://dx.doi.org/10.1016/j.jtcms.2017.05.005]
[41]
Chen M, Yang F, Kang J, Gan H, Lai X, Gao Y. Discovery of molecular mechanism of a clinical herbal formula upregulating serum HDL-c levels in treatment of metabolic syndrome by in vivo and computational studies. Bioorg Med Chem Lett 2018; 28(2): 174-80.
[http://dx.doi.org/10.1016/j.bmcl.2017.11.033] [PMID: 29196136]
[42]
Zhelyazkova-Savova M, Gancheva S, Galunska B. Undercarboxylated osteocalcin and behavioral alterations in a rat model of metabolic syndrome. Eur Neuropsychopharmacol 2016; 26: S285.
[http://dx.doi.org/10.1016/S0924-977X(16)31177-4]
[43]
Meziat C, Boulgobhra D, Do Nascimento A, et al. Phenotypic remodeling of perivascular adipose tissue in a rat model of metabolic syndrome: Vascular consequences and beneficial impact of exercise training. Arch Cardiovasc Dis Suppl 2016; 8: 213.
[http://dx.doi.org/10.1016/S1878-6480(16)30388-3]
[44]
Fourny N, Lan C, Kober F, et al. Tolerance to ischemia-reperfusion injury in a metabolic syndrome model: Effect of gender? Arch Cardiovasc Dis Suppl 2018; 10: 232.
[http://dx.doi.org/10.1016/j.acvdsp.2018.02.123]
[45]
Hewage SM, Sid V, Prashar S, et al. Impact of lingonberry supplementation on high-fat diet-induced metabolic syndrome and hyperlipidemia. Atheroscler Suppl 2018; 32: 65.
[http://dx.doi.org/10.1016/j.atherosclerosissup.2018.04.196]
[46]
Li R, Wang T, Yang J, et al. Role of PI3K/AKT in the erectile dysfunction from metabolic syndrome rats. Transl Androl Urol 4 Epub ahead of print August 2015..
[http://dx.doi.org/10.3978/j.issn.2223-4683.2015.s195]
[47]
Bubnov RV, Spivak MY. Preclinical ultrasound for development translatable model of metabolic syndrome in small animals. Ultrasound Med Biol 2019; 45: S82-3.
[http://dx.doi.org/10.1016/j.ultrasmedbio.2019.07.281]
[48]
Doghri Y, Lalanne V, Mallem Y, et al. Chronic treatment with Mirabegron improves cardiovascular reactivity in spontaneously hypertensive rats with metabolic syndrome. Arch Cardiovasc Dis Suppl 2018; 10: 250-1.
[http://dx.doi.org/10.1016/j.acvdsp.2018.02.161]
[49]
Doghri Y, Lalanne V, Mallem Y, et al. Effects of soluble guanylate cyclase activation on cardiovascular reactivity in spontaneously hypertensive rats with metabolic syndrome. Arch Cardiovasc Dis Suppl 2018; 10: 250.
[http://dx.doi.org/10.1016/j.acvdsp.2018.02.160]
[50]
Thomaz F, Panchal S, Worrall S, et al. SUN-P216: The influence of wasabi (wasabia japonica) on diet-induced metabolic syndrome in wistar rats. Clin Nutr 2016; 35: S124.
[http://dx.doi.org/10.1016/S0261-5614(16)30559-3]
[51]
Hubesch G, Hanthazi A, Acheampong A, et al. Respective roles of genetic background and high fat diet in a rodent model of metabolic syndrome. Arch Cardiovasc Dis Suppl 2019; 11: 203.
[http://dx.doi.org/10.1016/j.acvdsp.2019.02.047]
[52]
Soto Y, Mangat R, Kelly S, et al. Anti-glycosaminoglycan monoclonal antibody prevents cardiac hypertrophy in a rat model of metabolic syndrome. Atherosclerosis 2019; 287: e74.
[http://dx.doi.org/10.1016/j.atherosclerosis.2019.06.213]
[53]
Er F, Zorba E, Yılmaz C, et al. The effect of quercetin and exercise in rat metabolic syndrome model. Clin Chim Acta 2019; 493: S273.
[http://dx.doi.org/10.1016/j.cca.2019.03.564]
[54]
Fourny N, Lan C, Kober F, et al. Intolerance to glucose and abdominal obesity in a diet-induced metabolic syndrome model were associated with modification of cardiac morphology and impaired myocardial function. Arch Cardiovasc Dis Suppl 2017; 9: 189.
[http://dx.doi.org/10.1016/S1878-6480(17)30469-X]
[55]
Liu L, Li Q, Tamrakar P, et al. 334 Duodenal innervation and the metabolic syndrome: Potential role in pathogenesis and as a novel therapeutic target. Gastroenterology 2016; 150: S79.
[http://dx.doi.org/10.1016/S0016-5085(16)30380-8]
[56]
Gancheva SM, Zhelyazkova-Savova MD. Vitamin K2 improves anxiety and depression but not cognition in rats with metabolic syndrome: A role of blood glucose? Folia Med (Plovdiv) 2016; 58(4): 264-72.
[http://dx.doi.org/10.1515/folmed-2016-0032] [PMID: 28068285]
[57]
Xu C, Xu Y, Shen Z, Zhou H, Xiao J, Huang T. Effects of metformin on prostatic tissue of rats with metabolic syndrome and benign prostatic hyperplasia. Int Urol Nephrol 2018; 50(4): 611-7.
[http://dx.doi.org/10.1007/s11255-018-1826-9] [PMID: 29460133]
[58]
Jover B, Reynes C, Rugale C, et al. Sodium restriction modulates innate immunity and prevents cardiac remodeling in a rat model of metabolic syndrome. Biochim Biophys Acta Mol Basis Dis 2017; 1863(6): 1568-74.
[http://dx.doi.org/10.1016/j.bbadis.2017.02.026] [PMID: 28254494]
[59]
Micháliková D, Tyukos Kaprinay B, Lipták B, et al. Natural substance rutin versus standard drug atorvastatin in a treatment of metabolic syndrome-like condition. Saudi Pharm J 2019; 27(8): 1196-202.
[http://dx.doi.org/10.1016/j.jsps.2019.10.002] [PMID: 31885479]
[60]
Al Mamun A, Hashimoto M, Katakura M, et al. Effect of dietary n-3 fatty acids supplementation on fatty acid metabolism in atorvastatin-administered SHR.Cg-Leprcp/NDmcr rats, a metabolic syndrome model. Biomed Pharmacother 2017; 85: 372-9.
[http://dx.doi.org/10.1016/j.biopha.2016.11.038] [PMID: 27939244]
[61]
Fernández-Sada E, Torres-Quintanilla A, Silva-Platas C, et al. Proinflammatory cytokines are soluble mediators linked with ventricular arrhythmias and contractile dysfunction in a rat model of metabolic syndrome. Oxid Med Cell Longev 2017; 2017: 7682569.
[http://dx.doi.org/10.1155/2017/7682569] [PMID: 29201273]
[62]
Gasparova Z, Janega P, Weismann P, et al. Effect of metabolic syndrome on neural plasticity and morphology of the hippocampus: Correlations of neurological deficits with physiological status of the rat. Gen Physiol Biophys 2018; 37(4): 619-32.
[http://dx.doi.org/10.4149/gpb_2018016] [PMID: 30338761]
[63]
Knezl V, Sotníková R, Brnoliaková Z, Stankovičová T, Bauer V, Bezek Š. Monotherapy of experimental metabolic syndrome: II. Study of cardiovascular effects. Interdiscip Toxicol 2017; 10(3): 86-92.
[http://dx.doi.org/10.1515/intox-2017-0014] [PMID: 30174531]
[64]
Cheng K-C, Li Y, Chang W-T, Kuo FY, Chen ZC, Cheng JT. Telmisartan is effective to ameliorate metabolic syndrome in rat model - a preclinical report. Diabetes Metab Syndr Obes 2018; 11: 901-11.
[http://dx.doi.org/10.2147/DMSO.S187092] [PMID: 30584345]
[65]
Ghelani H, Razmovski-Naumovski V, Nammi S. Chronic treatment of (R)-α-lipoic acid reduces blood glucose and lipid levels in high-fat diet and low-dose streptozotocin-induced metabolic syndrome and type 2 diabetes in Sprague-Dawley rats. Pharmacol Res Perspect 2017; 5(3): e00306.
