[4]
Zhou, P.; Yang, X.-L.; Wang, X.-G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.-R.; Zhu, Y.; Li, B.; Huang, C.-L. A pneumonia outbreak associated
with a new coronavirus of probable bat origin. nature,
2020, 579(7798), 270-273.,
[14]
Li, Q.; Guan, X.; Wu, P.; Wang, X.; Zhou, L.; Tong, Y.; Ren, R.; Leung, K.S.M.; Lau, E.H.Y.; Wong, J.Y.; Xing, X.; Xiang, N.; Wu, Y.; Li, C.; Chen, Q.; Li, D.; Liu, T.; Zhao, J.; Liu, M.; Tu, W.; Chen, C.; Jin, L.; Yang, R.; Wang, Q.; Zhou, S.; Wang, R.; Liu, H.; Luo, Y.; Liu, Y.; Shao, G.; Li, H.; Tao, Z.; Yang, Y.; Deng, Z.; Liu, B.; Ma, Z.; Zhang, Y.; Shi, G.; Lam, T.T.Y.; Wu, J.T.; Gao, G.F.; Cowling, B.J.; Yang, B.; Leung, G.M.; Feng, Z. Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia.
N. Engl. J. Med., 2020,
382(13), 1199-1207.
[
http://dx.doi.org/10.1056/NEJMoa2001316] [PMID:
31995857]
[23]
Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X. Clinical features of patients infected with
2019 novel coronavirus in Wuhan, China. lancet, 2020,
395(10223), 497-506,
[33]
Luo, T.; Na, Y.; Tan, L. Ribavirin was beneficial for patients with SARS and MERS: uncertain if it is effective for patients with COVID-19. China Pharm., 2020, 29(5), 34-39.
[35]
Shaikh, V. S.; Shaikh, Y.; Ahmed, K. Lopinavir as a potential
inhibitor for sars-cov-2 target protein: A Molecular Docking Study.
Available at SSRN 3596820, 2020.
[45]
Warren, T.K.; Jordan, R.; Lo, M.K.; Ray, A.S.; Mackman, R.L.; Soloveva, V.; Siegel, D.; Perron, M.; Bannister, R.; Hui, H.C.; Larson, N.; Strickley, R.; Wells, J.; Stuthman, K.S.; Van Tongeren, S.A.; Garza, N.L.; Donnelly, G.; Shurtleff, A.C.; Retterer, C.J.; Gharaibeh, D.; Zamani, R.; Kenny, T.; Eaton, B.P.; Grimes, E.; Welch, L.S.; Gomba, L.; Wilhelmsen, C.L.; Nichols, D.K.; Nuss, J.E.; Nagle, E.R.; Kugelman, J.R.; Palacios, G.; Doerffler, E.; Neville, S.; Carra, E.; Clarke, M.O.; Zhang, L.; Lew, W.; Ross, B.; Wang, Q.; Chun, K.; Wolfe, L.; Babusis, D.; Park, Y.; Stray, K.M.; Trancheva, I.; Feng, J.Y.; Barauskas, O.; Xu, Y.; Wong, P.; Braun, M.R.; Flint, M.; McMullan, L.K.; Chen, S.S.; Fearns, R.; Swaminathan, S.; Mayers, D.L.; Spiropoulou, C.F.; Lee, W.A.; Nichol, S.T.; Cihlar, T.; Bavari, S. Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys.
Nature, 2016,
531(7594), 381-385.
[
http://dx.doi.org/10.1038/nature17180] [PMID:
26934220]
[47]
Chun, B.K.; Clarke, M.O.N.H.; Doerffler, E.; Hui, H.C.; Jordan, R.; Mackman, R.L.; Parrish, J.P.; Ray, A.S.; Siegel, D. .Methods for
treating Filoviridae virus infections. U.S. Patent 9,724,360, 2017
8August,
[58]
Williamson, B. N.; Feldmann, F.; Schwarz, B.; Meade-White, K.; Porter, D. P.; Schulz, J.; Van Doremalen, N.; Leighton, I.; Yinda, C. K.; Pérez-Pérez, L. Clinical benefit of remdesivir in rhesus macaques
infected with SARS-CoV-2. Preprint. BioRxiv.