[http://dx.doi.org/10.1002/prp2.306] [PMID: 28603627]
[66]
Rohman MS, Lukitasari M, Nugroho D, et al. Development of an experimental model of metabolic syndrome in sprague dawley rat. Res J Life Sci 2017; 4: 76-86.
[http://dx.doi.org/10.21776/ub.rjls.2017.004.01.10]
[67]
García-Ruiz I, Solís-Muñoz P, Fernández-Moreira D, Grau M, Muñoz-Yagüe MT, Solís-Herruzo JA. Omentectomy prevents metabolic syndrome by reducing appetite and body weight in a diet-induced obesity rat model. Sci Rep 2018; 8(1): 1540.
[http://dx.doi.org/10.1038/s41598-018-19973-z] [PMID: 29367725]
[68]
López M, Ríos-Silva M, Huerta M, et al. Effects of Moringa oleifera leaf powder on metabolic syndrome induced in male Wistar rats: A preliminary study. J Int Med Res 2018; 46(8): 3327-36.
[http://dx.doi.org/10.1177/0300060518781726] [PMID: 29962304]
[69]
Namekawa J, Nemoto S, Sunada G, et al. Characteristics of WBN/Kob diabetic fatty rats supplemented with a fructose-rich diet as a metabolic syndrome model: Response to a GLP-1 receptor agonist. J Vet Med Sci 2018; 80(10): 1515-23.
[http://dx.doi.org/10.1292/jvms.18-0306] [PMID: 30175725]
[70]
Wong SK, Chin K-Y, Suhaimi FH, Ahmad F, Ima-Nirwana S. Effects of metabolic syndrome on bone mineral density, histomorphometry and remodelling markers in male rats. PLoS One 2018; 13(2): e0192416.
[http://dx.doi.org/10.1371/journal.pone.0192416] [PMID: 29420594]
[71]
Wong SK, Chin K-Y, Suhaimi FH, Ahmad F, Ima-Nirwana S. The effects of vitamin e from elaeis guineensis (oil palm) in a rat model of bone loss due to metabolic syndrome. Int J Environ Res Public Health 2018; 15(9): 1828.
[http://dx.doi.org/10.3390/ijerph15091828] [PMID: 30149518]
[72]
Wong SK, Chin K-Y, Suhaimi FH, Ahmad F, Jamil NA, Ima-Nirwana S. Osteoporosis is associated with metabolic syndrome induced by high-carbohydrate high-fat diet in a rat model. Biomed Pharmacother 2018; 98: 191-200.
[http://dx.doi.org/10.1016/j.biopha.2017.12.042] [PMID: 29257979]
[73]
Tarantino G, Finelli C. What about non-alcoholic fatty liver disease as a new criterion to define metabolic syndrome? World J Gastroenterol 2013; 19(22): 3375-84.
[http://dx.doi.org/10.3748/wjg.v19.i22.3375] [PMID: 23801829]
[74]
Gomez-Smith M, Karthikeyan S, Jeffers MS, et al. A physiological characterization of the Cafeteria diet model of metabolic syndrome in the rat. Physiol Behav 2016; 167: 382-91.
[http://dx.doi.org/10.1016/j.physbeh.2016.09.029] [PMID: 27705750]
[75]
Espitia-Bautista E, Velasco-Ramos M, Osnaya-Ramírez I, Ángeles-Castellanos M, Buijs RM, Escobar C. Social jet-lag potentiates obesity and metabolic syndrome when combined with cafeteria diet in rats. Metabolism 2017; 72: 83-93.
[http://dx.doi.org/10.1016/j.metabol.2017.04.006] [PMID: 28641787]
[76]
Cheng HS, Ton SH, Phang SCW, Tan JBL, Abdul Kadir K. Increased susceptibility of post-weaning rats on high-fat diet to metabolic syndrome. J Adv Res 2017; 8(6): 743-52.
[http://dx.doi.org/10.1016/j.jare.2017.10.002] [PMID: 29062573]
[77]
Ajala-Lawal RA, Aliyu NO, Ajiboye TO. Betulinic acid improves insulin sensitivity, hyperglycemia, inflammation and oxidative stress in metabolic syndrome rats via PI3K/Akt pathways. Arch Physiol Biochem 2020; 126(2): 107-15.
[http://dx.doi.org/10.1080/13813455.2018.1498901] [PMID: 30288995]
[78]
Diaz A, Escobedo C, Treviño S, et al. Metabolic syndrome exacerbates the recognition memory impairment and oxidative-inflammatory response in rats with an intrahippocampal injection of amyloid beta 1–42. Oxid Med Cell Longev 2018; 2018: 1358057.
[http://dx.doi.org/10.1155/2018/1358057] [PMID: 30154946]
[79]
McCracken E, Monaghan M, Sreenivasan S. Pathophysiology of the metabolic syndrome. Clin Dermatol 2018; 36(1): 14-20.
[http://dx.doi.org/10.1016/j.clindermatol.2017.09.004] [PMID: 29241747]
[80]
Novelli ELB, Diniz YS, Galhardi CM, et al. Anthropometrical parameters and markers of obesity in rats. Lab Anim 2007; 41(1): 111-9.
[http://dx.doi.org/10.1258/002367707779399518] [PMID: 17234057]
[81]
Yang KC, Hung H-F, Lu C-W, Chang HH, Lee LT, Huang KC. Association of non-alcoholic fatty liver disease with metabolic syndrome independently of central obesity and insulin resistance. Sci Rep 2016; 6: 27034.
[http://dx.doi.org/10.1038/srep27034] [PMID: 27246655]
[82]
Gomaa AA, El-Sers DA, Al-Zokeim NI, Gomaa MA. Amelioration of experimental metabolic syndrome induced in rats by orlistat and Corchorus olitorius leaf extract; role of adipo/cytokines. J Pharm Pharmacol 2019; 71(2): 281-91.
[http://dx.doi.org/10.1111/jphp.13032] [PMID: 30362563]
[83]
Mostafa DK, Nasra RA, Zahran N, Ghoneim MT. Pleiotropic protective effects of Vitamin D against high fat diet-induced metabolic syndrome in rats: One for all. Eur J Pharmacol 2016; 792: 38-47.
[http://dx.doi.org/10.1016/j.ejphar.2016.10.031] [PMID: 27789220]
[84]
Geddawy A, Hussian M, Kamel MY, Kamal R, Ibrahim MA. Effects of liraglutide and vitamin e in fructose-induced metabolic syndrome in rats. Pharmacology 2017; 99(1-2): 48-56.
[http://dx.doi.org/10.1159/000449429] [PMID: 27694749]
[85]
Abo-Youssef AM. Protective effect of rosiglitazone, quercetin, and their combination on fructose-induced metabolic syndrome in rats. Indian J Pharmacol 2015; 47(6): 620-6.
[http://dx.doi.org/10.4103/0253-7613.169577] [PMID: 26729953]
[86]
Kho MC, Lee YJ, Park JH, et al. Combination with Red ginseng and Polygoni Multiflori ameliorates highfructose diet induced metabolic syndrome. BMC Complement Altern Med 2016; 16: 98.
[http://dx.doi.org/10.1186/s12906-016-1063-7] [PMID: 26961224]
[87]
Prabhakar P, Reeta KH, Maulik SK, Dinda AK, Gupta YK. α-Amyrin attenuates high fructose diet-induced metabolic syndrome in rats. Appl Physiol Nutr Metab 2017; 42(1): 23-32.
[http://dx.doi.org/10.1139/apnm-2016-0088] [PMID: 27911087]
[88]
Réggami Y, Benkhaled A, Boudjelal A, et al. Artemisia herba-alba aqueous extract improves insulin sensitivity and hepatic steatosis in rodent model of fructose-induced metabolic syndrome. Arch Physiol Biochem 2019; 1-10.
[http://dx.doi.org/10.1080/13813455.2019.1659825] [PMID: 31464524]
[89]
Ramírez-Higuera A, Peña-Montes C, Herrera-Meza S, Mendoza-López R, Valerio-Alfaro G, Oliart-Ros RM. Preventive action of sterculic oil on metabolic syndrome development on a fructose-induced rat model. J Med Food 2020; 23(3): 305-11.
[http://dx.doi.org/10.1089/jmf.2019.0177] [PMID: 31663815]
[90]
Adouni K, Zouaoui O, Chahdoura H, et al. In vitro antioxidant activity, α-glucosidase inhibitory potential and in vivo protective effect of Asparagus stipularis Forssk aqueous extract against high-fructose diet-induced metabolic syndrome in rats. J Funct Foods 2018; 47: 521-30.
[http://dx.doi.org/10.1016/j.jff.2018.06.006]
[91]
Ajiboye TO, Aliyu H, Tanimu MA, Muhammad RM, Ibitoye OB. Dioscoreophyllum cumminsii (Stapf) Diels leaves halt high-fructose induced metabolic syndrome: Hyperglycemia, insulin resistance, inflammation and oxidative stress. J Ethnopharmacol 2016; 192: 471-9.
[http://dx.doi.org/10.1016/j.jep.2016.08.024] [PMID: 27568876]
[92]
Guzmán-Gerónimo RI, Alarcón-Zavaleta TM, Oliart-Ros RM, Meza-Alvarado JE, Herrera-Meza S, Chávez-Servia JL. Blue maize extract improves blood pressure, lipid lrofiles, and adipose tissue in high-sucrose diet-induced metabolic syndrome in rats. J Med Food 2017; 20(2): 110-5.
[http://dx.doi.org/10.1089/jmf.2016.0087] [PMID: 27977322]
[93]
Bhandarkar NS, Kumar SA, Martin J, Brown L, Panchal SK. Attenuation of metabolic syndrome by EPA/DHA ethyl esters in testosterone-deficient obese rats. Mar Drugs 2018; 16(6): 182.
[http://dx.doi.org/10.3390/md16060182] [PMID: 29794984]
[94]
du Preez R, Pahl J, Arora M, Ravi Kumar MNV, Brown L, Panchal SK. Low-dose curcumin nanoparticles normalise blood pressure in male wistar rats with diet-induced metabolic syndrome. Nutrients 2019; 11(7): 1542.
[http://dx.doi.org/10.3390/nu11071542] [PMID: 31288419]
[95]
du Preez R, Paul N, Mouatt P, et al. Carrageenans from the red seaweed sarconema filiforme attenuate symptoms of diet-induced metabolic syndrome in rats. Mar Drugs 2020; 18(2): 97.
[http://dx.doi.org/10.3390/md18020097] [PMID: 32023936]
[96]
John OD, Wanyonyi S, Mouatt P, Panchal SK, Brown L. Achacha (garcinia humilis) rind improves cardiovascular function in rats with diet-induced metabolic syndrome. Nutrients 2018; 10(10): 1425.
[http://dx.doi.org/10.3390/nu10101425] [PMID: 30287733]
[97]
John OD, Mouatt P, Majzoub ME, Thomas T, Panchal SK, Brown L. Physiological and metabolic effects of yellow mangosteen (garcinia dulcis) rind in rats with diet-induced metabolic syndrome. Int J Mol Sci 2019; 21(1): 272.
[http://dx.doi.org/10.3390/ijms21010272] [PMID: 31906096]
[98]
Kumar SA, Ward LC, Brown L. Inulin oligofructose attenuates metabolic syndrome in high-carbohydrate, high-fat diet-fed rats. Br J Nutr 2016; 116(9): 1502-11.
[http://dx.doi.org/10.1017/S0007114516003627] [PMID: 27805541]
[99]
Mosqueda-Solís A, Sánchez J, Reynés B, et al. Hesperidin and capsaicin, but not the combination, prevent hepatic steatosis and other metabolic syndrome-related alterations in western diet-fed rats. Sci Rep 2018; 8(1): 15100.
[http://dx.doi.org/10.1038/s41598-018-32875-4] [PMID: 30305645]
[100]
Panchal SK, Carnahan S, Brown L. Coconut products improve signs of diet-induced metabolic syndrome in rats. Plant Foods Hum Nutr 2017; 72(4): 418-24.
[http://dx.doi.org/10.1007/s11130-017-0643-0] [PMID: 29079969]
[101]
Shokouh P, Jeppesen PB, Hermansen K, et al. Effects of unfiltered coffee and bioactive coffee compounds on the development of metabolic syndrome components in a high-fat-/high-fructose-fed rat model. Nutrients 2018; 10(10): 1547.
[http://dx.doi.org/10.3390/nu10101547] [PMID: 30347674]
[102]
John OD, Mouatt P, Prasadam I, et al. The edible native Australian fruit, Davidson’s plum (Davidsonia pruriens), reduces symptoms in rats with diet-induced metabolic syndrome. J Funct Foods 2019; 56: 204-15.
[http://dx.doi.org/10.1016/j.jff.2019.03.018]
[103]
Bhaswant M, Shafie SR, Mathai ML, Mouatt P, Brown L. Anthocyanins in chokeberry and purple maize attenuate diet-induced metabolic syndrome in rats. Nutrition 2017; 41: 24-31.
[http://dx.doi.org/10.1016/j.nut.2016.12.009] [PMID: 28760424]
[104]
Poudyal H, Lemonakis N, Efentakis P, et al. Hydroxytyrosol ameliorates metabolic, cardiovascular and liver changes in a rat model of diet-induced metabolic syndrome: Pharmacological and metabolism-based investigation. Pharmacol Res 2017; 117: 32-45.
[http://dx.doi.org/10.1016/j.phrs.2016.12.002] [PMID: 27940206]
[105]
Hazarika A, Kalita H, Chandra Boruah D, Chandra Kalita M, Devi R. Pathophysiology of metabolic syndrome: The onset of natural recovery on withdrawal of a high-carbohydrate, high-fat diet. Nutrition 2016; 32(10): 1081-91.
[http://dx.doi.org/10.1016/j.nut.2016.03.005] [PMID: 27209212]
[106]
Pérez-Torres I, Torres-Narváez JC, Guarner-Lans V, et al. Myocardial protection from ischemia-reperfusion damage by the antioxidant effect of hibiscus sabdariffa linnaeus on metabolic syndrome rats. Oxid Med Cell Longev 2019; 2019: 1724194.
[http://dx.doi.org/10.1155/2019/1724194] [PMID: 31049126]
[107]
Llévenes P, Rodrigues-Díez R, Cros-Brunsó L, et al. Beneficial effect of a multistrain synbiotic prodefen® plus on the systemic and vascular alterations associated with metabolic syndrome in rats: The role of the neuronal nitric oxide synthase and protein kinase A. Nutrients 2020; 12(1): 117.
[http://dx.doi.org/10.3390/nu12010117] [PMID: 31906276]
[108]
Hsieh S-K, Lin N-H, Chen Y-J, Lee MR, Chen WY, Tzen JTC. Therapeutic effects of lithospermate b complexed with Mg2+ or Zn2+ on metabolic syndrome induced in rats fed with high-fat diet. Molecules 2020; 25(4): 983.
[http://dx.doi.org/10.3390/molecules25040983] [PMID: 32098371]
[109]
Barbosa CM, Figueiredo VP, Barbosa MA, et al. Maternal high-fat diet triggers metabolic syndrome disorders that are transferred to first and second offspring generations. Br J Nutr 2020; 123: 59-71.
[http://dx.doi.org/10.1017/S0007114519002708] [PMID: 31666143]
[110]
Gao Y, Xu Y, Ruan J, Yin J. Selenium affects the activity of black tea in preventing metabolic syndrome in high-fat diet-fed Sprague-Dawley rats. J Sci Food Agric 2020; 100(1): 225-34.
[http://dx.doi.org/10.1002/jsfa.10027] [PMID: 31512247]
[111]
Chien M-Y, Yang C-M, Lin Y-T, Chen CH. Dihydromyricetin-rich herbal mixture extracts as a potential prescription for treatment of metabolic syndrome in rats fed a high-fat diet and subacute toxicity assessment in rats. J Tradit Complement Med 2018; 9(3): 221-6.
[http://dx.doi.org/10.1016/j.jtcme.2018.06.003] [PMID: 31193933]
[112]
Nascimento AR, Gomes F, Machado MV, Gonçalves-de-Albuquerque C, Bousquet P, Tibiriçá E. I1-imidazoline receptor-mediated cardiovascular and metabolic effects in high-fat diet-induced metabolic syndrome in rats. Auton Neurosci 2019; 217: 18-25.
[http://dx.doi.org/10.1016/j.autneu.2018.12.007] [PMID: 30704971]
[113]
Barbosa MA, de Sousa GG, de Castro UGM, et al. Oral Ang-(1-7) treatment improves white adipose tissue remodeling and hypertension in rats with metabolic syndrome. Nutrition: X 2019; 1.