2020.04.15.043166, 2020.,
[62]
Zhang, L.; Zhou, R. Binding mechanism of remdesivir to SARS-CoV-2 RNA dependent RNA polymerase., 2020.
[72]
Chen, C.; Huang, J.; Cheng, Z.; Wu, J.; Chen, S.; Zhang, Y.; Chen, B.; Lu, M.; Luo, Y.; Zhang, J. Favipiravir versus arbidol for COVID-19: a randomized clinical trial. MedRxiv, 2020.preprint.
[75]
Harismah, K.; Mirzaei, M. Favipiravir: Structural Analysis and
Activity against COVID-19. Adv. j. chem. Sect. B. Nat. prod. med.
chem., 2020, 2(2), 55-60.,
[76]
Narkhede, R.R.; Cheke, R.S.; Ambhore, J.P.; Shinde, S.D. The molecular docking study of potential drug candidates showing anti-COVID-19 activity by exploring of therapeutic targets of SARS-CoV-2. EJMO, 2020, 4(3), 185-195.
[114]
Cao, B.; Wang, Y.; Wen, D.; Liu, W.; Wang, J.; Fan, G.; Ruan, L.; Song, B.; Cai, Y.; Wei, M.; Li, X.; Xia, J.; Chen, N.; Xiang, J.; Yu, T.; Bai, T.; Xie, X.; Zhang, L.; Li, C.; Yuan, Y.; Chen, H.; Li, H.; Huang, H.; Tu, S.; Gong, F.; Liu, Y.; Wei, Y.; Dong, C.; Zhou, F.; Gu, X.; Xu, J.; Liu, Z.; Zhang, Y.; Li, H.; Shang, L.; Wang, K.; Li, K.; Zhou, X.; Dong, X.; Qu, Z.; Lu, S.; Hu, X.; Ruan, S.; Luo, S.; Wu, J.; Peng, L.; Cheng, F.; Pan, L.; Zou, J.; Jia, C.; Wang, J.; Liu, X.; Wang, S.; Wu, X.; Ge, Q.; He, J.; Zhan, H.; Qiu, F.; Guo, L.; Huang, C.; Jaki, T.; Hayden, F.G.; Horby, P.W.; Zhang, D.; Wang, C. A trial of lopinavir–ritonavir in adults hospitalized with severe Covid-19.
N. Engl. J. Med., 2020,
382(19), 1787-1799.
[
http://dx.doi.org/10.1056/NEJMoa2001282] [PMID:
32187464]
[116]
Hung, I.F-N.; Lung, K-C.; Tso, E.Y-K.; Liu, R.; Chung, T.W-H.; Chu, M-Y.; Ng, Y-Y.; Lo, J.; Chan, J.; Tam, A.R.; Shum, H.P.; Chan, V.; Wu, A.K.; Sin, K.M.; Leung, W.S.; Law, W.L.; Lung, D.C.; Sin, S.; Yeung, P.; Yip, C.C.; Zhang, R.R.; Fung, A.Y.; Yan, E.Y.; Leung, K.H.; Ip, J.D.; Chu, A.W.; Chan, W.M.; Ng, A.C.; Lee, R.; Fung, K.; Yeung, A.; Wu, T.C.; Chan, J.W.; Yan, W.W.; Chan, W.M.; Chan, J.F.; Lie, A.K.; Tsang, O.T.; Cheng, V.C.; Que, T.L.; Lau, C.S.; Chan, K.H.; To, K.K.; Yuen, K.Y. Triple combination of interferon beta-1b, lopinavir-ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: an open-label, randomised, phase 2 trial.
Lancet, 2020,
395(10238), 1695-1704.
[
http://dx.doi.org/10.1016/S0140-6736(20)31042-4] [PMID:
32401715]
[117]
Osborne, V.; Davies, M.; Lane, S.; Evans, A.; Denyer, J.; Dhanda, S.; Roy, D.; Shakir, S. A. Lopinavir-Ritonavir in treatment of COVID-19: A dynamic systematic benefit-risk assessment., 2020.05(25.), 20114470..
[118]
Lin, S.; Shen, R.; Guo, X. Molecular modeling evaluation of the binding abilities of ritonavir and lopinavir to Wuhan pneumonia coronavirus proteases. bioRxiv, 2020.