[http://dx.doi.org/10.1016/j.nutx.2019.100004]
[114]
Nakhaei H, Mogharnasi M, Fanaei H. Effect of swimming training on levels of asprosin, lipid profile, glucose and insulin resistance in rats with metabolic syndrome. Obes Med 2019; 15: 100111.
[http://dx.doi.org/10.1016/j.obmed.2019.100111]
[115]
Lasker S, Rahman MM, Parvez F, et al. High-fat diet-induced metabolic syndrome and oxidative stress in obese rats are ameliorated by yogurt supplementation. Sci Rep 2019; 9(1): 20026.
[http://dx.doi.org/10.1038/s41598-019-56538-0] [PMID: 31882854]
[116]
L’hadj I, Azzi R, Lahfa F, Koceir EA, Omari N. The nutraceutical potential of Lepidium sativum L. seed flavonoid-rich extract in managing metabolic syndrome components. J Food Biochem 2019; 43(3): e12725.
[http://dx.doi.org/10.1111/jfbc.12725] [PMID: 31353542]
[117]
Cheng HS, Phang SCW, Ton SH, Abdul Kadir K, Tan JBL. Purified ingredient-based high-fat diet is superior to chow-based equivalent in the induction of metabolic syndrome. J Food Biochem 2019; 43(2): e12717.
[http://dx.doi.org/10.1111/jfbc.12717] [PMID: 31353646]
[118]
Çelik MN, Ünlü Söğüt M. Probiotics improve chemerin and metabolic syndrome parameters in obese rats. Balkan Med J 2019; 36(5): 270-5.
[http://dx.doi.org/10.4274/balkanmedj.galenos.2019.2019.2.61] [PMID: 31284705]
[119]
Moreno-Fernández S, Garcés-Rimón M, Vera G, Astier J, Landrier JF, Miguel M. High fat/high glucose diet induces metabolic syndrome in an experimental rat model. Nutrients 2018; 10(10): 1502.
[http://dx.doi.org/10.3390/nu10101502] [PMID: 30322196]
[120]
Jakovljevic V, Milic P, Bradic J, et al. Standardized aronia melanocarpa extract as novel supplement against metabolic syndrome: A rat model. Int J Mol Sci 2018; 20(1): 6.
[http://dx.doi.org/10.3390/ijms20010006] [PMID: 30577476]
[121]
Sheen J-M, Yu H-R, Tain Y-L, et al. Combined maternal and postnatal high-fat diet leads to metabolic syndrome and is effectively reversed by resveratrol: A multiple-organ study. Sci Rep 2018; 8(1): 5607.
[http://dx.doi.org/10.1038/s41598-018-24010-0] [PMID: 29618822]
[122]
Obadia N, Lessa MA, Daliry A, et al. Cerebral microvascular dysfunction in metabolic syndrome is exacerbated by ischemia-reperfusion injury. BMC Neurosci 2017; 18(1): 67.
[http://dx.doi.org/10.1186/s12868-017-0384-x] [PMID: 28886695]
[123]
Machado MV, Vieira AB, da Conceição FG, Nascimento AR, da Nóbrega ACL, Tibirica E. Exercise training dose differentially alters muscle and heart capillary density and metabolic functions in an obese rat with metabolic syndrome. Exp Physiol 2017; 102(12): 1716-28.
[http://dx.doi.org/10.1113/EP086416] [PMID: 28921743]
[124]
Huang JP, Hsu SC, Meir YJJ, et al. Role of dysfunctional adipocytes in cholesterol-induced nonobese metabolic syndrome. J Mol Endocrinol 2018; 60(4): 307-21.
[http://dx.doi.org/10.1530/JME-17-0194] [PMID: 29581238]
[125]
Estato V, Nascimento A, Antunes B, et al. Cerebral microvascular dysfunction and inflammation are improved by centrally acting antihypertensive drugs in metabolic syndrome. Metab Syndr Relat Disord 2017; 15(1): 26-35.
[http://dx.doi.org/10.1089/met.2016.0085] [PMID: 27929741]
[126]
Cheng HS, Ton SH, Tan JBL, Abdul Kadir K. The ameliorative effects of a tocotrienol-rich fraction on the AGE-RAGE axis and hypertension in high-fat-diet-fed rats with metabolic syndrome. Nutrients 2017; 9(9): 984.
[http://dx.doi.org/10.3390/nu9090984] [PMID: 28880217]
[127]
Auberval N, Dal S, Maillard E, et al. Beneficial effects of a red wine polyphenol extract on high-fat diet-induced metabolic syndrome in rats. Eur J Nutr 2017; 56(4): 1467-75.
[http://dx.doi.org/10.1007/s00394-016-1192-2] [PMID: 26913853]
[128]
Li SW, Yu HR, Sheen JM, et al. A maternal high-fat diet during pregnancy and lactation, in addition to a postnatal high-fat diet, leads to metabolic syndrome with spatial learning and memory deficits: Beneficial effects of resveratrol. Oncotarget 8 Epub ahead of print 19 December 2017..
[http://dx.doi.org/10.18632/oncotarget.22960]
[129]
Yao L, Wei J, Shi S, et al. Modified lingguizhugan decoction incorporated with dietary restriction and exercise ameliorates hyperglycemia, hyperlipidemia and hypertension in a rat model of the metabolic syndrome. BMC Complement Altern Med 2017; 17(1): 132.
[http://dx.doi.org/10.1186/s12906-017-1557-y] [PMID: 28241808]
[130]
Li R, Cui K, Liu K, et al. Metabolic syndrome in rats is associated with erectile dysfunction by impairing PI3K/Akt/eNOS activity. Sci Rep 2017; 7(1): 13464.
[http://dx.doi.org/10.1038/s41598-017-12907-1] [PMID: 29044143]
[131]
Ehrampoush E, Homayounfar R, Davoodi SH, Zand H, Askari A, Kouhpayeh SA. Ability of dairy fat in inducing metabolic syndrome in rats. Springerplus 2016; 5(1): 2020.
[http://dx.doi.org/10.1186/s40064-016-3716-x] [PMID: 27994997]
[132]
Chen J, Song H. Protective potential of epigallocatechin-3-gallate against benign prostatic hyperplasia in metabolic syndrome rats. Environ Toxicol Pharmacol 2016; 45: 315-20.
[http://dx.doi.org/10.1016/j.etap.2016.06.015] [PMID: 27348728]
[133]
Nascimento AR, Machado MV, Gomes F, et al. Central sympathetic modulation reverses microvascular alterations in a rat model of high-fat diet-induced metabolic syndrome. Microcirculation 2016; 23(4): 320-9.
[http://dx.doi.org/10.1111/micc.12280] [PMID: 27086551]
[134]
Algandaby MM. Crocin prevents metabolic syndrome in rats via enhancing PPAR-gamma and AMPK. Saudi J Biol Sci 2020; 27(5): 1310-6.
[http://dx.doi.org/10.1016/j.sjbs.2020.01.004] [PMID: 32346340]
[135]
Prieto-Gómez B, Díaz-Vázquez M, Pérez-Torres D. Hippocampal electrophysiological changes during the elicited metabolic syndrome in Wistar rats. Metabol Open 2020; 5: 100027.
[http://dx.doi.org/10.1016/j.metop.2020.100027] [PMID: 32812943]
[136]
Alves Freire Ribeiro AC, Batista TH, Trujillo Rojas VC, Giusti-Paiva A, Cardoso Vilela F. Metabolic syndrome accentuates post-traumatic stress disorder-like symptoms and glial activation. Behav Brain Res 2020; 384: 112557.
[http://dx.doi.org/10.1016/j.bbr.2020.112557] [PMID: 32061590]
[137]
Landa-Galvan HV, Rios-Castro E, Romero-Garcia T, Rueda A, Olivares-Reyes JA. Metabolic syndrome diminishes insulin-induced Akt activation and causes a redistribution of Akt-interacting proteins in cardiomyocytes. PLoS One 2020; 15(1): e0228115.
[http://dx.doi.org/10.1371/journal.pone.0228115] [PMID: 31995605]
[138]
Akdas S, Turan B, Durak A, Aribal Ayral P, Yazihan N. The relationship between metabolic syndrome development and tissue trace elements status and inflammatory markers. Biol Trace Elem Res 2020; 198(1): 16-24.
[http://dx.doi.org/10.1007/s12011-020-02046-6] [PMID: 31993942]
[139]
Ahmed OAA, El-Bassossy HM, Azhar AS, Tarkhan MM, El-Mas MM. Interference with AGEs formation and AGEs-induced vascular injury mediates curcumin vascular protection in metabolic syndrome. Sci Rep 2020; 10(1): 315.
[http://dx.doi.org/10.1038/s41598-019-57268-z] [PMID: 31941978]
[140]
Fernández-Miranda G, Romero-Garcia T, Barrera-Lechuga TP, Mercado-Morales M, Rueda A. Impaired activity of ryanodine receptors contributes to calcium mishandling in cardiomyocytes of metabolic syndrome rats. Front Physiol 2019; 10: 520.
[http://dx.doi.org/10.3389/fphys.2019.00520] [PMID: 31114513]
[141]
El-Mehi AE-S, Faried MA. Effect of high-fructose diet-induced metabolic syndrome on the pituitary-gonadal axis from adolescence through adulthood in male albino rats and the possible protective role of ginger extract. A biochemical, histological and immunohistochemical study. Folia Morphol (Warsz) 2020; 79(4): 690-708.
[http://dx.doi.org/10.5603/FM.a2019.0139] [PMID: 31886878]
[142]
Carbó R, Rodríguez E. A glucose-insulin-potassium solution improves glucose intake in hypoxic cardiomyocytes by a differential expression of glucose transporters in a metabolic syndrome model. J Biosci 2019; 44(1): 19.
[http://dx.doi.org/10.1007/s12038-018-9833-7] [PMID: 30837370]
[143]
Bilginoglu A. Cardiovascular protective effect of pioglitazone on oxidative stress in rats with metabolic syndrome. J Chin Med Assoc 2019; 82(6): 452-6.
[http://dx.doi.org/10.1097/JCMA.0000000000000103] [PMID: 30932940]
[144]
Tükel HC, Delilbaşı E. Effects of metabolic syndrome on jawbones and bone metabolic markers in sucrose-fed rats. Odontology 2019; 107(4): 457-64.
[http://dx.doi.org/10.1007/s10266-019-00422-w] [PMID: 30911855]
[145]
Rubio-Ruiz ME, Guarner-Lans V, Cano-Martínez A, et al. Resveratrol and quercetin administration improves antioxidant defenses and reduces fatty liver in metabolic syndrome rats. Molecules 2019; 24(7): 1297.
[http://dx.doi.org/10.3390/molecules24071297] [PMID: 30987086]
[146]
Reshidan NH, Abd Muid S, Mamikutty N. The effects of Pandanus amaryllifolius (Roxb.) leaf water extracts on fructose-induced metabolic syndrome rat model. BMC Complement Altern Med 2019; 19(1): 232.
[http://dx.doi.org/10.1186/s12906-019-2627-0] [PMID: 31462242]
[147]
Pérez-Torres I, Gutiérrez-Alvarez Y, Guarner-Lans V, Díaz-Díaz E, Manzano Pech L, Caballero-Chacón SDC. Intra-abdominal fat adipocyte hypertrophy through a progressive alteration of lipolysis and lipogenesis in metabolic syndrome rats. Nutrients 2019; 11(7): 1529.
[http://dx.doi.org/10.3390/nu11071529] [PMID: 31284400]
[148]
Mapfumo M, Lembede BW, Ndhlala AR, et al. Effect of crude moringa oleifera lam. seed extract on the blood markers of metabolic syndrome in high-fructose diet-fed growing sprague- dawley rats. J Complement Integr Med 17 Epub ahead of print 15 August 2019..
[http://dx.doi.org/10.1515/jcim-2019-0045]
[149]
Hassan NA, Bassossy HME, Fahmy A, Mahmoud MF. Limonin alleviates macro- and micro-vascular complications of metabolic syndrome in rats: A comparative study with azelnidipine. Phytomedicine 2018; 43: 92-102.
[http://dx.doi.org/10.1016/j.phymed.2018.03.044] [PMID: 29747759]
[150]
Aguilera-Mendez A, Hernández-Equihua MG, Rueda-Rocha AC, et al. Protective effect of supplementation with biotin against high-fructose-induced metabolic syndrome in rats. Nutr Res 2018; 57: 86-96.
[http://dx.doi.org/10.1016/j.nutres.2018.06.007] [PMID: 30122199]
[151]
Liu L, Huang X, Gao J, et al. Improved endogenous epoxyeicosatrienoic acid production mends heart function via increased PGC 1α-mitochondrial functions in metabolic syndrome. J Pharmacol Sci 2018; 138(2): 138-45.
[http://dx.doi.org/10.1016/j.jphs.2018.09.010] [PMID: 30342783]
[152]
El-Fawal R, El Fayoumi HM, Mahmoud MF. Diosmin and crocin alleviate nephropathy in metabolic syndrome rat model: Effect on oxidative stress and low grade inflammation. Biomed Pharmacother 2018; 102: 930-7.
[http://dx.doi.org/10.1016/j.biopha.2018.03.162] [PMID: 29710548]
[153]
Younis W, Alamgeer , Schini-Kerth VB, Junior AG, Majid M. Cardioprotective effect of Asphodelus tenuifolius Cav. on blood pressure and metabolic alterations in glucose-induced metabolic syndrome rats-An ethnopharmacological approach. J Ethnopharmacol 2018; 214: 168-78.
[http://dx.doi.org/10.1016/j.jep.2017.12.005] [PMID: 29225118]
[154]
Yilmaz Demirtas C, Bircan FS, Pasaoglu OT, Turkozkan N. The effects of resveratrol on hepatic oxidative stress in metabolic syndrome model induced by high fructose diet. Bratisl Lek Listy 2018; 119(1): 36-40.
[http://dx.doi.org/10.4149/BLL_2018_008] [PMID: 29405729]
[155]
Ortega-Pacheco D, Jiménez-Pérez MM, Serafín-López J, Juárez-Rojas JG, Ruiz-García A, Pacheco-García U. Vanadyl sulfate effects on systemic profiles of metabolic syndrome in old rats with fructose-induced obesity. Int J Endocrinol 2018; 2018: 5257216.
[http://dx.doi.org/10.1155/2018/5257216] [PMID: 30675160]
[156]
López-Acosta O, de Los Angeles Fortis-Barrera M, Barrios-Maya MA, Ramírez AR, Aguilar FJA, El-Hafidi M. Reactive oxygen species from NADPH oxidase and mitochondria participate in the proliferation of aortic smooth muscle cells from a model of metabolic syndrome. Oxid Med Cell Longev 2018; 2018: 5835072.
[http://dx.doi.org/10.1155/2018/5835072] [PMID: 30671170]
[157]
Oliveira PS, Chaves VC, Soares MSP, et al. Southern Brazilian native fruit shows neurochemical, metabolic and behavioral benefits in an animal model of metabolic syndrome. Metab Brain Dis 2018; 33(5): 1551-62.
[http://dx.doi.org/10.1007/s11011-018-0262-y] [PMID: 29882020]
[158]
Ng H-Y, Lee Y-T, Kuo W-H, Huang PC, Lee WC, Lee CT. Alterations of renal epithelial glucose and uric acid transporters in fructose induced metabolic syndrome. Kidney Blood Press Res 2018; 43(6): 1822-31.
[http://dx.doi.org/10.1159/000495814] [PMID: 30537749]
[159]
Jamshidi S, Hejazi N, Golmakani M-T, Tanideh N. Wild pistachio (Pistacia atlantica mutica) oil improve metabolic syndrome features in rats with high fructose ingestion. Iran J Basic Med Sci 2018; 21(12): 1255-61.
[http://dx.doi.org/10.22038/ijbms.2018.30511.7351] [PMID: 30627369]
[160]
Durak A, Olgar Y, Degirmenci S, Akkus E, Tuncay E, Turan B. A SGLT2 inhibitor dapagliflozin suppresses prolonged ventricular-repolarization through augmentation of mitochondrial function in insulin-resistant metabolic syndrome rats. Cardiovasc Diabetol 2018; 17(1): 144.
[http://dx.doi.org/10.1186/s12933-018-0790-0] [PMID: 30447687]
[161]
Bratoeva K, Nikolova S, Merdzhanova A, et al. Association between serum CK-18 levels and the degree of liver damage in fructose-induced metabolic syndrome. Metab Syndr Relat Disord 2018; 16(7): 350-7.