[130]
Chen, J.; Xia, L.; Liu, L.; Xu, Q.; Ling, Y.; Huang, D.; Huang, W.; Song, S.; Xu, S.; Shen, Y. Antiviral Activity and Safety of DarunaThe
Situation of Small Molecules Targeting Key Proteins Mini-Reviews in Medicinal Chemistry, 2022, Vol. 22, No. 2 309
vir/Cobicistat for Treatment of COVID-19Open Forum Infectious
Diseases; Laura, A. N.; Malgorzata, M.; Alessio, S.; Antonio, D.
B.; Federica, P.; Antonio, V.; Mauro, G.; Matteo, B., Eds.; Oxford
University Press: US, 2020. 21June;.
[134]
Lin, S.; Shen, R.; He, J.; Li, X.; Guo, X. Molecular modeling evaluation of the binding effect of ritonavir, lopinavir and darunavir to severe acute respiratory syndrome coronavirus 2 proteases. bioRxiv, 2020.
[143]
Sahraei, Z.; Shabani, M.; Shokouhi, S.; Saffaei, A. Aminoquinolines
against coronavirus disease 2019 (COVID-19): chloroquine or
hydroxychloroquine. Int. J. Antimicrob. Agents, 2020,
105945(10.1016).
[145]
Jeon, K.W. International review of cytology; Academic Press, 1996.
[157]
Omar, S.; Bouziane, I.; Bouslama, Z.; Djemel, A. In-Silico Identification
of Potent Inhibitors of COVID-19 Main Protease (Mpro)
and Angiotensin Converting Enzyme 2 (ACE2) from Natural Products:
Quercetin, Hispidulin, and Cirsimaritin Exhibited Better Potential
Inhibition than Hydroxy-Chloroquine Against COVID-19
Main Protease Active Site and ACE2.,. 2020.
[158]
Barik, A.; Rai, G.; Modi, G. .Molecular docking and binding mode
analysis of selected FDA approved drugs against COVID-19 selected
key protein targets: An effort towards drug repurposing to identify
the combination therapy to combat COVID-19. arXiv preprint
arXiv:2004.06447, 2020..
[161]
Srivastava, A.K.; Kumar, A.; Tiwari, G.; Kumar, R.; Misra, N. Silico Investigations on the Potential Inhibitors for COVID-19 Protease.
arXiv:2003.10642,, 2020.
[168]
Sellitto, G. Design and synthesis of “small molecules” as antiviral
and radiotracer agents.,, 2011.
[171]
Eren, E.; Saribek, F.; Kalayci, Z.; Yilmaz, N. How to cripple SARS-COV-2 virus with Ozone treatment., 2020.2, 1094-1102..
[173]
Xu, K.; Chen, Y.; Yuan, J.; Yi, P.; Ding, C.; Wu, W.; Li, Y.; Ni, Q.; Zhou, R.; Li, X. Clinical Efficacy of Arbidol in Patients with 2019 Novel Coronavirus-Infected Pneumonia: A Retrospective Cohort Study; SSRN, 2020.
[182]
Chen, B.; LI, C.; SHI, Y. Synthetic process for camostat mesilate.
A drug for pancreatitis treatment Huagong Jinzhan, 2010, 29(7),
1334-1337..
[190]
Sonawane, K.; Barale, S. S.; Dhanavade, M. J.; Waghmare, S. R.; Nadaf, N. H.; Kamble, S. A.; Mohammed, A. A.; Makandar, A. M.; Fandilolu, P. M.; Dound, A. S. Homology Modeling and Docking
Studies of TMPRSS2 with Experimentally Known Inhibitors Camostat
Mesylate, Nafamostat and Bromhexine Hydrochloride to
Control SARS-Coronavirus-2.. 2020.
[192]
Inoue, J.; Yamamoto, M. Identification of an existing Japanese pancreatitis
drug, Nafamostat, which is expected to prevent the transmission
of new coronavirus infection (COVID-19); Tokyo; , 2020.
[207]
Mahapatra, S.; Nath, P.; Chatterjee, M.; Das, N.; Kalita, D.; Roy, P.; Satapathi, S. . Repurposing Therapeutics for COVID-19: Rapid
Prediction of Commercially available drugs through Machine
Learning and Docking. medRxiv, , 2020.