[http://dx.doi.org/10.1089/met.2017.0162] [PMID: 29989845]
[162]
Ibitoye OB, Ajiboye TO. Dietary phenolic acids reverse insulin resistance, hyperglycaemia, dyslipidaemia, inflammation and oxidative stress in high-fructose diet-induced metabolic syndrome rats. Arch Physiol Biochem 2018; 124(5): 410-7.
[http://dx.doi.org/10.1080/13813455.2017.1415938] [PMID: 29260581]
[163]
da Costa RM, da Silva JF, Alves JV, et al. Increased O-GlcNAcylation of endothelial nitric oxide synthase compromises the anti-contractile properties of perivascular adipose tissue in metabolic syndrome. Front Physiol 2018; 9: 341.
[http://dx.doi.org/10.3389/fphys.2018.00341] [PMID: 29681862]
[164]
Chen I-H, Cheng J-T, Tong Y-C. Metabolic syndrome induced bladder cannabinoid receptor changes in the fructose-fed rats: Cannabinoid receptors in rat bladder. Low Urin Tract Symptoms 2018; 10(2): 198-203.
[http://dx.doi.org/10.1111/luts.12156] [PMID: 28386998]
[165]
Dupas J, Feray A, Goanvec C, et al. Metabolic syndrome and hypertension resulting from fructose enriched diet in wistar rats. Biomed Res Int 2017; 2017: 2494067.
[http://dx.doi.org/10.1155/2017/2494067] [PMID: 28497040]
[166]
Chou C-L, Lin H, Chen J-S, Fang TC. Renin inhibition improves metabolic syndrome, and reduces angiotensin II levels and oxidative stress in visceral fat tissues in fructose-fed rats. PLoS One 2017; 12(7): e0180712.
[http://dx.doi.org/10.1371/journal.pone.0180712] [PMID: 28700686]
[167]
Felice JI, Schurman L, McCarthy AD, Sedlinsky C, Aguirre JI, Cortizo AM. Effects of fructose-induced metabolic syndrome on rat skeletal cells and tissue, and their responses to metformin treatment. Diabetes Res Clin Pract 2017; 126: 202-13.
[http://dx.doi.org/10.1016/j.diabres.2017.02.011] [PMID: 28259010]
[168]
Prabhakar P, Reeta KH, Maulik SK, et al. Effect of thymoquinone on high fructose diet-induced metabolic syndrome in rats. J Mol Cell Cardiol 2017; 112: 152.
[http://dx.doi.org/10.1016/j.yjmcc.2017.07.065]
[169]
Abdelkarem HM, Fadda LH. Flaxseed and quercetin improve anti-inflammatory cytokine level and insulin sensitivity in animal model of metabolic syndrome, the fructose-fed rats. Arab J Chem 2017; 10: S3015-20.
[http://dx.doi.org/10.1016/j.arabjc.2013.11.042]
[170]
Ajiboye TO, Hussaini AA, Nafiu BY, Ibitoye OB. Aqueous seed extract of Hunteria umbellata (K. Schum.) Hallier f. (Apocynaceae) palliates hyperglycemia, insulin resistance, dyslipidemia, inflammation and oxidative stress in high-fructose diet-induced metabolic syndrome in rats. J Ethnopharmacol 2017; 198: 184-93.
[http://dx.doi.org/10.1016/j.jep.2016.11.043] [PMID: 27894971]
[171]
Romero-Nava R, Zhou D-S, García N, et al. Evidence of alterations in the expression of orphan receptors GPR26 and GPR39 due to the etiology of the metabolic syndrome. J Recept Signal Transduct Res 2017; 37(4): 422-9.
[http://dx.doi.org/10.1080/10799893.2017.1298133] [PMID: 28270014]
[172]
Rebolledo-Solleiro D, Roldán-Roldán G, Díaz D, et al. Increased anxiety-like behavior is associated with the metabolic syndrome in non-stressed rats. PLoS One 2017; 12(5): e0176554.
[http://dx.doi.org/10.1371/journal.pone.0176554] [PMID: 28463967]
[173]
Pilar B, Güllich A, Oliveira P, Ströher D, Piccoli J, Manfredini V. Protective role of flaxseed oil and flaxseed lignan secoisolariciresinol diglucoside against oxidative stress in rats with metabolic syndrome: Flaxseed oil and SDG in oxidative stress. J Food Sci 2017; 82(12): 3029-36.
[http://dx.doi.org/10.1111/1750-3841.13964] [PMID: 29083494]
[174]
Panda V, Mistry K, Sudhamani S, Nandave M, Ojha SK. Amelioration of abnormalities associated with the metabolic syndrome by spinacia oleracea (spinach) consumption and aerobic exercise in rats. Oxid Med Cell Longev 2017; 2017: 2359389.
[http://dx.doi.org/10.1155/2017/2359389] [PMID: 28798859]
[175]
Kelany ME, Hakami TM, Omar AH. Curcumin improves the metabolic syndrome in high-fructose-diet-fed rats: Role of TNF-α, NF-κB, and oxidative stress. Can J Physiol Pharmacol 2017; 95(2): 140-50.
[http://dx.doi.org/10.1139/cjpp-2016-0152] [PMID: 27901349]
[176]
Carll AP, Crespo SM, Filho MS, et al. Inhaled ambient-level traffic-derived particulates decrease cardiac vagal influence and baroreflexes and increase arrhythmia in a rat model of metabolic syndrome. Part Fibre Toxicol 2017; 14(1): 16.
[http://dx.doi.org/10.1186/s12989-017-0196-2] [PMID: 28545487]
[177]
Cannizzaro L, Rossoni G, Savi F, et al. Regulatory landscape of AGE-RAGE-oxidative stress axis and its modulation by PPARγ activation in high fructose diet-induced metabolic syndrome. Nutr Metab (Lond) 2017; 14: 5.
[http://dx.doi.org/10.1186/s12986-016-0149-z] [PMID: 28101123]
[178]
Bratoeva K, Stoyanov GS, Merdzhanova A, et al. Manifestations of renal impairment in fructose-induced metabolic syndrome. Cureus 9 Epub ahead of print 7 November 2017..
[http://dx.doi.org/10.7759/cureus.1826]
[179]
Aslam M, Madhu SV. Development of metabolic syndrome in high-sucrose diet fed rats is not associated with decrease in adiponectin levels. Endocrine 2017; 58(1): 59-65.
[http://dx.doi.org/10.1007/s12020-017-1403-5] [PMID: 28879415]
[180]
Ajiboye TO, Raji HO, Adeleye AO, et al. Hibiscus sabdariffa calyx palliates insulin resistance, hyperglycemia, dyslipidemia and oxidative rout in fructose-induced metabolic syndrome rats. J Sci Food Agric 2016; 96(5): 1522-31.
[http://dx.doi.org/10.1002/jsfa.7254] [PMID: 25965053]
[181]
Hsieh C-C, Liao C-C, Liao Y-C, Hwang LS, Wu LY, Hsieh SC. Proteomic changes associated with metabolic syndrome in a fructose-fed rat model. Yao Wu Shi Pin Fen Xi 2016; 24(4): 754-61.
[http://dx.doi.org/10.1016/j.jfda.2016.03.005] [PMID: 28911613]
[182]
Zhou L, Pan Y, Chonan R, et al. Mitigation of insulin resistance by mangiferin in a rat model of fructose-induced metabolic syndrome is associated with modulation of CD36 redistribution in the skeletal muscle. J Pharmacol Exp Ther 2016; 356(1): 74-84.
[http://dx.doi.org/10.1124/jpet.115.229005] [PMID: 26498906]
[183]
Shahataa MG, Mostafa-Hedeab G, Ali EF, Mahdi EA, Mahmoud FA. Effects of telmisartan and pioglitazone on high fructose induced metabolic syndrome in rats. Can J Physiol Pharmacol 2016; 94(8): 907-17.
[http://dx.doi.org/10.1139/cjpp-2016-0090] [PMID: 27245695]
[184]
Sakamuri A, Pitla S, Putcha UK, et al. Transient decrease in circulatory testosterone and homocysteine precedes the development of metabolic syndrome features in fructose-fed sprague dawley rats. J Nutr Metab 2016; 2016: 7510840.
[http://dx.doi.org/10.1155/2016/7510840] [PMID: 27818793]
[185]
López YR, Pérez-Torres I, Zúñiga-Muñoz A, et al. Effect of glycine on adipocyte hypertrophy in a metabolic syndrome rat model. Curr Drug Deliv 2016; 13(1): 158-69.
[http://dx.doi.org/10.2174/156720181301160314151554] [PMID: 26996629]
[186]
Pérez-Torres I, Torres-Narváez JC, Pedraza-Chaverri J, et al. Effect of the aged garlic extract on cardiovascular function in metabolic syndrome rats. Molecules 2016; 21(11): 1425.
[http://dx.doi.org/10.3390/molecules21111425] [PMID: 27792195]
[187]
Kho MC, Lee YJ, Park JH, et al. Fermented red ginseng potentiates improvement of metabolic dysfunction in metabolic syndrome rat models. Nutrients 2016; 8(6): 369.
[http://dx.doi.org/10.3390/nu8060369] [PMID: 27322312]
[188]
Ewida SF. Implication of renal aquaporin-3 in fructose-induced metabolic syndrome and melatonin protection. J CDR Epub ahead of print 2016
[http://dx.doi.org/10.7860/JCDR/2016/18362.7656]
[189]
Suliman HM, Osman B, Abdoon IH, Saad AM, Khalid H. Ameliorative activity of Adansonia digitata fruit on high sugar/high fat diet-simulated Metabolic Syndrome model in male Wistar rats. Biomed Pharmacother 2020; 125: 109968.
[http://dx.doi.org/10.1016/j.biopha.2020.109968] [PMID: 32066041]
[190]
Lin X, Wang Q, Sun S, et al. Astragaloside IV promotes the eNOS/NO/cGMP pathway and improves left ventricular diastolic function in rats with metabolic syndrome. J Int Med Res 2020; 48(1): 300060519826848.
[http://dx.doi.org/10.1177/0300060519826848] [PMID: 30843445]
[191]
Cui F, Hu HF, Guo J, Sun J, Shi M. The effect of autophagy on chronic intermittent hypobaric hypoxia ameliorating liver damage in metabolic syndrome rats. Front Physiol 2020; 11: 13.
[http://dx.doi.org/10.3389/fphys.2020.00013] [PMID: 32082187]
[192]
Bhandarkar NS, Mouatt P, Goncalves P, Thomas T, Brown L, Panchal SK. Modulation of gut microbiota by spent coffee grounds attenuates diet-induced metabolic syndrome in rats. FASEB J 2020; 34(3): 4783-97.
[http://dx.doi.org/10.1096/fj.201902416RR] [PMID: 32039529]
[193]
Ivanova N, Liu Q, Agca C, et al. White matter inflammation and cognitive function in a co-morbid metabolic syndrome and prodromal Alzheimer’s disease rat model. J Neuroinflammation 2020; 17(1): 29.
[http://dx.doi.org/10.1186/s12974-020-1698-7] [PMID: 31964387]
[194]
Kalita H, Hazarika A, Devi R. Withdrawal of high-carbohydrate, high-fat diet alters status of trace elements to ameliorate metabolic syndrome in rats with type 2 diabetes mellitus. Can J Diabetes 2019; S1499267119306641.
[http://dx.doi.org/10.1016/j.jcjd.2019.10.001] [PMID: 32165144]
[195]
Bhandarkar NS, Mouatt P, Brown L, et al. Green coffee ameliorates components of diet-induced metabolic syndrome in rats. J Funct Foods 2019; 57: 141-9.
[http://dx.doi.org/10.1016/j.jff.2019.04.003]
[196]
Al-Sawalha NA, Alshogran OY, Awawdeh MS, Almomani BA. The effects of l-Carnosine on development of metabolic syndrome in rats. Life Sci 2019; 237: 116905.
[http://dx.doi.org/10.1016/j.lfs.2019.116905] [PMID: 31610198]
[197]
Zhao Z, Shi A, Wang Q, Zhou J. High oleic acid peanut oil and extra virgin olive oil supplementation attenuate metabolic syndrome in rats by modulating the gut microbiota. Nutrients 2019; 11(12): 3005.
[http://dx.doi.org/10.3390/nu11123005] [PMID: 31817909]
[198]
Shafie SR, Wanyonyi S, Panchal SK, Brown L. Linseed components are more effective than whole linseed in reversing diet-induced metabolic syndrome in rats. Nutrients 2019; 11(7): 1677.
[http://dx.doi.org/10.3390/nu11071677] [PMID: 31336561]
[199]
Palachai N, Wattanathorn J, Muchimapura S, Thukham-Mee W. Antimetabolic syndrome effect of phytosome containing the combined extracts of mulberry and ginger in an animal model of metabolic syndrome. Oxid Med Cell Longev 2019; 2019: 5972575.
[http://dx.doi.org/10.1155/2019/5972575] [PMID: 31827683]
[200]
Mayer C, Côme M, Ulmann L, et al. Preventive effects of the marine microalga phaeodactylum tricornutum, used as a food supplement, on risk factors associated with metabolic syndrome in wistar rats. Nutrients 2019; 11(5): 1069.
[http://dx.doi.org/10.3390/nu11051069] [PMID: 31091691]
[201]
Ghattamaneni NK, Sharma A, Panchal SK, Brown L. Pelargonidin 3-glucoside-enriched strawberry attenuates symptoms of DSS-induced inflammatory bowel disease and diet-induced metabolic syndrome in rats. Eur J Nutr 2020; 59(7): 2905-18.
[http://dx.doi.org/10.1007/s00394-019-02130-1] [PMID: 31696323]
[202]
Zayed EA, AinShoka AA, El Shazly KA, Abd El Latif HA. Improvement of insulin resistance via increase of GLUT4 and PPARγ in metabolic syndrome-induced rats treated with omega-3 fatty acid or l-carnitine. J Biochem Mol Toxicol 2018; 32(11): e22218.
[http://dx.doi.org/10.1002/jbt.22218] [PMID: 30256492]
[203]
Bagi CM, Edwards K, Berryman E. Metabolic syndrome and bone: Pharmacologically induced diabetes has deleterious effect on bone in growing obese rats. Calcif Tissue Int 2018; 102(6): 683-94.
[http://dx.doi.org/10.1007/s00223-017-0367-z] [PMID: 29196931]
[204]
Battault S, Meziat C, Nascimento A, et al. Vascular endothelial function masks increased sympathetic vasopressor activity in rats with metabolic syndrome. Am J Physiol Heart Circ Physiol 2018; 314(3): H497-507.
[http://dx.doi.org/10.1152/ajpheart.00217.2017] [PMID: 29127233]
[205]
Cui F, Guan Y, Guo J, et al. Chronic intermittent hypobaric hypoxia protects vascular endothelium by ameliorating autophagy in metabolic syndrome rats. Life Sci 2018; 205: 145-54.
[http://dx.doi.org/10.1016/j.lfs.2018.05.008] [PMID: 29733850]
[206]
Wong SK, Chin K-Y, Suhaimi FH, et al. The effects of palm tocotrienol on metabolic syndrome and bone loss in male rats induced by high-carbohydrate high-fat diet. J Funct Foods 2018; 44: 246-54.
[http://dx.doi.org/10.1016/j.jff.2018.03.022]
[207]
Wong SK, Chin K-Y, Suhaimi FH, Ahmad F, Ima-Nirwana S. Exploring the potential of tocotrienol from Bixa orellana as a single agent targeting metabolic syndrome and bone loss. Bone 2018; 116: 8-21.
[http://dx.doi.org/10.1016/j.bone.2018.07.003] [PMID: 29990585]
[208]
Zheng N, Ding X, Wei D, et al. Therapeutic effects of coccomyxagloeobotrydiformis on the metabolic syndrome in rats. Cell Physiol Biochem 2018; 48(4): 1519-29.
[http://dx.doi.org/10.1159/000492262] [PMID: 30071531]
[209]
Zhang J, Zhao L, Cheng Q, et al. Structurally different flavonoid subclasses attenuate high-fat and high-fructose diet induced metabolic syndrome in rats. J Agric Food Chem 2018; 66(46): 12412-20.
[http://dx.doi.org/10.1021/acs.jafc.8b03574] [PMID: 30360615]
[210]
Yu J, Yang J, Li M, Yang X, Wang P, Xu J. Protective effects of Chinese Fenggang zinc selenium tea on metabolic syndrome in high-sucrose-high-fat diet-induced obese rats. Sci Rep 2018; 8(1): 3528.
[http://dx.doi.org/10.1038/s41598-018-21913-w] [PMID: 29476111]
[211]
Wong SK, Chin K-Y, Suhaimi FH, Ahmad F, Ima-Nirwana S. The effects of a modified high-carbohydrate high-fat diet on metabolic syndrome parameters in male rats. Exp Clin Endocrinol Diabetes 2018; 126(4): 205-12.
[http://dx.doi.org/10.1055/s-0043-119352] [PMID: 29117620]
[212]
Wei D, Zheng N, Zheng L, Wang L, Song L, Sun L. Shexiang baoxin pill corrects metabolic disorders in a rat model of metabolic syndrome by targeting mitochondria. Front Pharmacol 2018; 9: 137.
[http://dx.doi.org/10.3389/fphar.2018.00137] [PMID: 29551973]
[213]
Moreno-Fernández S, Garcés-Rimón M, González C, et al. Pepsin egg white hydrolysate ameliorates metabolic syndrome in high-fat/high-dextrose fed rats. Food Funct 2018; 9(1): 78-86.
[http://dx.doi.org/10.1039/C7FO01280B] [PMID: 29114652]
[214]
Lee Y-L, Lin K-L, Wu B-N, et al. Epigallocatechin-3-gallate alleviates bladder overactivity in a rat model with metabolic syndrome and ovarian hormone deficiency through mitochondria apoptosis pathways. Sci Rep 2018; 8(1): 5358.
[http://dx.doi.org/10.1038/s41598-018-23800-w] [PMID: 29599473]
[215]
Hazarika A, Kalita H, Kalita MC, Devi R. Withdrawal from high- carbohydrate, high-saturated-fat diet changes saturated fat distribution and improves hepatic low-density-lipoprotein receptor expression to ameliorate metabolic syndrome in rats. Nutrition 2017; 38: 95-101.
[http://dx.doi.org/10.1016/j.nut.2017.01.005] [PMID: 28526391]
[216]
Wanyonyi S, du Preez R, Brown L, Paul NA, Panchal SK. Kappaphycus alvarezii as a food supplement prevents diet-induced metabolic syndrome in rats. Nutrients 2017; 9(11): 1261.
[http://dx.doi.org/10.3390/nu9111261] [PMID: 29149029]
[217]
Shokouh P, Jeppesen PB, Hermansen K, et al. A combination of coffee compounds shows insulin-sensitizing and hepatoprotective effects in a rat model of diet-induced metabolic syndrome. Nutrients 2017; 10(1): 6.
[http://dx.doi.org/10.3390/nu10010006] [PMID: 29271886]
[218]
Sekar S, Shafie SR, Prasadam I, et al. Saturated fatty acids induce development of both metabolic syndrome and osteoarthritis in rats. Sci Rep 2017; 7: 46457.
[http://dx.doi.org/10.1038/srep46457] [PMID: 28418007]
[219]
Francisqueti FV, Nascimento AF, Minatel IO, et al. Metabolic syndrome and inflammation in adipose tissue occur at different times in animals submitted to a high-sugar/fat diet. J Nutr Sci 2017; 6: e41.
[http://dx.doi.org/10.1017/jns.2017.42] [PMID: 29152245]
[220]
Crescenzo R, Mazzoli A, Cancelliere R, et al. Beneficial effects of carotenoid-producing cells of Bacillus indicus HU16 in a rat model of diet-induced metabolic syndrome. Benef Microbes 2017; 8(5): 823-31.
[http://dx.doi.org/10.3920/BM2017.0025] [PMID: 28969443]
[221]
Ayoub HM, McDonald MR, Sullivan JA, et al. The effect of anthocyanin-rich purple vegetable diets on metabolic syndrome in obese zucker rats. J Med Food 2017; 20(12): 1240-9.
[http://dx.doi.org/10.1089/jmf.2017.0025] [PMID: 28956702]
[222]
Donner DG, Elliott GE, Beck BR, et al. Trenbolone improves cardiometabolic risk factors and myocardial tolerance to ischemia-reperfusion in male rats with testosterone-deficient metabolic syndrome. Endocrinology 2016; 157(1): 368-81.
[http://dx.doi.org/10.1210/en.2015-1603] [PMID: 26584015]
[223]
Zhang J, Wang O, Guo Y, et al. Effect of increasing doses of linoleic and α-linolenic acids on high-fructose and high-fat diet induced metabolic syndrome in rats. J Agric Food Chem 2016; 64(4): 762-72.
[http://dx.doi.org/10.1021/acs.jafc.5b04715] [PMID: 26743332]
[224]
Rodriguez Lanzi C, Perdicaro DJ, Antoniolli A, et al. Grape pomace and grape pomace extract improve insulin signaling in high-fat-fructose fed rat-induced metabolic syndrome. Food Funct 2016; 7(3): 1544-53.
[http://dx.doi.org/10.1039/C5FO01065A] [PMID: 26901521]
[225]
Lozano-Cuenca J, Valencia-Hernández I, López-Canales OA, et al. Possible mechanisms involved in the effect of the subchronic administration of rosuvastatin on endothelial function in rats with metabolic syndrome. Braz J Med Biol Res 2020; 53(2): e9304.
[http://dx.doi.org/10.1590/1414-431x20199304] [PMID: 32049102]
[226]
Livingston JM, McDonald MW, Gagnon T, et al. Influence of metabolic syndrome on cerebral perfusion and cognition. Neurobiol Dis 2020; 137: 104756.
[http://dx.doi.org/10.1016/j.nbd.2020.104756] [PMID: 31978604]
[227]
Mayneris-Perxachs J, Alcaide-Hidalgo JM, de la Hera E, et al. Supplementation with biscuits enriched with hesperidin and naringenin is associated with an improvement of the Metabolic Syndrome induced by a cafeteria diet in rats. J Funct Foods 2019; 61: 103504.
[http://dx.doi.org/10.1016/j.jff.2019.103504]
[228]
La Russa D, Giordano F, Marrone A, Parafati M, Janda E, Pellegrino D. Oxidative imbalance and kidney damage in cafeteria diet-induced rat model of metabolic syndrome: Effect of bergamot polyphenolic fraction. Antioxidants 2019; 8(3): 66.
[http://dx.doi.org/10.3390/antiox8030066] [PMID: 30884780]
[229]
Doghri Y, Chetaneau F, Rhimi M, et al. Sildenafil citrate long-term treatment effects on cardiovascular reactivity in a SHR experimental model of metabolic syndrome. PLoS One 2019; 14(11): e0223914.
[http://dx.doi.org/10.1371/journal.pone.0223914] [PMID: 31697707]
[230]
Derkach KV, Ivantsov AO, Chistyakova OV, et al. Intranasal insulin restores metabolic parameters and insulin sensitivity in rats with metabolic syndrome. Bull Exp Biol Med 2017; 163(2): 184-9.
[http://dx.doi.org/10.1007/s10517-017-3762-6] [PMID: 28726200]
[231]
Pons Z, Margalef M, Bravo FI, Arola-Arnal A, Muguerza B. Chronic administration of grape-seed polyphenols attenuates the development of hypertension and improves other cardiometabolic risk factors associated with the metabolic syndrome in cafeteria diet-fed rats. Br J Nutr 2017; 117(2): 200-8.
[http://dx.doi.org/10.1017/S0007114516004426] [PMID: 28162106]
[232]
Caimari A, del Bas JM, Boqué N, et al. Heat-killed Bifidobacterium animalis subsp. Lactis CECT 8145 increases lean mass and ameliorates metabolic syndrome in cafeteria-fed obese rats. J Funct Foods 2017; 38: 251-63.
[http://dx.doi.org/10.1016/j.jff.2017.09.029]
[233]
Carvalho FM, Lima VC, Costa IS, et al. A Trypsin inhibitor from tamarind reduces food intake and improves inflammatory status in rats with metabolic syndrome regardless of weight loss. Nutrients 2016; 8(10): 544.
[http://dx.doi.org/10.3390/nu8100544] [PMID: 27690087]
[234]
Pons Z, Margalef M, Bravo FI, Arola-Arnal A, Muguerza B. Acute administration of single oral dose of grape seed polyphenols restores blood pressure in a rat model of metabolic syndrome: Role of nitric oxide and prostacyclin. Eur J Nutr 2016; 55(2): 749-58.
[http://dx.doi.org/10.1007/s00394-015-0895-0] [PMID: 25862540]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy